

Product Catalog Mobile Hydraulics

Part 2: Motors, Gears

The complete Mobile Hydraulics Catalog from Bosch Rexroth at a glance:

Part 1	Pumps	Axial Piston Pumps, External Gear Pumps, Electrohydraulic Pumps, Gerotor Pumps	RE 90010-01
Part 2	Motors, Gears	Axial Piston Motors, External Gear Motors, Radial Piston Motors, Gears	RE 90010-02
Part 3	Mobile Controls	Control Blocks, Valve Modules, Pilot Control Devices, Power Brake Valves	RE 90010-03
Part 4	Mobile Electronics, Accumulators, Filters	Controllers, Application Software, Tools, Sensors, Displays, Video Cameras, Accumulators, Filters, Oil Measurement Technology	RE 90010-04
Part 5	Compact Hydraulics	Mechanical, Solenoid and Proportional Cartridge Valves, Integrated Circuits	RE 90010-05
Part 6	Compact Hydraulics	Load Holding/Motion Control Valves, Compact Directional Valves, Compact Power Modules	RE 90010-06

For the latest product information from Bosch Rexroth, please visit our website:

www.boschrexroth.com/mobile-hydraulics

Publisher Bosch Rexroth AG

Mobile Applications Glockeraustrasse 4 89275 Elchingen, Germany Tel.+49 7308 82-0 info.ma@boschrexroth.de www.boschrexroth.com

Catalog No RE 90010-02/07.2016

Replaces: RE 90010-02/07.2012

Reprints and translation, in whole or in part, only with the publisher's prior consent. Subject to revision.

Should you require further technical information, please contact the Rexroth sales partner in your area.

www.boschrexroth.com/addresses

Contents

Gen	eral		
		7	1
	I nicton motorc		
ANIC	Il piston motors		
	Fixed motors	95	2
	vandalata <u>na akana</u>	221	2
	Variable motors	231	3
	Accessories	635	4
Exte	ernal gear motors		
		677	5
Nau	ial piston motors		
		737	6
Gea	rs		
-			
		007	7
		867	7

Contents

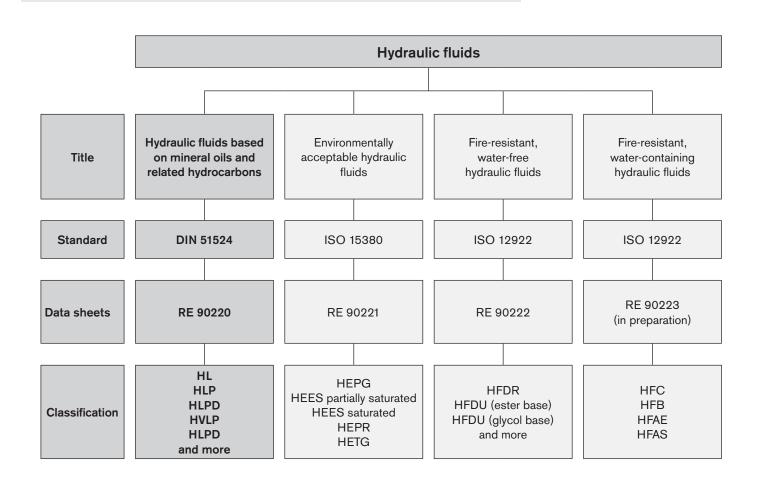
Designation	Туре	Size	Series	Data sheet	Page
General					
Hydraulic fluids based on mineral oils and related	hvdrocarbons			90220	9
Environmentally acceptable hydraulic fluids		90221	25		
Fire-resistant, water-free hydraulic fluids (HFDR/H	HFDU)			90222	39
Fire-resistant hydraulic fluids - water-containing (·	HFC)		90223	55
Axial piston units for operation with fire-resistant water-free and water-containing (HFDR, HFDU, HF	hydraulic fluids –	•		90225	71
Rating of hydraulic fluids for Rexroth hydraulic co		and motors)		90235	87
Axial piston motors					
Fixed motor	A2FM	51000	6x	91001	97
Fixed plug-in motor	A2FE	28355	6x	91008	143
Fixed motor	A2FM/A2FE	45107	70	91071	167
Fixed motor	A4FM	22500	10/30/32	91120	191
Fixed motor	A10FM/A10FE	1063	52	91172	203
Variable motor	A6VM	281000	63	91604	233
Variable motor	A6VM	55200	65	91607	289
Variable motor	A6VM	60215	71	91610	365
Variable motor	A6VM	280	71	91611	441
Variable plug-in motor	A6VE	28250	63	91606	467
Variable plug-in motor	A6VE	55200	65	91615	507
Variable plug-in motor	A6VE	60215	71	91616	549
Variable motor	A10VM/E	2885	52	91703	591
Reversible axial piston variable motor for hydrostatic fan drives	A10VER	3045	52	91706	619
Counterbalance valve for travel drives, winch drives and turas drives	BVD	20, 25	41	95522	637
Counterbalance valve for winch drives	BVE	25	51	95525	649
Counterbalance valve	BVD/BVE	32	51	95528	661
External gear motors					
External gear motor High Performance	AZMB	17.1	3x	14027	679
External gear motor High Performance	AZMF AZMN	822 2528	1x	14026	697
	AZMG	2245			
Radial piston motors		Frame size			
Radial piston motor for frame integrated drives	MCR-A	315	3x	15195	739
Radial piston motor for compact drives	MCR-C	20	33	15197	753
Radial piston motor for wheel drives	MCR-F	315	3x	15198	767
Radial piston motor for integrated drives	MCR-H	320	33	15199	787
Radial piston motor for hydraulic drive assist	MCR-R	10	41	15223	803
Radial piston motor for track drives	MCR-T	510	33	15221	811
Radial piston motor for heavy duty wheel drives	MCR-W	310	33	15200	823
Radial piston motor for slew drives	MCR-X	35	3x	15214	841
Radial piston motors for industrial applications	MCR-D/MCR-E	310	33	15196	851

Designation	Output torque	Data sheet	Page
Gears			
Hydrostatic drives HYDROTRAC GFT	9450 kNm	77110	869
Compact hydrostatic drives HYDROTRAC GFT 45 T2/T3	45 kNm	77115	889
Drive unit for crawler track equipment, series 2000 – HYDROTRAC GFT	13,542,5 kNm	77116	893
Planetary gearboxes for mobile applications HYDROTRAC GFT 8000 Series 40	10130 kNm	77117	895
Planetary gearboxes for mobile applications HYDROTRAC GFT 8130 / 8140 Series 30	2030 kNm	77128	899
Swing drives MOBILEX GFB	46,83 kNm	77201	903
Drive unit for revolving superstructures, series 2000 – MOBILEX GFB	414,5 kNm	77206	919
Winch drives MOBILEX GFT-W	14325 kNm	77502	921

Product Catalog Mobile Hydraulics | Part 2: Motors, Gears

General

Designation	Data sheet	Page
Hydraulic fluids based on mineral oils and related hydrocarbons	90220	9
Environmentally acceptable hydraulic fluids	90221	25
Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)	90222	39
Fire-resistant hydraulic fluids - water-containing (HFAE, HFAS, HFB, HFC)	90223	55
Axial piston units for operation with fire-resistant hydraulic fluids – water-free and water-containing (HFDR, HFDU, HFA, HFB, HFC)	90225	71
Rating of hydraulic fluids for Rexroth hydraulic components (pumps and motors)	90235	87


Product Catalog Mobile Hydraulics | Part 2: Motors, Gears

Hydraulic fluids based on mineral oils and related hydrocarbons

RE 90220/05.12 1/16 Replaces: 05.10

Application notes and requirements for Rexroth hydraulic components

Contents

1	Basic information	3
	1.1 General instructions	3
	1.2 Scope	3
	1.3 Safety instructions	3
2	Solid particle contamination and cleanliness levels	4
3	Selection of the hydraulic fluid	5
	3.1 Selection criteria for the hydraulic fluid	5
	3.1.1 Viscosity	5
	3.1.2 Viscosity-temperature behavior	5
	3.1.3 Wear protection capability	6
	3.1.4 Material compatibility	6
	3.1.5 Aging resistance	6
	3.1.6 Air separation ability (ASA)	6
	3.1.7 Demulsifying ability and water solubility	6
	3.1.8 Filterability	6
	3.1.9 Corrosion protection	6
	3.1.10 Additivation	7
	3.2 Classification and fields of application	7
4	Hydraulic fluids in operation	9
	4.1 General	9
	4.2 Storage and handling	9
	4.3 Filling of new systems	9
	4.4 Hydraulic fluid changeover	9
	4.5 Mixing and compatibility of different hydraulic fluids	9
	4.6 Re-additivation	9
	4.7 Foaming behavior	9
	4.8 Corrosion	10
	4.9 Air	10
	4.10 Water	10
	4.11 Fluid servicing, fluid analysis and filtration	10
5	Disposal and environmental protection	11
6	Other hydraulic fluids based on mineral oil and related hydrocarbons	12
7	Glossary	15

1 Basic information

1.1 General instructions

The hydraulic fluid is the common element in any hydraulic component and must be selected very carefully. Quality and cleanliness of the hydraulic fluid are decisive factors for the operational reliability, efficiency and service life of a system.

Hydraulic fluids must conform, be selected and used in accordance with the generally acknowledged rules of technology and safety provisions. Reference is made to the country-specific standards and directives (in Germany the directive of the Employer's Liability Insurance Association BGR 137).

This data sheet includes recommendations and regulations concerning the selection, operation and disposal of hydraulic fluids based on mineral oils and related hydrocarbons in the application of Rexroth hydraulic components.

The individual selection of hydraulic fluid or the choice of classification are the responsibility of the operator.

It is the responsibility of the user to ensure that appropriate measures are taken for safety and health protection and to ensure compliance with statutory regulations. The recommendations of the lubricant manufacturer and the specifications given in the safety data sheet are to be observed when using hydraulic fluid.

This data sheet does not absolve the operator from verifying the conformity and suitability of the respective hydraulic fluid for his system. He is to ensure that the selected fluid meets the minimum requirements of the relevant fluid standard during the whole of the period of use.

Other regulations and legal provisions may also apply. The operator is responsible for their observance, e.g. EU directive 2004/35/EG and their national implementations. In Germany the Water Resources Act (WHG) is also to be observed.

We recommend that you maintain constant, close contact with lubricant manufacturers to support you in the selection, maintenance, care and analyses.

When disposing of used hydraulic fluids, apply the same care as during use.

1.2 Scope

This data sheet must be observed when using hydraulic fluids based on mineral oils and related hydrocarbons in Bosch Rexroth hydraulic components.

Please note that the specifications of this data sheet may be restricted further by the specifications given in the product data sheets for the individual components.

The use of the individual hydraulic fluids in accordance with the intended purpose can be found in the safety data sheets or other product description documents of the lubricant manufacturers. In addition, each use is to be individually considered.

Rexroth hydraulic components may only be operated with hydraulic fluids based on mineral oils and related hydrocarbons according to DIN 51524 if specified in the respective component data sheet or if Rexroth approval for use is furnished.

Notes:

In the market overview RE 90220-01, hydraulic fluid based on mineral oil are described which, according to the information of the lubricant manufacturer, feature the respective parameters of the current requirements standard DIN 51524 and other parameters which are of relevance for suitability in connection with Rexroth components.

These specifications are not checked or monitored by Bosch Rexroth. The list in the market overview does not therefore represent a recommendation on the part of Rexroth or approval of the respective hydraulic fluid for use with Rexroth components and does not release the operator from his responsibility regarding selection of the hydraulic fluid.

Bosch Rexroth will accept no liability for its components for any damage resulting from failure to comply with the notes below.

1.3 Safety instructions

Hydraulic fluids can constitute a risk for persons and the environment. These risks are described in the hydraulic fluid safety data sheets. The operator is to ensure that a current safety data sheet for the hydraulic fluid used is available and that the measures stipulated therein are complied with.

2 Solid particle contamination and cleanliness levels

Solid particle contamination is the major reason for faults occurring in hydraulic systems. It may lead to a number of effects in the hydraulic system. Firstly, single large solid particles may lead directly to a system malfunction, and secondly small particles cause continuous elevated wear.

For hydraulic fluids, the cleanliness level is given as a three-digit numerical code in accordance with ISO 4406. This numerical code denotes the number of particles present in a hydraulic fluid for a defined quantity. Moreover, foreign solid matter is not to exceed a mass of 50 mg/kg (gravimetric examination according to ISO 4405).

In general, compliance with a minimum cleanliness level of 20/18/15 in accordance with ISO 4406 or better is to be maintained in operation. Special servo valves demand improved cleanliness levels of at least 18/16/13. A reduction in cleanliness level by one level means half of the quantity of particles and thus greater cleanliness. Lower numbers in cleanliness levels should always be striven for and extend the service life of hydraulic components. The component with the highest cleanliness requirements determines the required cleanliness of the overall system. Please also observe the specifications in table 1: "Cleanliness levels according to ISO 4406" and in the respective data sheets of the various hydraulic components.

Hydraulic fluids frequently fail to meet these cleanliness requirements on delivery. Careful filtering is therefore required during operation and in particular, during filling in order to ensure the required cleanliness levels. Your lubricant manufacturer can tell you the cleanliness level of hydraulic fluids as delivered. To maintain the required cleanliness level over the operating period, you must use a reservoir breather filter. If the environment is humid, take appropriate measures, such as a breather filter with air drying or permanent off-line water separation.

Note: the specifications of the lubricant manufacturer relating to cleanliness levels are based on the time at which the container concerned is filled and not on the conditions during transport and storage.

Further information about contamination with solid matter and cleanliness levels can be found in brochure RE 08016.

Table 1: Cleanliness levels according to ISO 4406

Particles per 10	0 ml		
More than	Up to and including	Scale number	
8,000,000	16,000,000	24	
4,000,000	8,000,000	23	20 / 18 / 15
2,000,000	4,000,000	22	> 4 μm > 6 μm > 14 μm
1,000,000	2,000,000	21	
500,000	1,000,000	20	
250,000	500,000	19	
130,000	250,000	18	
64000	130,000	17	
32000	64000	16	
16000	32000	15	
8000	16000	14	
4000	8000	13	
2000	4000	12	
1000	2000	11	
500	1000	10	
250	500	9	
130	250	8	
64	130	7	
32	64	6	

3 Selection of the hydraulic fluid

The use of hydraulic fluids based on mineral oils for Rexroth hydraulic components is based on compliance with the minimum requirements of DIN 51524.

3.1 Selection criteria for the hydraulic fluid

The specified limit values for all components employed in the hydraulic system, for example viscosity and cleanliness level, must be observed with the hydraulic fluid used, taking into account the specified operating conditions.

Hydraulic fluid suitability depends, amongst others, on the following factors:

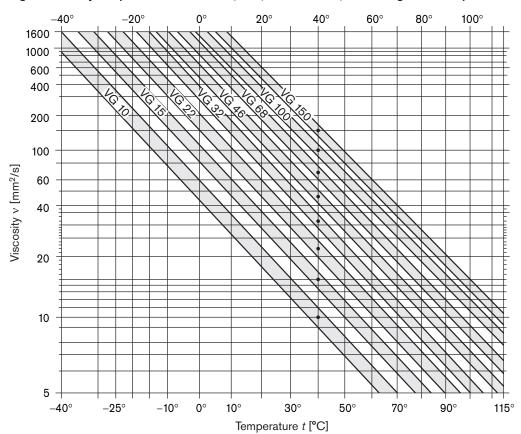
3.1.1 Viscosity

Viscosity is a basic property of hydraulic fluids. The permissible viscosity range of complete systems needs to be determined taking account of the permissible viscosity of all components and it is to be observed for each individual component.

The viscosity at operating temperature determines the response characteristics of closed control loops, stability and damping of systems, the efficiency factor and the degree of

We recommend that the optimum operating viscosity range of each component be kept within the permissible temperature range. This usually requires either cooling or heating, or both. The permissible viscosity range and the necessary cleanliness level can be found in the product data sheet for the component concerned.

If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. In return, there will be lower internal leakage losses. If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which may lead to cavitation damage.


If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination and a shorter component life cycle will result.

3.1.2 Viscosity-temperature behavior

For hydraulic fluids, the viscosity temperature behavior (V-T behavior) is of particular importance. Viscosity is characterized in that it drops when the temperature increases and rises when the temperature drops; see Fig. 1 "Viscosity temperature chart for HL, HLP, HLPD (VI 100)". The interrelation between viscosity and temperature is described by the viscosity index (VI).

The viscosity temperature diagram in Fig. 1 is extrapolated in the < 40 °C range. This idealized diagram is for reference purposes only. Measured values can be obtained from your lubricant manufacturer and are to be preferred for design purposes.

3.1.3 Wear protection capability

Wear protection capability describes the property of hydraulic fluids to prevent or minimize wear within the components. The wear protection capability is described in DIN 51524-2,-3 via test procedures "FZG gear test rig" (ISO 14635-1) and "Mechanical test in the vane pump" (ISO 20763). From ISO VG 32 DIN 51524-2,-3 prescribes a rating of at least 10 (FZG test). At present, the FZG test cannot be applied to viscosity classes < ISO VG 32.

3.1.4 Material compatibility

The hydraulic fluid must not negatively affect the materials used in the components. Compatibility with coatings, seals, hoses, metals and plastics is to be observed in particular. The fluid classifications specified in the respective component data sheets are tested by the manufacturer with regard to material compatibility. Parts and components not supplied by us are to be checked by the user.

Table 2: Known material incompatibilities

Classification	Incompatible with:	
HLxx classifications	with EPDM seals	
Zinc- and ash/free hydraulic fluids	with bronze-filled PTFE seals	

3.1.5 Aging resistance

The way a hydraulic fluid ages depends on the thermal, chemical and mechanical stress to which it is subjected. Aging resistance can be greatly influenced by the chemical composition of the hydraulic fluids.

High fluid temperatures (e.g. over 80 °C) result in a approximate halving of the fluid service life for every 10 °C temperature increase and should therefore by avoided. The halving of the fluid service life results from the application of the Arrhenius equation (see Glossary).

Table 3: Reference values for temperature-dependent aging of the hydraulic fluid

Reservoir temperature	Fluid life cycle
80 °C	100 %
90 °C	50 %
100 °C	25 %

Hydraulic fluids based on mineral oils and related hydrocarbons are tested with 20% water additive during testing of aging resistance according to ISO 4263-1.

The calculated fluid service life is derived from the results of tests in which the long-term characteristics are simulated in a short period of time by applying more arduous conditions (condensed testing). This calculated fluid service life is not to be equated to the fluid service life in real-life applications.

Table 3 is a practical indicator for hydraulic fluids with water content < 0.1%, cf. chapter 4.10. "Water".

3.1.6 Air separation ability (ASA)

The air separation ability (ASA) describes the property of a hydraulic fluid to separate undissolved air. Hydraulic fluids contain approx. 7 to 13 percent by volume of dissolved air (with atmospheric pressure and 50 °C). Hydraulic fluids always contain dissolved air. During operation, dissolved air may be transformed into undissolved air, leading to cavitation damages. Fluid classification, fluid product, reservoir size and design must be coordinated to take into account the dwell time and ASA value of the hydraulic fluid. The air separation capacity depends on the viscosity, temperature, basic fluid and aging.

It cannot be improved by additives.

According to DIN 51524 for instance, an ASA value ≤ 10 minutes is required for viscosity class ISO VG 46, 6 minutes are typical, lower values are preferable.

3.1.7 Demulsifying ability and water solubility

The capacity of a hydraulic fluid to separate water at a defined temperature is known as the demulsifying ability. ISO 6614 defines the demulsifying properties of hydraulic fluids.

For larger systems with permanent monitoring, a demulsifying fluid with good water separation capability (WSC) is recommended. The water can be drained from the bottom of the reservoir. In smaller systems (e.g. in mobile machines), whose fluid is less closely monitored and where water contamination into the hydraulic fluid, for instance through air condensation, cannot be ruled out completely, an HLPD fluid is recommended.

The demulsifying ability up to ISO-VG 100 is given at 54 °C, and at 82 °C for fluids with higher viscosity.

Water emulsifying HLPD hydraulic fluids have no, or a very poor, demulsifying ability.

3.1.8 Filterability

Filterability describes the ability of a hydraulic fluid to pass through a filter, removing solid contaminants. The hydraulic fluids used require a good filterability, not just when new, but also during the whole of their service life. Depending on the basic fluid used and the additives (VI enhancers) there are great differences here.

The filterability is a basic prerequisite for cleanliness, servicing and filtration of hydraulic fluids. Filterability is tested with the new hydraulic fluid and after the addition of 0.2 % water. The underlying standard (ISO 13357-1/-2) stipulates that filterability must have no negative effects on the filters or the hydraulic fluid, see chapter 4 "Hydraulic fluids in operation".

3.1.9 Corrosion protection

Hydraulic fluids should not just prevent corrosion formation on steel components, they must also be compatible with non-ferrous metals and alloys. Corrosion protection tests on different metals and metal alloys are described in DIN 51524. Hydraulic fluids that are not compatible with the materials listed above must not be used, even if they are compliant with ISO 51524.

Rexroth components are usually tested with HLP hydraulic fluids or corrosion protection oils based on mineral oils before they are delivered.

3.1.10 Additivation

The properties described above can be modified with the help of suitable additives. A general distinction is made for fluids between heavy metal-free and heavy metal-containing (generally zinc) additive systems. Both additive systems are most often incompatible with each other. The mixing of these fluids must be avoided even if the mixing ratio is very low. See chapter 4, "Hydraulic fluids in operation".

Increasing additivation generally leads to deteriorated air separation ability (ASA) and water separation capability (WSC) of the hydraulic fluid. According to the present state of knowledge, all hydraulic fluids described in this document, independently of the actual additivation, can be filtered using all filter materials with all known filtration ratings $\geq 1~\mu m$ without filtering out effective additives at the same time.

Bosch Rexroth does not prescribe any specific additive system.

3.2 Classification and fields of application

Table 4: Classification and fields of application

Classification	Features	Typical field of application	Notes
HL fluids according to DIN 51524-1 VI = 100	predominantly only used in hydraulic systems that do not pose any require-	HL fluids may be used only for components whose product data sheet specifically allows HL fluids. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.	
	sion protection, but no specific additives for wear protection in case of mixed friction	ments as to wear protection.	Hydraulic fluids that only comply with the requirements of classes HL and HR in accordance with ISO 11158 without proving that DIN 51524-1 is also met may be used only with written approval of Bosch Rexroth AG.
			Observe restrictions as to pressure, rotation speed etc.
HLP fluids according to DIN 51524-2 VI = 100	Hydraulic fluid with corrosion, oxidation and verified wear protection additives	HLP fluids are suit- able for most fields of application and components provided	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
		the temperature and viscosity provisions are observed.	For the viscosity classes VG10, VG15 and VG22, DIN 51524 defines no requirements as to wear protection (DIN 51354 part 2 and DIN 51389 part 2). Beyond the requirements of DIN 51524 part 2, we require the same base oil type, identical refining procedure, identical additivation and identical additivation level across all viscosity classes.

Table 4: Classification and fields of application (continued from page 7)

Classification	Features	Typical field of application	Notes	
HVLP fluids according to DIN 51524-3 VI > 140	HLP hydraulic fluid with additional improved viscosity temperature behavior	HVLP fluids are used in systems operated over a wide temperature range.	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.	
			The same notes and restrictions as defined for HLP fluids apply accordingly.	
			The effect on Rexroth components (e.g. compatibility with material seals, wear resistance capacity) may differ when using related hydrocarbons instead of mineral oils, cf. Table 6, line 8.	
			When using HVLP fluids, the viscosity may change on account of the shear of the long-chain VI enhancers. The viscosity index, high at the start, decreases during operation. This needs to be taken into account when selecting the hydraulic fluid.	
			The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part 6. Please note that there are practical applications that create a much higher shear load on such fluids than can be achieved by this test. Up to VI < 160, we recommend a maximum permitted viscosity drop of 15 %, viscosity at 100 °C.	
			The viscosity limits given by Bosch Rexroth for its components are to be observed for all operating conditions, even after the hydraulic fluids have sheared.	
			HVLP fluids should be used only if required by the temperature ranges of the application.	
HLPD fluids according to DIN 51524-2, HVLPD fluids in	HLP and HVLP hydraulic fluid with additional detergent and or dispersant	HLPD and HVLPD fluids are used in systems where deposits as well	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.	
accordance with DIN 51524-3	additives	ce with 4-3 as solid or liquid contamination need to be kept temporari		Some of these fluids are able to absorb significant quantities of water (> 0.1 %). This may have negative implications for the wear protection and the aging properties of the fluid.
		1.5	The wetting ability of these fluids varies largely depending on the product. Therefore it is not correct to say that they are generally all very well able to prevent stick-slip.	
			In individual cases where higher water contamination is to be expected (such as in steelworks or under humid conditions), the use of HLPD/HVLPD fluids cannot be recommended as the emulsified water does not settle in the reservoir but is evaporated in heavily loaded positions. For such cases, we recommend using HLP hydraulic fluids with particularly good demulsifying ability. The water collected at the reservoir bottom is to be drained regularly.	
			If HLPD/HVLPD fluids are used, contamination does not settle. It rather remains suspended and needs to be filtered out or removed by appropriate draining systems. For this reason, the filter area must be increased.	
			HLPD/HVLPD fluids may contain additives that in the long run are incompatible with plastics, elastomers and non-ferrous metals. Furthermore, these additives may lead to the premature clogging of hydraulic filters. Therefore, test the filterability and the selection of the filter material in consultation with the filter manufacturer.	

4 Hydraulic fluids in operation

4.1 General

The properties of hydraulic fluids can change continually during storage and operation.

Please note that the fluid standard DIN 51524 merely describes minimum requirements for hydraulic fluids in new condition at the time of filling into the bins. The operator of a hydraulic system must ensure that the hydraulic fluid remains in a utilizable condition throughout its entire period of use.

Deviations from the characteristic values are to be clarified with the lubricant manufacturer, the test labs or Bosch Rexroth.

Please note the following aspects in operation.

4.2 Storage and handling

Hydraulic fluids must be stored correctly in accordance with the instructions of the lubricant manufacturer. Avoid exposing the containers to lengthy periods of direct heat. Containers are to be stored in such a way that the risk of any foreign liquid or solid matter (e.g. water, foreign fluids or dust) ingression into the inside of the container can be ruled out. After taking hydraulic fluids from the containers, these are immediately to be properly resealed.

Recommendation:

- Store containers in a dry, roofed place
- Store barrels on their sides
- Clean reservoir systems and machine reservoirs regularly

4.3 Filling of new systems

Usually, the cleanliness levels of the hydraulic fluids as delivered do not meet the requirements of our components. Hydraulic fluids must be filtered using an appropriate filter system to minimize solid particle contamination and water in the system.

As early as possible during test operation, new systems should be filled with the selected hydraulic fluid so as to reduce the risk of accidentally mixing the fluids (see chapter 4.5 "Mixing and compatibility of different hydraulic fluids"). Changing the hydraulic medium at a later point represents significant additional costs (see following chapter).

4.4 Hydraulic fluid changeover

Changeovers, in particular between hydraulic fluids with heavy metal-free and heavy metal-containing (generally zinc) additives, frequently lead to malfunctions, see chapter 3.1.10 "Additivation".

In the case of changeovers of the fluid in hydraulic systems, it is important to ensure compatibility of the new hydraulic fluid with the remainder of the previous hydraulic fluid. We recommend obtaining a written performance guarantee from the manufacturer or supplier of the new hydraulic fluid. The quantity of old fluid remaining should be minimized. Mixing hydraulic fluids should be avoided, see following chapter.

For information on changing over hydraulic fluids with different classifications please refer to VDMA 24314, VDMA 24569 and ISO 15380 appendix A.

Bosch Rexroth will not accept liability for any damage to its components resulting from inadequate hydraulic fluid changeovers!

4.5 Mixing and compatibility of different hydraulic fluids

If hydraulic fluids from different manufacturers or different types from the same manufacturer are mixed, gelling, silting and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions and damage to the hydraulic system.

If the fluid contains more than 2 % of another fluid then it is considered to be a mixture. Exceptions apply for water, see chapter 4.10 "Water".

Mixing with other hydraulic fluids is not generally permitted. This also includes hydraulic fluids with the same classification and from the market overview RE 90220-01. If individual lubricant manufacturers advertise miscibility and/or compatibility, this is entirely the responsibility of the lubricant manufacturer.

Bosch Rexroth customarily tests all components with mineral oil HLP before they are delivered.

Note: With connectible accessory units and mobile filtering systems, there is a considerable risk of non-permitted mixing of the hydraulic fluids!

Rexroth will not accept liability for any damage to its components resulting from mixing hydraulic fluids!

4.6 Re-additivation

Additives added at a later point in time such as colors, wear reducers, VI enhancers or anti-foam additives, may negatively affect the performance properties of the hydraulic fluid and the compatibility with our components and therefore are not permissible.

Rexroth will not accept liability for any damage to its components resulting from re-additivation!

4.7 Foaming behavior

Foam is created by rising air bubbles at the surface of hydraulic fluids in the reservoir. Foam that develops should collapse as quickly as possible.

Common hydraulic fluids in accordance with DIN 51524 are sufficiently inhibited against foam formation in new condition. On account of aging and adsorption onto surfaces, the defoamer concentration may decrease over time, leading to a stable foam.

Defoamers may be re-dosed only after consultation with the lubricant manufacturer and with his written approval.

Defoamers may affect the air separation ability.

4.8 Corrosion

The hydraulic fluid is to guarantee sufficient corrosion protection of components under all operating conditions, even in the event of impermissible water contamination.

During storage and operation, hydraulic fluid based on mineral oils with anti-corrosion additives protect components against water and "acidic" oil degradation products.

4.9 Air

Under atmospheric conditions, the hydraulic fluid contains dissolved air. In the negative pressure range, for instance in the suction pipe of the pump or downstream of control edges, this dissolved air may transform into undissolved air. The undissolved air content represents a risk of cavitation and of the diesel effect. This results in material erosion of components and increased hydraulic fluid aging.

With the correct measures, such as suction pipe and reservoir design, and an appropriate hydraulic fluid, air intake and separation can be positively influenced.

See also chapter 3.1.7 "Air separation ability (ASA)".

4.10 Water

Water contamination in hydraulic fluids can result from direct ingress or indirectly through condensation of water from the air due to temperature variations.

Water in the hydraulic fluid may result in wear or direct failure of hydraulic components. Furthermore, a high water content in the hydraulic fluid negatively affects aging and filterability and increases susceptibility to cavitation.

Undissolved water can be drained from the bottom of the reservoir. Dissolved water can be removed only by using appropriate measures. If the hydraulic system is used in humid conditions, preventive measures need to be taken, such as an air dehumidifier at the reservoir vent. During operation, the water content in all hydraulic fluids, determined according to the "Karl Fischer method" (see chapter 6 "Glossary") for all hydraulic fluids must constantly be kept below 0.1% (1000 ppm). To ensure a long service life of both hydraulic fluids and components, Bosch Rexroth recommends that values below 0.05% (500 ppm) are permanently maintained.

To ensure a long service life for the hydraulic fluids and the components, we recommend that values below 0.05 % (500 ppm) are permanently maintained. Detergent and or dispersant hydraulic fluids (HLPD / HVLPD) are able to absorb (and keep suspended) more water. Prior to using these hydraulic fluids, please contact the lubricant manufacturer.

4.11 Fluid servicing, fluid analysis and filtration

Air, water, operating temperature influences and solid matter contamination will change the performance characteristics of hydraulic fluids and cause them to age.

To preserve the usage properties and ensure a long service life for hydraulic fluid and components, the monitoring of the fluid condition and a filtration adapted to the application requirements (draining and degassing if required) are indispensable.

The effort is higher in the case of unfavorable usage conditions, increased stress for the hydraulic system or high expectations as to availability and service life, see chapter 2 "Solid particle contamination and cleanliness level".

When commissioning a system, please note that the required minimum cleanliness level can frequently be attained only by flushing the system. Due to severe start-up contamination, it may be possible that a fluid and/or filter replacement becomes necessary after a short operating period (< 50 operating hours).

The hydraulic fluid must be replaced in regular intervals and tested by the lubricant manufacturer or recognized, accredited test labs. We recommend a reference analysis after commissioning.

The minimum data to be tested for analyses are:

- Viscosity at 40 °C and 100 °C
- Neutralization number NN (acid number AN)
- Water content (Karl-Fischer method)
- Particle measurement with evaluation according to ISO 4406 or mass of solid foreign substances with evaluation to EN 12662
- Element analysis (RFA (EDX) / ICP, specify test method)
- Comparison with new product or available trend analyses
- Assessment / evaluation for further use
- Also recommended: IR spectrum

Compared to the pure unused hydraulic fluid, the changed neutralization number NN (acid number AN) indicates how many aging products are contained in the hydraulic fluid. This value must be kept as low as possible. As soon as the trend analysis notes a significant increase in the acid number, the lubricant manufacturer should be contacted.

In case of warranty, liability or guarantee claims to Bosch Rexroth, service verification and/or the results of fluid analyses are to be provided.

5 Disposal and environmental protection

Hydraulic fluids based on mineral oil and related hydrocarbons are hazardous for the environment. They are subject to a special disposal obligation.

The respective lubricant manufacturers provide specifications on environmentally acceptable handling and storage. Please ensure that spilt or splashed fluids are absorbed with appropriate adsorbents or by a technique that prevents it contaminating water courses, the ground or sewerage systems.

It is also not permitted to mix fluids when disposing of hydraulic fluids. Regulations governing the handing of used oils stipulate that used oils are not to mixed with other products, e.g. substances containing halogen. Non-compliance will increase disposal costs. Comply with the national legal provisions concerning the disposal of the corresponding hydraulic fluid. Comply with the local safety data sheet of the lubricant manufacturer for the country concerned.

6 Other hydraulic fluids based on mineral oil and related hydrocarbons

Table 6: Other hydraulic fluids based on mineral oils and related hydrocarbons

Serial number	Hydraulic fluids	Features / Typical field of application / Notes
1	Hydraulic fluids with classification HL, HM, HV according to ISO 11158	 Can be used without confirmation provided they are listed in the respective product data sheet and are compliant with DIN 51524. Conformity with DIN 51524 must be verified in the technical data sheet of the fluid concerned. For classification see Table 4: "Hydraulic fluid classification".
		 Fluids only classified in accordance with ISO 11158 may be used only with prior written approval of Bosch Rexroth AG.
2	Hydraulic fluids with classification HH, HR, HS, HG ac- cording to ISO 11158	- May not be used.
3	Hydraulic fluids with classification HL, HLP, HLPD, HVLP, HVLPD to DIN 51502	 DIN 51502 merely describes how fluids are classified / designated on a national level. It contains no information on minimum requirements for hydraulic fluids. Hydraulic fluids standardized according to DIN 51502 can be used without confirma-
		tion provided they are listed in the respective product data sheet and are compliant with DIN 51524. Conformity with DIN 51524 must be verified in the technical data sheet of the fluid concerned. For classification see Table 4: "Hydraulic fluid classification".
4	Hydraulic fluids with classification HH, HL, HM, HR, HV, HS, HG according to ISO 6743-4	 ISO 6743-4 merely describes how fluids are classified / designated on an international level. It contains no information on minimum requirements for hydraulic fluids.
		- Hydraulic fluids standardized according to ISO 6743 -4 can be used without confirmation provided they are listed in the respective product data sheet and are compliant with DIN 51524. Conformity with DIN 51524 must be verified in the technical data sheet of the fluid concerned. For classification see table 4: "Classification and fields of application".
5	Lubricants and regulator fluids for turbines to DIN 51515-1 and -2	- Turbine oils can be used after confirmation and with limited performance data.
		 They usually offer lower wear protection than mineral oil HLP. Classification of turbine oils to DIN 51515-1 comparable to HL, turbine oils to DIN 51515-2 comparable to HLP.
		- Particular attention must be paid to material compatibility!
6	Lube oils C, CL, CLP in accordance with DIN 51517	 Lube oils in acc. with DIN 51517 can be used after confirmation and with limited performance data. They are mostly higher-viscosity fluids with low wear protection. Classification: CL similar to HL fluids and CLP similar to HLP fluids.
		Particular attention must be paid to material compatibility, specifically with non-ferrous metals!
7	Fluids to be used in	- There are medical white oils and synthetic hydrocarbons (PAO).
	pharmaceutical and foodstuff industries,	 Can only be used after consultation and approval for use in the specific application, even if they are compliant with DIN 51524.
	in acc. with FDA / USDA / NSF H1	- May be used only with FKM seals.
		Other fluids used in pharmaceutical and foodstuff industries may be used only after confirmation.
		Attention is to be paid to material compatibility in accordance with the applicable food law.
		Caution! Fluids used in pharmaceutical and foodstuff industries should not be confused with environmentally acceptable fluids!

Table 6: Other hydraulic fluids based on mineral oils and related hydrocarbons (continued from page 12)

Serial number	Hydraulic fluids	Features / Typical field of application / Notes	
8	Hydraulic fluids of classes HVLP and HVLPD based on related hydrocarbons	 Can only be used after consultation and approval for use in the specific application, even if they are compliant with DIN 51524. 	
		- Lower pour point than HLP	
related hydrocarbons		- Other wetting (polarity)	
9	Automatic Transmission Fluids (ATF)	 ATF are operating fluids for automatic gearboxes in vehicles and machines. In special cases, ATFs are also used for certain synchronous gearboxes and hydraulic systems comprising gearboxes. 	
		- To be used only after confirmation!	
		- Some of these fluids have poor air separation abilities and modified wear properties	
		Check material compatibility and filterability!	
10	Multi-purpose oil (MFO) – Industry	Multi-purpose oils (industry) combine at least two requirements for a fluid, for instance metal machining and hydraulics.	
		- To be used only after confirmation!	
		 Please pay particular attention to air separation ability, modified wear properties and the reduced material life cycle. 	
		- Check material compatibility and filterability!	
11	Multi-purpose oils (MFO) – Mobil UTTO, STOU	Multi-purpose oils combine requirements for wet brakes, gearboxes, motor oil (STOU only) and hydraulics.	
		- Fluids of the types:	
		- UTTO (= universal tractor transmission oil) and	
		- STOU (= Super Tractor super tractor universal oil)	
		- To be used only after confirmation!	
		Please pay particular attention to shear stability, air separation ability and modified wear properties.	
		Check material compatibility and filterability!	
12	Single-grade engine oils 10W, 20W, 30W	- To be used only after confirmation!	
		- Please pay particular attention to the air separation ability and filtering ability.	
13	Multi-grade engine oils 0Wx-30Wx	- To be used only after confirmation!	
		 Please pay particular attention to air separation ability, changes in wear protection capability, viscosity changes during operation, material compatibility, dispersant and detergent properties and filterability. 	
		Caution! Multi-grade engine oils have been adapted to specific requirements in combustion engines and are suitable for use in hydraulic systems only to a limited extent.	
14	Motor vehicle transmission oils	Motor vehicle transmission oil can be used after confirmation and with limited performance data.	
		Pay particular attention to wear protection, material compatibility, specifically with non-ferrous metals, as well as viscosity!	
15	Diesel, test diesel in acc. with DIN 4113	 Diesel / test diesel has poorer wear protection capabilities and a very low viscosity (< 3 mm²/s). 	
		- May be used only with FKM seals	
		- Please note their low flash point!	
		- To be used only after confirmation and with limited performance data!	

Table 6: Other hydraulic fluids based on mineral oils and related hydrocarbons (continued from page 13)

Serial number	Hydraulic fluids	Features / Typical field of application / Notes	
16	Hydraulic fluids for roller processes	 Hydraulic fluids for roller processes have lower wear protection capabilities than mineral oil HLP and a lower viscosity 	
		- Please note their low flash point!	
		 Hydraulic fluids for roller processes with limited performance data can be used only after confirmation. 	
steering, even if they are compliant		 Can only be used after consultation and approval for use in the specific application, even if they are compliant with DIN 51524. 	
	hydro-pneumatic sus- pension, active chassis etc.	- Please note the low viscosity!	
		- In most cases they have poor water separation capability	
		- Check the material compatibility!	

7 Glossary

Additivation

Additives are chemical substances added to the basic fluids to achieve or improve specific properties.

Hydraulic fluids age due to oxidation (see chapter 3.1.5 "Aging resistance"). Liquid and solid contamination acts as a catalyzer for aging, meaning that it needs to be minimized as far as possible by careful filtration.

API classification

Classification of basic fluids by the American Petroleum Institute (API) - the largest association representing the US oil and gas industry.

Arrhenius equation

The quantitative relation between reaction rate and temperature is described by an exponential function, the Arrhenius equation. This function is usually visualized within the typical temperature range of the hydraulic system. For a practical example, see chapter 3.1.5 "Aging resistance".

Related hydrocarbons

Related hydrocarbons are hydrocarbon compounds that are not classified as API class 1, 2 or 5.

Basic fluids

In general, a hydraulic fluid is made up of a basic fluid, or base oil, and chemical substances, the so-called additives. The proportion of basic fluid is generally greater than 90%.

Demulsifying

Ability of a fluid to separate water contamination quickly; achieved with careful selection of base oil and additives.

Detergent

Ability of certain additives to emulsify part of the water contamination in the oil or to hold it in suspension until it has evaporated with increasing temperature. Larger water quantities, in contrast (above approx. 2 %), are separated immediately.

Dispersant

Ability of certain additives to keep insoluble liquid and solid contamination in suspension in the fluid.

Diesel effect

If hydraulic fluid that contains air bubbles is compressed quickly, the bubbles are heated to such a degree that a selfignition of the air-gas mix may occur. The resultant temperature increase may lead to seal damage and increased aging of the hydraulic fluid.

Hydraulic fluids based on mineral oils

Hydraulic fluids based on mineral oils are made from petroleum (crude oil).

ICP (atomic emission spectroscopy)

The ICP procedure can be used to determine various wear metals, contamination types and additives. Practically all elements in the periodic system can be detected with this method.

Karl Fischer method

Method to determine the water content in fluids. Indirect coulometric determination procedure in accordance with DIN EN ISO 12937 in connection with DIN 51777-2. Only the combination of both standards will assure adequately accurate measured values.

Cavitation

Cavitation is the creation of cavities in fluids due to pressure reduction below the saturated vapour pressure and subsequent implosion when the pressure increases. When the cavities implode, extremely high acceleration, temperatures and pressure may occur temporarily, which may damage the component surfaces.

Neutralization number (NN)

The neutralization number (NN) or acid number (AN) specifies the amount of caustic potash required to neutralize the acid contained in one gram of fluid.

Pour point

The lowest temperature at which the fluid still just flows when cooled down under set conditions. The pour point is specified in the lubricant manufacturers' technical data sheets as a reference value for achieving this flow limit.

RFA (wavelength dispersive x-ray fluorescence analysis)

Is a procedure to determine nearly all elements in liquid and solid samples with nearly any composition. This analysis method is suitable for examining additives and contamination, delivering fast results.

Shearing/shear loss

Shearing of molecule chains during operation can change the viscosity of hydraulic fluids with long chain VI enhancers. The initially high viscosity index drops. This needs to be taken into account when selecting the hydraulic fluid.

The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part -6. Please note that there are practical applications that create a much higher shear load on such hydraulic fluids than can be achieved by this test.

Stick-slip effect (sliding)

Interaction between a resilient mass system involving friction (such as cylinder + oil column + load) and the pressure increase at very low sliding speeds. The static friction of the system is a decisive value here. The lower it is, the lower the speed that can still be maintained without sticking. Depending on the tribologic system, the stick-slip effect may lead to vibrations generated and sometimes also to significant noise emission. In many cases, the effect can be attenuated by replacing the lubricant.

Viscosity

Viscosity is the measure of the internal friction of a fluid to flow. It is defined as the property of a substance to flow under tension. Viscosity is the most important characteristic for describing the load-bearing capacity of a hydraulic fluid.

Kinematic viscosity is the ratio of the dynamic viscosity and the density of the fluid; the unit is mm2/s. Hydraulic fluids are classified by their kinematic viscosity into ISO viscosity classes. The reference temperature for this is 40 °C.

Viscosity index (VI)

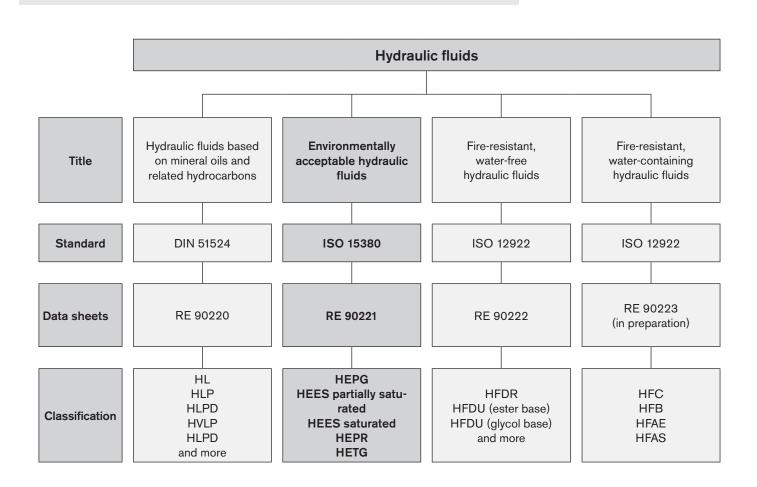
Refers to the viscosity temperature behavior of a fluid. The lower the change of viscosity in relation the temperature, the higher the VI.

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52 / 18-0
Fax +49 (0) 93 52 / 18-23 58
documentation@boschrexroth.de
www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

No statements concerning the suitability of a hydraulic fluid for a specific purpose can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.


Subject to change.

Rexroth Bosch Group

Environmentally acceptable hydraulic fluids

RE 90221/05.12 1/14 Replaces: 05.10

Application notes and requirements for Rexroth hydraulic components

Contents

1	Basic information	3
	1.1 General instructions	3
	1.2 Environmental compatibility	3
	1.3 Scope	3
	1.4 Safety instructions	3
2	Solid particle contamination and cleanliness levels	4
3	Selection of the hydraulic fluid	5
	3.1 Selection criteria for the hydraulic fluid	5
	3.1.1 Viscosity	5
	3.1.2 Viscosity-temperature behavior	5
	3.1.3 Wear protection capability	6
	3.1.4 Material compatibility	6
	3.1.5 Aging resistance	6
	3.1.6 Biological degradation	6
	3.1.7 Air separation ability (ASA)	7
	3.1.8 Demulsifying ability and water solubility	7
	3.1.9 Filterability	7
	3.1.10 Corrosion protection	7
	3.1.11 Additivation	7
	3.2 Classification and fields of application	8
4	Hydraulic fluids in operation	10
	4.1 General	10
	4.2 Storage and handling	10
	4.3 Filling of new systems	10
	4.4 Hydraulic fluid changeover	10
	4.5 Mixing and compatibility of different hydraulic fluids	10
	4.6 Re-additivation	10
	4.7 Foaming behavior	10
	4.8 Corrosion	11
	4.9 Air	11
	4.10 Water	11
	4.11 Fluid servicing, fluid analysis and filtration	11
5	Disposal and environmental protection	12
6	Glossary	13

1 Basic information

1.1 General instructions

The hydraulic fluid is the common element in any hydraulic component and must be selected very carefully. Quality and cleanliness of the hydraulic fluid are decisive factors for the operational reliability, efficiency and service life of a system.

Hydraulic fluids must conform, be selected and used in accordance with the generally acknowledged rules of technology and safety provisions. Reference is made to the countryspecific standards and directives (in Germany the directive of the Employer's Liability Insurance Association BGR 137).

This data sheet includes recommendations and regulations concerning the selection, operation and disposal of environmentally compatible hydraulic fluids in the application of Rexroth hydraulic components.

The individual selection of hydraulic fluid or the choice of classification are the responsibility of the operator.

It is the responsibility of the user to ensure that appropriate measures are taken for safety and health protection and to ensure compliance with statutory regulations. The recommendations of the lubricant manufacturer and the specifications given in the safety data sheet are to be observed when using hydraulic fluid.

This data sheet does not absolve the operator from verifying the conformity and suitability of the respective hydraulic fluid for his system. He is to ensure that the selected fluid meets the minimum requirements of the relevant fluid standard during the whole of the period of use.

Other regulations and legal provisions may also apply. The operator is responsible for their observance, e.g. EU directive 2004/35/EG, 2005/360/EG and their national implementation. In Germany the Water Resources Act (WHG) is also to be observed.

We recommend that you maintain constant, close contact with lubricant manufacturers to support you in the selection, maintenance, care and analyses.

When disposing of used hydraulic fluids, apply the same care as during use.

Environmentally acceptable hydraulic fluids have been used successfully for many years. In some countries, the use of environmentally acceptable hydraulic fluids is already prescribed in ecologically sensitive areas (e.g. forestry, locks, weirs).

Environmentally acceptable hydraulic fluids may only be used in the pharmaceutical and food industry subject to required certification to FDA/USDA/NSF H1.

1.2 Environmental compatibility

There is no unambiguous legal definition for environmentally acceptable hydraulic fluids as different testing procedures can be applied for biological degradation and toxicity.

According to ISO 15380 the definition of "environmentally acceptable" is as follows: Humans, animals, plants, air and soil must not be endangered. With regard to hydraulic fluids in an unused condition in the bin this mainly means:

- biological degradation at least 60 % (according to ISO 14593 or ISO 9439)
- acute fish toxicity at least 100 mg/l (according to ISO 7346-2)

- acute daphnia toxicity at least 100 mg/l (according to ISO 5341)
- acute bacteria toxicity at least 100 mg/l (according to ISO 8192)

The same amount of care should be taken when handling environmentally acceptable hydraulic fluids as for mineral oils, leakage from the hydraulic system should be avoided. Environmentally acceptable hydraulic fluids are designed so that in the event of accidents and leakage, less permanent environmental damage is caused than by mineral oils, see also chapter 5 "Disposal and environmental protection".

In comparison to mineral oil HLP/HVLP, the biological degradation of environmentally acceptable hydraulic fluids may change fluid aging, see chapter 3.1.5 "Aging resistance", 3.1.6. "Biological degradation" and 4 "Hydraulic fluids in operation".

1.3 Scope

This data sheet must be applied when using environmentally acceptable hydraulic fluids with Rexroth hydraulic components. The specifications of this data sheet may be further restricted by the specification given in the data sheets for the individual components.

The use of the individual environmentally acceptable hydraulic fluids in accordance with the intended purpose can be found in the safety data sheets or other product description documents of the lubricant manufacturers. In addition, each use is to be individually considered.

Rexroth hydraulic components may only be operated with environmentally acceptable hydraulic fluids according to ISO 15380 if specified in the respective component data sheet or if a Rexroth approval for use is furnished.

The manufacturers of hydraulic systems must adjust their systems and operating instructions to the environmentally acceptable hydraulic fluids.

In the market overview RE 90221-01, environmentally acceptable hydraulic fluids based on mineral oil are described which, according to the information of the lubricant manufacturer, feature the respective parameters of the current requirements standard ISO 15380 and other parameters which are of relevance for suitability in connection with Rexroth components.

These specifications are not checked or monitored by Bosch Rexroth. The list in the market overview does not therefore represent a recommendation on the part of Rexroth or approval of the respective hydraulic fluid for use with Rexroth components and does not release the operator from his responsibility regarding selection of the hydraulic fluid.

Bosch Rexroth will accept no liability for its components for any damage resulting from failure to comply with the notes below.

1.4 Safety instructions

Hydraulic fluids can constitute a risk for persons and the environment. These risks are described in the hydraulic fluid safety data sheets. The operator is to ensure that a current safety data sheet for the hydraulic fluid used is available and that the measures stipulated therein are complied with.

2 Solid particle contamination and cleanliness levels

Solid particle contamination is the major reason for faults occurring in hydraulic systems. It may lead to a number of effects in the hydraulic system. Firstly, single large solid particles may lead directly to a system malfunction, and secondly small particles cause continuous elevated wear.

For mineral oils, the cleanliness level of environmentally acceptable hydraulic fluids is given as a three-digit numerical code in accordance with ISO 4406. This numerical code denotes the number of particles present in a hydraulic fluid for a defined quantity. Moreover, foreign solid matter is not to exceed a mass of 50 mg/kg (gravimetric examination according to ISO 4405).

In general, compliance with a minimum cleanliness level of 20/18/15 in accordance with ISO 4406 or better is to be maintained in operation. Special servo valves demand improved cleanliness levels of at least 18/16/13. A reduction in cleanliness level by one level means half of the quantity of particles and thus greater cleanliness. Lower numbers in cleanliness levels should always be striven for and extend the service life of hydraulic components. The component with the highest cleanliness requirements determines the required cleanliness of the overall system. Please also observe the specifications in table 1: "Cleanliness levels according to ISO 4406" and in the respective data sheets of the various hydraulic components.

Hydraulic fluids frequently fail to meet these cleanliness requirements on delivery. Careful filtering is therefore required during operation and in particular, during filling in order to ensure the required cleanliness levels. Your lubricant manufacturer can tell you the cleanliness level of hydraulic fluids as delivered. To maintain the required cleanliness level over

the operating period, you must use a reservoir breather filter. If the environment is humid, take appropriate measures, such as a breather filter with air drying or permanent off-line water separation.

Note: the specifications of the lubricant manufacturer relating to cleanliness levels are based on the time at which the container concerned is filled and not on the conditions during transport and storage.

Further information about contamination with solid matter and cleanliness levels can be found in brochure RE 08016.

Table 1: Cleanliness levels according to ISO 4406

Particles per 10	00 ml		
More than	Up to and including	Scale number	
8,000,000	16,000,000	24	
4,000,000	8,000,000	23	20 / 18 / 15
2,000,000	4,000,000	22	> 4 μm > 6 μm > 14 μm
1,000,000	2,000,000	21	
500,000	1,000,000	20	
250,000	500,000	19	
130,000	250,000	18	
64000	130,000	17	
32000	64000	16	
16000	32000	15	
8000	16000	14	
4000	8000	13	
2000	4000	12	
1000	2000	11	
500	1000	10	
250	500	9	
130	250	8	
64	130	7	
32	64	6	

3 Selection of the hydraulic fluid

Environmentally acceptable hydraulic fluids for Bosch Rexroth hydraulic components are assessed on the basis of their fulfillment of the minimum requirements of ISO 15380.

3.1 Selection criteria for the hydraulic fluid

The specified limit values for all components employed in the hydraulic system, for example viscosity and cleanliness level, must be observed with the hydraulic fluid used, taking into account the specified operating conditions.

Hydraulic fluid suitability depends, amongst others, on the following factors:

3.1.1 Viscosity

Viscosity is a basic property of hydraulic fluids. The permissible viscosity range of complete systems needs to be determined taking account of the permissible viscosity of all components and it is to be observed for each individual component.

The viscosity at operating temperature determines the response characteristics of closed control loops, stability and damping of systems, the efficiency factor and the degree of

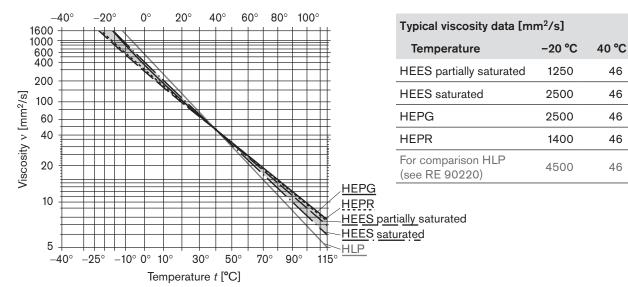
We recommend that the optimum operating viscosity range of each component be kept within the permissible temperature range. This usually requires either cooling or heating, or both. The permissible viscosity range and the necessary cleanliness level can be found in the product data sheet for the component concerned.

If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. In return, there will be lower internal leakage losses. If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which may lead to cavitation damage.

If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination and a shorter life cycle will result.

Please ensure that the permissible temperature and viscosity limits are observed for the respective components. This usually requires either cooling or heating, or both.

3.1.2 Viscosity-temperature behavior


For hydraulic fluids, the viscosity temperature behavior (V-T behavior) is of particular importance. Viscosity is characterized in that it drops when the temperature increases and rises when the temperature drops. The interrelation between viscosity and temperature is described by the viscosity index (VI).

If exposed to the cold for several days, viscosity may rise significantly (HETG and HEES). After heating, the characteristic values as specified on the data sheet are restored. Please ask your lubricant manufacturer for the "Flow capacity after 7 days at low temperature" (ASTM D 2532) of fluid classifications HETG and partially saturated HEES.

All known environmentally acceptable hydraulic fluids have better viscosity temperature behavior than mineral oil HLP and generally feature greater shear stability than HVLP mineral oils. This should be taken into consideration when selecting hydraulic fluid for the required temperature range. A lower viscosity level can frequently be used to save any drive power during a cold start and avoid viscosity being too low at higher temperatures. The required viscosity and temperature limits in the product data sheets are to be observed in all operating conditions.

Depending on the basic fluid types/classes, VI indices can be achieved of 140-220, see Fig. 1: "Examples: V-T diagrams in comparison to HLP (reference values)" and Table 4: "Classification and fields of application of environmentally acceptable hydraulic fluids".

Fig. 1: Examples V-T diagrams in comparison to HLP (reference values, double-logarithmic representation)

Detailed V-T diagrams may be obtained from your lubricant manufacturer for their specific products.

100 °C

9

8

10

10

7

46

46

46

46

46

3.1.3 Wear protection capability

Wear protection capability describes the property of hydraulic fluids to prevent or minimize wear within the components. The wear protection capability is described in ISO 15380 via test procedures"FZG gear test rig" (ISO 14635-1) and "Mechanical test in the vane pump" (ISO 20763). From ISO VG 32, ISO 15380 prescribes a rating of at least 10 (FZG test). At present, the FZG test cannot be applied to viscosity classes < ISO VG 32. The wear protection capability of environmentally acceptable hydraulic fluids in relation to the two test procedures is comparable to that of mineral oil HLP/HVLP.

3.1.4 Material compatibility

The hydraulic fluid must not negatively affect the materials used in the components. Compatibility with coatings, seals, hoses, metals and plastics is to be observed in particular. The fluid classifications specified in the respective component data sheets are tested by the manufacturer with regard to material compatibility. Parts and components not supplied by us are to be checked by the user.

Table 2: Known material incompatibilities

Classification	Incompatible with:		
HE general	One-component color coatings, lead, galvanized zinc coatings, some non-ferrous metals, seals made of NBR. In some cases, the latter show major increases in volume when impermissibly aged hydraulic fluids come into contact with the material. NBR is only permitted by prior consent, please observe the customary seal and tube replacement intervals. Do not use any hydrolysis/susceptible polyurethane qualities.		
	Note Please check seals and coatings of control cabinets, outer coatings of hydraulic components and accessories (connectors, cables, control cabinets) for resistance to vapors issuing from hydraulic fluids.		
HETG/HEES	Zinc, some non-ferrous alloys with zinc		
HEPG	Steel/aluminum tribocontacts, paper filters, polymethylmethacrylate (PMMA), NBR		
	Note Check plastics for resistance		

The material incompatibilities mentioned here do not automatically result in function problems. However the elements of the materials are found in the hydraulic fluids after use. The biological degradation of hydraulic fluids is negatively influenced.

3.1.5 Aging resistance

The way an environmentally acceptable hydraulic fluids ages depends on the thermal, chemical and mechanical stress to which it is subjected. The influence of water, air, temperature and contamination may be significantly greater than for mineral oils HLP/HVLP. Aging resistance can be greatly influenced by the chemical composition of the hydraulic fluids.

High fluid temperatures (e.g. over 80 °C) result in a approximate halving of the fluid service life for every 10 °C temperature increase and should therefore by avoided. The halving of the fluid service life results from the application of the Arrhenius equation (see Glossary).

Table 3: Reference values for temperature-dependent aging of the hydraulic fluid

Reservoir temperature	Fluid life cycle
80 °C	100 %
90 °C	50 %
100 °C	25 %

A modified aging test (without adding water) is prescribed for fluid classifications HETG and HEES. Hydraulic fluids with HEPG and HEPR classification are subjected to the identical test procedure as mineral oils (with 20 % water added). The calculated fluid service life is derived from the results of tests in which the long-term characteristics are simulated in a short period of time by applying more arduous conditions (condensed testing). This calculated fluid service life is not to be equated to the fluid service life in real-life applications.

Table 3 is a practical indicator for hydraulic fluids with water content < 0.1%, cf. chapter 4.10. "Water".

3.1.6 Biological degradation

Environmentally acceptable hydraulic fluids are ones which degrade biologically much faster than mineral oils. Biological degradation is a biochemical transformation effected by micro-organisms resulting in mineralization. For environmentally acceptable hydraulic fluids that make reference to ISO 15380, biological degradation according to ISO 14593 or ISO 9439 must be verified. 60% minimum degradation is defined as limit value. Proof of biological degradation is furnished for the new, unmixed, ready-formulated hydraulic fluids. Aged or mixed hydraulic fluids are less able to degrade biologically. Biological degradation outside the defined test procedure is subject to a variety of natural influences. The key factors are temperature, humidity, contamination, fluid concentration, type and quantity of micro-organisms. Environmentally acceptable hydraulic fluids require no extended maintenance in comparison to mineral oils, please observe chapter 4 "Hydraulic fluids in operation".

3.1.7 Air separation ability (ASA)

The air separation ability (ASA) describes the property of a hydraulic fluid to separate undissolved air. Hydraulic fluids always contain dissolved air. During operation, dissolved air may be transformed into undissolved air, leading to cavitation damages. Fluid classification, fluid product, reservoir size and design must be coordinated to take into account the dwell time and ASA value of the hydraulic fluid. The air separation capacity depends on the viscosity, temperature, basic fluid and aging. It cannot be improved by additives.

According to ISO 15380, for instance, an ASA value ≤ 10 minutes is required for viscosity class ISO VG 46, 6 minutes are typical, lower values are preferable.

3.1.8 Demulsifying ability and water solubility

The capacity of a hydraulic fluid to separate water at a defined temperature is known as the demulsifying ability. ISO 6614 defines the demulsifying properties of hydraulic fluids.

Fluids classified HETG, HEES and HEPR separate from water. HETG and HEES hydraulic fluids have a different water separation ability to mineral oil HLP/HVLP. At 20 °C, in comparison to mineral oil HLP/HVLP, a multiple (> factor 3) of water can separate in the hydraulic fluid. Water solubility is also more temperature-dependent than for mineral oils. With regard to water solubility, HEPR hydraulic fluids behave like HVLP hydraulic fluids (see RE 90220). In the majority of cases, HEPG-classified fluids HEPG dissolve water completely, see chapter "4.10 Water".

3.1.9 Filterability

Filterability describes the ability of a hydraulic fluid to pass through a filter, removing solid contaminants. The hydraulic fluids used require a good filterability, not just when new, but also during the whole of their service life. Depending on the different basic fluids (glycols, saturated and partially saturated ester oils, hydrocrack oils, polyalpha olefins, triglycerides) and additives (VI enhancers), there are great differences here.

The filterability is a basic prerequisite for cleanliness, servicing and filtration of hydraulic fluids. Rexroth therefore requires the same degree of filterability of environmentally acceptable hydraulic fluids as for mineral oils HLP/HVLP to DIN 51524. As ISO 15380 does not comment on the filterability of hydraulic fluids, filterability comparable to that of mineral oils HLP/HVLP must be requested of lubricant manufacturers.

Filterability is tested with the new hydraulic fluid and after the addition of 0.2 % water. The underlying standard (ISO 13357-1/-2) stipulates that filterability must have no negative effects on the filters or the hydraulic fluid, see chapter 4 "Hydraulic fluids in operation".

3.1.10 Corrosion protection

Hydraulic fluids should not just prevent corrosion formation on steel components, they must also be compatible with non-ferrous metals and alloys. Corrosion protection tests on different metals and metal alloys are described in ISO 15380. Hydraulic fluids that are not compatible with the materials listed above must not be used, even if they are compliant with ISO 15380.

Rexroth components are usually tested with HLP hydraulic fluids or corrosion protection oils based on mineral oils before they are delivered.

3.1.11 Additivation

The properties described above can be modified with the help of suitable additives. Environmentally acceptable hydraulic fluids should never contain heavy metals. According to the present state of knowledge, all hydraulic fluids, regardless of additivation, can be filtered with all customary filter materials in all known filtration ratings (≥ 0.8 µm), without filtering out effective additives at the same time.

Bosch Rexroth does not prescribe any specific additive system.

3.2 Classification and fields of application

Table 4: Classification and fields of application

Classification	Features	Typical field of application	Notes
HEPG according to ISO 15380	Basic fluid, glycols	Systems on exposed water courses (locks, weirs, dredgers)	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
Density at 15 °C: typically > 0.97 kg/dm³			Very good viscosity/temperature characteristics, shear stability
VI: typical > 170			- Resistant to aging
			Incompatible with mineral oil (exceptions must be confirmed by the lubricant manufacturer)
			- Can be water-soluble
			- Can be mixed with water
			- Very good wear protection properties
			A higher implementation temperature with the same viscosity in comparison to mineral oil is to be expected
			 Due to the higher density in comparison to HLP, lower suction pressures are to be anticipated for pumps. Reduce the maximum speed as required and optimize suction conditions.
			Classified as insignificantly water-endangering (water hazard class WGK 1)
			 Prior to commissioning, contact the lubricant manufacturer, as the components are tested with mineral oil HLP/corrosion protection oil.
HEES partially saturated according to ISO 15380	(< 30%)	Suitable for most fields of application and components.	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
Density at 15 °C: typically			 Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under –15 °C.
0.90-0.93 kg/dm ³ VI: typical > 160 lodine count < 90			 In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity
lodine oddin v oo			 Limit lower (depending on viscosity class) and upper implementation temperatures (maximum 80 °C due to aging)
			- Good viscosity/temperature characteristics, shear stability.
			- Good corrosion protection, if correspondingly additivized
			Mostly classed as insignificantly water-endangering (water hazard class WGK 1), in some cases as not water-endangering
			- High dirt dissolving capacity on fluid changeovers
			 In unfavorable operating conditions (high water content, high temperature), HEES on ester basis have a tendency to hydrolysis. The acidic organic decomposition products can chemically attack materials and components.

Table 4: Classification and fields of application (continued from page 8)

Classification	Features	Typical field of application	Notes	
HEES saturated according to ISO 15380	Basic fluid: Ester based on renew- able raw materials, synthetic esters,	Suitable for most fields of application and components. Saturated HEES	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.	
Density at 15 °C: typically	esters, mixtures with over polyalphaolefines (< 30%) and construction systems.	esters, mixtures with over partially	should be preferred over partially saturated HEES and HETG for components and systems exposed to	 Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under −15 °C.
0.90-0.93 kg/dm ³ VI: typical 140-160		and HETG for components and		 In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity
lodine count <15			- Good viscosity/temperature characteristics, shear stability	
			- Good corrosion protection, if correspondingly additivized	
			 Mostly classed as insignificantly water-endangering (water hazard class WGK 1), in the case of low viscosity classes (up to ISO VG 32) also classed as not water-endangering 	
			High dirt dissolving capacity on fluid changeovers	
HEPR according to ISO 15380 Density at 15 °C:	Basic fluid: synthetically manufactured hydro- carbons (polyalpha	Suitable for most fields of application and components. HEPR should be	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.	
typically 0.87 kg/ dm ³	pically 0.87 kg/	 Behaves similarly to HVLP- hydraulic fluids, individual products comply with ISO 15380 HEPR and DIN 51524-3 HVLP 		
VI: for components and systems exposed to	 Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under -15 °C. 			
		high stress levels.	- Good viscosity-temperature behavior	
			Classified as insignificantly water-endangering (water hazard class WGK 1)	
			Note: Note shear stability (see chapter 4.11 "Fluid servicing, fluid analysis and filtration" and chapter 6 "Glossary")	
HETG according to ISO 15380	Basic fluid: vegetable oils and triglycerides	Not recommended for Rexroth components!	Practical requirements are frequently not fulfilled by hydraulic fluids in this classification. Use only permissible after consultation.	
Density at 15 °C:			- Viscosity is not stable over time	
typically 0.90-0.93 kg/dm ³			Very fast fluid aging, very hydrolysis-susceptible (please observe neutralization number)	
VI: typical > 200			- Tendency to gumming, gelling and setting.	
lodine count > 90			Limit the lower (depending on viscosity class) and upper implementation temperatures (see chapter 3.1.5)	
			- Only limited material compatibility	
			- Filterability problems at water ingress	
			- High dirt dissolving capacity on fluid changeovers	
			Mostly classed as not water-endangering	

4 Hydraulic fluids in operation

4.1 General

The properties of hydraulic fluids can change continually during storage and operation.

Please note that the fluid standard ISO 15380 merely describes minimum requirements for hydraulic fluids in new condition at the time of filling into the bins. The operator of a hydraulic system must ensure that the hydraulic fluid remains in a utilizable condition throughout its entire period of use.

Deviations from the characteristic values are to be clarified with the lubricant manufacturer, the test labs or Bosch Rexroth.

Bosch Rexroth will accept no liability for damage to its components within the framework of the applicable liability legislation insofar as the latter is due to non-observance of the following instructions.

Please note the following aspects in operation.

4.2 Storage and handling

Hydraulic fluids must be stored correctly in accordance with the instructions of the lubricant manufacturer. Avoid exposing the containers to lengthy periods of direct heat. Containers are to be stored in such a way that the risk of any foreign liquid or solid matter (e.g. water, foreign fluids or dust) ingression into the inside of the container can be ruled out. After taking hydraulic fluids from the containers, these are immediately to be properly resealed.

Recommendation:

- Store containers in a dry, roofed place
- Store barrels on their sides
- Clean reservoir systems and machine reservoirs regularly

4.3 Filling of new systems

Usually, the cleanliness levels of the hydraulic fluids as delivered do not meet the requirements of our components. Hydraulic fluids must be filtered using an appropriate filter system to minimize solid particle contamination and water in the system.

As early as possible during test operation, new systems should be filled with the selected hydraulic fluid so as to reduce the risk of accidentally mixing fluids (see chapter 4.5 "Mixing and compatibility of different hydraulic fluids"). Changing the hydraulic medium at a later point represents significant additional costs (see following chapter).

4.4 Hydraulic fluid changeover

In particular with the changeover from mineral oils to environmentally acceptable hydraulic fluids, but also from one environmentally acceptable hydraulic fluids to another, there may be interference (e.g. incompatibility in the form of gelling, silting, stable foam or reduced filterability or filter blockage).

In the case of changeovers of the fluid in hydraulic systems, it is important to ensure compatibility of the new hydraulic fluid with the remains of the previous hydraulic fluid. Bosch Rexroth recommends obtaining verification of compatibility from the

manufacturer or supplier of the new hydraulic fluid. The quantity of old fluid remaining should be minimized. Mixing hydraulic fluids should be avoided, see following chapter.

For information on changing over hydraulic fluids with different classifications, please refer to VDMA 24314, VDMA 24569 and ISO 15380 appendix A.

Bosch Rexroth will not accept liability for any damage to its components resulting from inadequate hydraulic fluid changeovers!

4.5 Mixing and compatibility of different hydraulic fluids

If hydraulic fluids from different manufacturers or different types from the same manufacturer are mixed, gelling, silting and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions and damage to the hydraulic system.

If the fluid contains more than 2 % of another fluid then it is considered to be a mixture. Exceptions apply for water, see chapter 4.10 "Water".

Mixing with other hydraulic fluids is not generally permitted. This also includes hydraulic fluids with the same classification and from the market overview RE 90221-01. If individual lubricant manufacturers advertise miscibility and/or compatibility, this is entirely the responsibility of the lubricant manufacturer.

Bosch Rexroth customarily tests all components with mineral oil HLP before they are delivered.

Note: With connectible accessory units and mobile filtering systems, there is a considerable risk of non-permitted mixing of the hydraulic fluids!

Rexroth will not accept liability for any damage to its components resulting from mixing hydraulic fluids!

4.6 Re-additivation

Additives added at a later point in time such as colors, wear reducers, VI enhancers or anti-foam additives, may negatively affect the performance properties of the hydraulic fluid and the compatibility with our components and therefore are not permissible.

Rexroth will not accept liability for any damage to its components resulting from re-additivation!

4.7 Foaming behavior

Foam is created by rising air bubbles at the surface of hydraulic fluids in the reservoir. Foam that develops should collapse as quickly as possible.

Common hydraulic fluids in accordance with ISO 15380 are sufficiently inhibited against foam formation in new condition. On account of aging and adsorption onto surfaces, the defoamer concentration may decrease over time, leading to a stable foam.

Defoamers may be re-dosed only after consultation with the lubricant manufacturer and with his written approval.

Defoamers may affect the air separation ability.

4.8 Corrosion

The hydraulic fluid is to guarantee sufficient corrosion protection of components under all operating conditions, even in the event of impermissible water contamination.

Environmentally acceptable hydraulic fluids are tested for corrosion protection in the same way as mineral oil HLP/ HVLP. When used in practice other corrosion mechanisms are revealed in detail and in individual cases, for the most part in contact with non-ferrous and white alloys.

4.9 Air

Under atmospheric conditions the hydraulic fluid contains dissolved air. In the negative pressure range, for instance in the suction pipe of the pump or downstream of control edges, this dissolved air may transform into undissolved air. The undissolved air content represents a risk of cavitation and of the diesel effect. This results in material erosion of components and increased hydraulic fluid aging.

With the correct measures, such as suction pipe and reservoir design, and an appropriate hydraulic fluid, air intake and separation can be positively influenced.

See also chapter 3.1.7 "Air separation ability (ASA)".

4.10 Water

Water contamination in hydraulic fluids can result from direct ingress or indirectly through condensation of water from the air due to temperature variations.

HEPG dissolves water completely. This means that any water that has ingressed into the system cannot be drained off in the sump of the reservoir.

In the case of hydraulic fluids classed HETG, HEES and HEPR undissolved water can be drained off from the reservoir sump, the remaining water content is however too high to ensure that the maximum permissible water limit values are observed in the long term.

Water in the hydraulic fluid can result in wear or direct failure of hydraulic components. Furthermore, a high water content in the hydraulic fluid negatively affects aging and filterability and increases susceptibility to cavitation. During operation, the water content in all hydraulic fluids, determined according to the "Karl Fischer method" (see chapter 6 "Glossary") for all environmentally acceptable hydraulic fluids must constantly be kept below 0.1% (1000 ppm). To ensure a long service life of both hydraulic fluids and components, Bosch Rexroth recommends that values below 0.05% (500 ppm) are permanently maintained.

Due to the higher water solubility (except for HEPR) in comparison to mineral oil HLP/HVLP it is urgently advised that precautions be taken when using environmentally acceptable hydraulic fluids, such as a dehumidifier on the reservoir ventilation.

Water content has an affect particularly in the case of HETG and partially saturated HEES in that it accelerates aging (hydrolysis) of the hydraulic fluid and biological degradation, see chapter 4.11 "Fluid servicing, fluid analysis and filtration".

4.11 Fluid servicing, fluid analysis and filtration

Air, water, operating temperature influences and solid matter contamination will change the performance characteristics of hydraulic fluids and cause them to age.

To preserve the usage properties and ensure a long service life for hydraulic fluid and components, the monitoring of the fluid condition and a filtration adapted to the application requirements (draining and degassing if required) are indispensable.

The effort is higher in the case of unfavorable usage conditions, increased stress for the hydraulic system or high expectations as to availability and service life, see chapter 2 "Solid particle contamination and cleanliness levels".

When commissioning a system, please note that the required minimum cleanliness level can frequently be attained only by flushing the system. Due to severe start-up contamination, it may be possible that a fluid and/or filter replacement becomes necessary after a short operating period (< 50 operating hours).

The hydraulic fluid must be replaced at regular intervals and tested by the lubricant manufacturer or recognized accredited test labs. We recommend a reference analysis after commissioning.

The minimum data to be tested for analyses are:

- Viscosity at 40 °C and 100 °C
- Neutralization number NN (acid number AN)
- Water content (Karl-Fischer method)
- Particle measurement with evaluation according to ISO 4406 or mass of solid foreign substances with evaluation to EN 12662
- Element analysis (RFA (EDX) / ICP, specify test method)
- Comparison with new product or available trend analyses
- Assessment / evaluation for further use
- Also recommended: IR spectrum"

Differences in the maintenance and upkeep of environmentally acceptable hydraulic fluids with the corresponding suitability characteristics (as required in market overview RE 90221-01) in comparison to mineral oil HLP/HVLP are not necessary. Attention is however drawn to the note in chapter 1.3.

After changing over hydraulic fluids it is recommended that the filters be replaced again after 50 operating hours as fluid aging products may have detached themselves ("self-cleaning effect").

Compared to the pure unused hydraulic fluid the changed neutralization number NN (acid number AN) indicates how many aging products are contained in the hydraulic fluid. This difference must be kept as low as possible. As soon as the trend analysis notes a significant increase in the values, the lubricant manufacturer should be contacted.

A higher viscosity than that of new materials indicates that the hydraulic fluid has aged. Evaluation by the test lab or lubricant manufacturers is however authoritative, whose recommendation should be urgently observed.

On systems where the possibility of water contamination cannot be completely ruled out (also condensation), it should be ensured via the hydraulic system circuit that fluid aging products are not accumulating in individual areas of the hydraulic system, but are being removed from the system in a controlled manner via the filtration system. This should be ensured via suitable hydraulic circuits (e.g. flushing circuit) or system manufacturer's operating instructions/specifications.

In case of warranty, liability or guarantee claims to Bosch Rexroth, service verification and/or the results of fluid analyses are to be provided.

5 Disposal and environmental protection

All environmentally acceptable hydraulic fluids, are like mineral oil-based hydraulic fluids, subject to special disposal obligations.

The respective lubricant manufacturers provide specifications on environmentally acceptable handling and storage. Please ensure that spilt or splashed fluids are absorbed with appropriate adsorbents or by a technique that prevents it contaminating water courses, the ground or sewerage systems.

It is also not permitted to mix fluids when disposing of hydraulic fluids. Regulations governing the handing of used oils stipulate that used oils are not to mixed with other products, e.g. substances containing halogen. Non-compliance will increase disposal costs. Comply with the national legal provisions concerning the disposal of the corresponding hydraulic fluid. Comply with the local safety data sheet of the lubricant manufacturer for the country concerned.

13/14

6 Glossary

Additivation

Additives are chemical substances added to the basic fluids to achieve or improve specific properties.

Aging

Hydraulic fluids age due to oxidation (see chapter 3.1.5 "Aging resistance"). Liquid and solid contamination acts as a catalyzer for aging, meaning that it needs to be minimized as far as possible by careful filtration. Please refer to Hydrolysis.

Arrhenius equation

The quantitative relation between reaction rate and temperature is described by an exponential function, the Arrhenius equation. This function is usually visualized within the typical temperature range of the hydraulic system. For a practical example, see chapter 3.1.5 "Aging resistance".

Basic fluids

In general, a hydraulic fluid is made up of a basic fluid, or base oil, and chemical substances, the so-called additives. The proportion of basic fluid is generally greater than 90%.

Diesel effect

If hydraulic fluid that contains air bubbles is compressed quickly, the bubbles are heated to such a degree that a self-ignition of the air-gas mix may occur. The resultant temperature increase may lead to seal damage and increased aging of the hydraulic fluid.

Saturated esters

Esters differ by the number of C atoms (chain length) and position of the bonds between the C atoms. Saturated esters do not have double/multiple bonds between C atoms and are therefore more resistant to aging than partially saturated esters.

Partially saturated esters

In contrast to saturated esters, partially saturated esters have double/multiple bonds between C atoms. Rexroth defines partially saturated esters as unsaturated bonds and mixtures of esters with unsaturated and saturated bonds. Esters with unsaturated bonds are produced on the basis of renewable raw materials.

Depending on their number and position, these unsaturated bonds between the C atoms are instable. These bonds can detach themselves and form new bonds, thus changing the properties of those liquids (an aging mechanism). One of the underlying requirements for inclusion in the market overview RE 90221-01 is an aging stability characteristic. Attention is however drawn to the note in chapter 1.3.

Hydrolysis

Hydrolysis is the splitting of a chemical bond through the reaction with water under the influence of temperature.

ICP (atomic emission spectroscopy)

The ICP procedure can be used to determine various wear metals, contamination types and additives. Practically all elements in the periodic system can be detected with this method..

lodine count

The iodine count is a yardstick for the quantity of single and multiple unsaturated bonds between C atoms in the basic fluid. A low iodine count indicates that the hydraulic fluid contains few unsaturated bonds and is thus considerably more resistant to aging than a hydraulic fluid with a high iodine count. A statement about the position at which these multiple bonds are located and about how "stable" they are against influencing factors cannot be derived simply by stating the iodine count.

Karl Fischer method

Method to determine the water content in fluids. Indirect coulometric determination procedure in accordance with DIN EN ISO 12937 in connection with DIN 51777-2. Only the combination of both standards will assure adequately accurate measured values. For hydraulic fluids based on glycol, DIN EN ISO 12937 is to be applied in conjunction with DIN 51777-1.

Cavitation

Cavitation is the creation of cavities in fluids due to pressure reduction below the saturated vapour pressure and subsequent implosion when the pressure increases. When the cavities implode, extremely high acceleration, temperatures and pressure may occur temporarily, which may damage the component surfaces.

Neutralization number (NN)

The neutralization number (NN) or acid number (AN) specifies the amount of caustic potash required to neutralize the acid contained in one gram of fluid.

Pour point

The lowest temperature at which the fluid still just flows when cooled down under set conditions. The pour point is specified in the lubricant manufacturers' technical data sheets as a reference value for achieving this flow limit.

RFA (wavelength dispersive x-ray fluorescence analysis) Is a procedure to determine nearly all elements in liquid and solid samples with nearly any composition. This analysis method is suitable for examining additives and contamination, delivering fast results.

Shearing/shear loss

Shearing of molecule chains during operation can change the viscosity of hydraulic fluids with long chain VI enhancers. The initially high viscosity index drops. This needs to be taken into account when selecting the hydraulic fluid.

The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part -6. Please note that there are practical applications that create a much higher shear load on such hydraulic fluids than can be achieved by this test.

Stick-slip

Interaction between a resilient mass system involving friction (such as cylinder + oil column + load) and the pressure increase at very low sliding speeds. The static friction of the system is a decisive value here. The lower it is, the lower the speed that can still be maintained without sticking. Depending on the tribologic system, the stick-slip effect may lead to vibrations generated and sometimes also to significant noise emission. In many cases, the effect can be attenuated by replacing the lubricant.

Viscosity

Viscosity is the measure of the internal friction of a fluid to flow. It is defined as the property of a substance to flow under tension. Viscosity is the most important characteristic for describing the load-bearing capacity of a hydraulic fluid.

Kinematic viscosity is the ratio of the dynamic viscosity and the density of the fluid; the unit is mm²/s. Hydraulic fluids are classified by their kinematic viscosity into ISO viscosity classes. The reference temperature for this is 40 °C.

Viscosity index (VI)

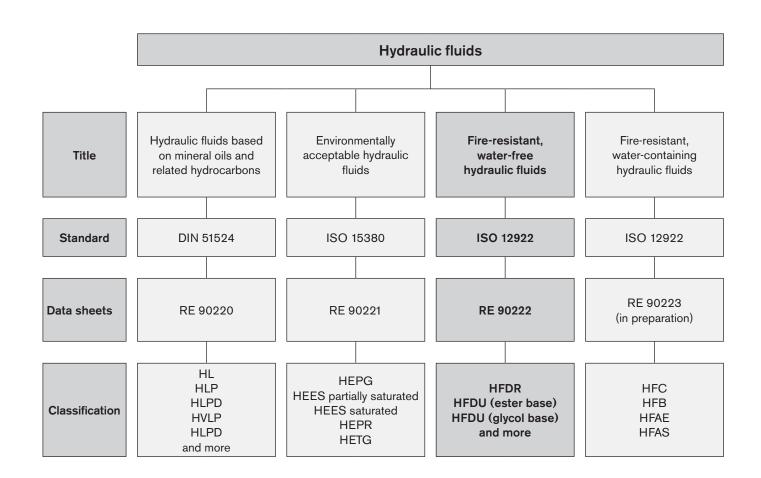
Refers to the viscosity temperature behavior of a fluid. The lower the change of viscosity in relation the temperature, the higher the VI.

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52 / 18-0
Fax +49 (0) 93 52 / 18-23 58
documentation@boschrexroth.de
www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

No statements concerning the suitability of a hydraulic fluid for a specific purpose can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.


Subject to change.

Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)

RE 90222/05.12 1/16

Application notes and requirements for Rexroth hydraulic components

Contents

1	Basic information	3
	1.1 General instructions	3
	1.2 Fire resistance	3
	1.3 Scope	4
	1.4 Safety instructions	4
2	Solid particle contamination and cleanliness levels	5
3	Selection of the hydraulic fluid	6
	3.1 Selection criteria for the hydraulic fluid	6
	3.1.1 Viscosity	6
	3.1.2 Viscosity-temperature behavior	7
	3.1.3 Wear protection capability	7
	3.1.4 Material compatibility	7
	3.1.5 Aging resistance	7
	3.1.6 Environmentally acceptable	8
	3.1.7 Air separation ability (ASA)	8
	3.1.8 Demulsifying ability and water solubility	8
	3.1.9 Filterability	8
	3.1.10 Corrosion protection	8
	3.1.11 Additivation	8
	3.2 Classification and fields of application	9
4	Hydraulic fluids in operation	11
	4.1 General	11
	4.2 Storage and handling	11
	4.3 Filling of new systems	11
	4.4 Hydraulic fluid changeover	11
	4.5 Mixing and compatibility of different hydraulic fluids	11
	4.6 Re-additivation	11
	4.7 Foaming behavior	11
	4.8 Corrosion	12
	4.9 Air	12
	4.10 Water	12
	4.11 Fluid servicing, fluid analysis and filtration	12
5	Disposal and environmental protection	13
6	Glossary	14

1 Basic information

1.1 General instructions

The hydraulic fluid is the common element in any hydraulic component and must be selected very carefully. Quality and cleanliness of the hydraulic fluid are decisive factors for the operational reliability, efficiency and service life of a system.

Hydraulic fluids must conform, be selected and used in accordance with the generally acknowledged rules of technology and safety provisions. Reference is made to the country-specific standards and directives (in Germany the directive of the Employer's Liability Insurance Association BGR 137).

This data sheet includes recommendations and regulations concerning the selection, operation and disposal of fire-resistant, water-free hydraulic fluids in the application of Rexroth hydraulic components.

The individual selection of hydraulic fluid or the choice of classification are the responsibility of the operator.

It is the responsibility of the user to ensure that appropriate measures are taken for safety and health protection and to ensure compliance with statutory regulations. The recommendations of the lubricant manufacturer and the specifications given in the safety data sheet are to be observed when using hydraulic fluid.

This data sheet does not absolve the operator from verifying the conformity and suitability of the respective hydraulic fluid for his system. He is to ensure that the selected fluid meets the minimum requirements of the relevant hydraulic fluid standard during the whole of the period of use.

The currently valid standard for fire-resistant hydraulic fluids is the ISO 12922. In addition, other, more detailed documents, guidelines, specifications and legislation may also be valid. The operator is responsible for ensuring that such regulations are observed, for example:

- 7th Luxembourg Report: Luxembourg, April 1994, Doc.
 No. 4746/10/91 EN "Requirements and tests applicable to fire-resistant hydraulic fluids for hydrostatic and hydrokinetic power transmission and control"
- VDMA 24314 (1981-11): "Changing hydraulic fluids guidelines"
- VDMA 24317 (2005-11): "Fire-resistant hydraulic fluids minimum technical requirements"
- FM Approval Standard 6930 (2009-04): "Flammability Classification of Industrial Fluids" (only available in English)
- DIN Technical Report CEN/TR 14489 (2006-01): "Selection guidelines for protecting safety, health and the environment"

We recommend that you maintain constant, close contact with lubricant manufacturers to support you in the selection, maintenance, care and analyses.

When disposing of used hydraulic fluids, apply the same care as during use.

1.2 Fire resistance

There is no clear legal definition of fire-resistant hydraulic fluids. There are great differences regarding fire resistance. The selection is the sole responsibility of the system operator with respect to requirements (application, construction and design of the system, hottest source in the system, necessary fire protection).

Different test procedures are applied for evaluating fire resistance.

Fire resistance test procedure according to ISO 12922:

- Ignition properties of spray according to ISO 15029-1 (Spray flame persistence – hollow-cone nozzle method)
- Ignition properties of spray according to ISO 15029-2 (Stabilized flame heat release)
- Wick flame persistence of fluids according to ISO 14935 (average flame persistence)
- Determination of the flammability characteristics of fluids in contact with hot surfaces, ignition process according to ISO 20823 (ignition temperature, flame spread)

In general, fire-resistant hydraulic fluids are distinguished between **water-containing** fire-resistant and **water-free** fire-resistant hydraulic fluids. Water-containing fire-resistant hydraulic fluids are described in RE 90223.

Water-free, fire-resistant hydraulic fluid means hydraulic fluids with a water-proportion of 0.1% by volume ("Karl Fischer method", see chapter 6 "Glossary"), measured at the time of filling in the transport container.

In Europe water-free, fire-resistant hydraulic fluids are not approved for use in underground coal mining. The classification HFDU is no longer included in the VDMA 24317: 2005.

Note

In contrast to water-containing fluids, all water-free, fire-resistant hydraulic fluids have a flash point and a fire point. Specific parameters for flash point and fire point can be found in the technical and/or safety data sheet for the hydraulic fluid concerned.

Just as much care should be taken when working with fireresistant hydraulic fluids are with other hydraulic fluids, e.g. mineral oils. A leak from the hydraulic system must be avoided. The best and most cost-effective protection against fire and explosion is to prevent leakage with meticulous service, maintenance and care of the hydraulic system.

1.3 Scope

This data sheet must be applied when using water-free, fire-resistant hydraulic fluids with Rexroth hydraulic components. The specifications of this data sheet may be further restricted by the specifications given in data sheets for the individual components concerned.

The use of the individual water-free, fire-resistant hydraulic fluids in accordance with the intended purpose can be found in the safety data sheets or other product description documents of the lubricant manufacturers. In addition, each use is to be individually considered.

Rexroth hydraulic components may only be operated with water-free, fire-resistant hydraulic fluids according to ISO 12922 if specified in the respective component data sheet or if a Rexroth approval for use is furnished.

The manufacturers of hydraulic systems must adjust their systems and operating instructions to the water-free, fire-resistant hydraulic fluids.

Bosch Rexroth will accept no liability for its components for any damage resulting from failure to comply with the notes below.

1.4 Safety instructions

Hydraulic fluids can constitute a risk for persons and the environment. These risks are described in the hydraulic fluid safety data sheets. The operator is to ensure that a current safety data sheet for the hydraulic fluid used is available and that the measures stipulated therein are complied with.

2 Solid particle contamination and cleanliness levels

Solid particle contamination is the major reason for faults occurring in hydraulic systems. It may lead to a number of effects in the hydraulic system. Firstly, single large solid particles may lead directly to a system malfunction, and secondly small particles cause continuous elevated wear.

For mineral oils, the cleanliness level of water-free, fire-resistant hydraulic fluids is given as a three-digit numerical code in accordance with ISO 4406. This numerical code denotes the number of particles present in a hydraulic fluid for a defined quantity. Moreover, foreign solid matter is not to exceed a mass of 50 mg/kg (gravimetric examination according to ISO 4405).

In general, compliance with a minimum cleanliness level of 20/18/15 in accordance with ISO 4406 or better is to be maintained in operation. Special servo valves demand improved cleanliness levels of at least 18/16/13. A reduction in cleanliness level by one level means half of the quantity of particles and thus greater cleanliness. Lower numbers in cleanliness levels should always be striven for and extend the service life of hydraulic components. The component with the highest cleanliness requirements determines the required cleanliness of the overall system. Please also observe the specifications in table 1: "Cleanliness levels according to ISO 4406" and in the respective data sheets of the various hydraulic components.

Hydraulic fluids frequently fail to meet these cleanliness requirements on delivery. Careful filtering is therefore required during operation and in particular, during filling in order to ensure the required cleanliness levels. Your lubricant manufacturer can tell you the cleanliness level of hydraulic fluids as delivered. To maintain the required cleanliness level over the operating period, you must use a reservoir breather filter. If the environment is humid, take appropriate measures, such as a breather filter with air drying or permanent off-line water separation.

Note: the specifications of the lubricant manufacturer relating to cleanliness levels are based on the time at which the container concerned is filled and not on the conditions during transport and storage.

Further information about contamination with solid matter and cleanliness levels can be found in brochure RE 08016.

Table 1: Cleanliness levels according to ISO 4406

Particles per 1	00 ml		
More than	Up to and including	Scale number	
8,000,000	16,000,000	24	
4,000,000	8,000,000	23	20 / 18 / 15
2,000,000	4,000,000	22	> 4 μm > 6 μm > 14 μm
1,000,000	2,000,000	21	
500,000	1,000,000	20	
250,000	500,000	19	
130,000	250,000	18	
64000	130,000	17	
32000	64000	16	
16000	32000	15	
8000	16000	14	
4000	8000	13	
2000	4000	12	
1000	2000	11	
500	1000	10	
250	500	9	
130	250	8	
64	130	7	
32	64	6	

3 Selection of the hydraulic fluid

Water-free, fire-resistant hydraulic fluids for Bosch Rexroth hydraulic components are assessed on the basis of their fulfillment of the minimum requirements of ISO 12922.

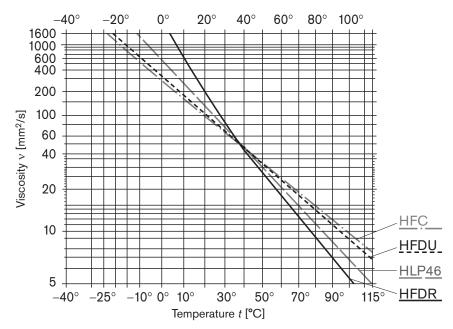
3.1 Selection criteria for the hydraulic fluid

The specified limit values for all components employed in the hydraulic system, for example viscosity and cleanliness level, must be observed with the hydraulic fluid used, taking into account the specified operating conditions.

Hydraulic fluid suitability depends, amongst others, on the following factors:

3.1.1 Viscosity

Viscosity is a basic property of hydraulic fluids. The permissible viscosity range of complete systems needs to be determined taking account of the permissible viscosity of all components and it is to be observed for each individual component.


The viscosity at operating temperature determines the response characteristics of closed control loops, stability and damping of systems, the efficiency factor and the degree of wear. We recommend that the optimum operating viscosity range of each component be kept within the permissible temperature range. This usually requires either cooling or heating, or both. The permissible viscosity range and the necessary cleanliness level can be found in the product data sheet for the component concerned.

If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. In return, there will be lower internal leakage losses. If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which may lead to cavitation damage.

If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination and a shorter component life cycle will result.

Please ensure that the permissible temperature and viscosity limits are observed for the respective components. This usually requires either cooling or heating, or both.

Fig. 1: Examples V-T diagrams for water-free, fire-resistant hydraulic fluids in comparison to HLP and HFC (reference values, double-logarithmic representation)

Typical viscosity data [mm²/s] at temperature 0 °C 40 °C 100 °C				
HFDR	2500	43	5,3	
HFDU (ester base)	330	46	9,2	
HFDU (glycol base)	350	46	8,7	
For comparison HLP (see RE 90220)	610	46	7	
For comparison HFC (see RE 90223)	280	46		

Detailed V-T diagrams may be obtained from your lubricant manufacturer for their specific products. Descriptions of the individual classifications can be found in chapter 3.2 and in Table 4.

7/16

3.1.2 Viscosity-temperature behavior

For hydraulic fluids, the viscosity temperature behavior (V-T behavior) is of particular importance. Viscosity is characterized in that it drops when the temperature increases and rises when the temperature drops. The interrelation between viscosity and temperature is described by the viscosity index (VI).

For cold testing over a period of several days, the viscosity of ester-based HFDU can increase greatly. After heating, the characteristic values as specified on the data sheet are restored. Please ask your lubricant manufacturer for the "Flow capacity after seven days at low temperature" (ASTM D 2532) for the fluid classification ester-based HFDU .

HFDU fluid based on ester and glycol have better viscosity/ temperature characteristics than mineral oil HLP (see Fig. 1). This should be taken into consideration when selecting hydraulic fluid for the required temperature range. The viscosity and temperature limits required in the product data sheets are to be observed in all operating conditions.

Note

For ambient temperatures below 0 °C, fire-resistant, water-containing hydraulic fluids of classification HFC are to be preferred because they observe the component-related viscosity ranges and because the have better pour points (see RE 90223).

3.1.3 Wear protection capability

Wear protection capability describes the property of hydraulic fluids to prevent or minimize wear within the components. The wear protection capability is described in ISO 12922 via test procedures"FZG gear test rig" (ISO 14635-1) and "Mechanical test in the vane pump" (ISO 20763). The wear protection capability of water-free, fire-resistant hydraulic fluids in relation to the two test procedures is comparable to that of mineral oil HLP/HVLP.

3.1.4 Material compatibility

The hydraulic fluid must not negatively affect the materials used in the components. Compatibility with coatings, seals, hoses, metals and plastics is to be observed in particular. The fluid classifications specified in the respective component data sheets are tested by the manufacturer with regard to material compatibility. Parts and components not supplied by us are to be checked by the user.

Table 2: Known material incompatibilities

Table 2. Known material incompatibilities				
Classification	Incompatible with:			
HFD in general	Seals, plastics and coatings of control cabinets, outer coatings of hydraulic components and accessory components (connectors, wiring harnesses, control cabinets) are to be tested for stability.			
	Note: hydraulic fluid vapors can also lead to incompatibility!			
HFDR	Individual component color coating, lead, galvanic zinc-plating, in part non-ferrous metals with zinc, tin and aluminum in a tribological system. Sealing elements made of NBR. In some cases, the latter show major increases in volume when impermissibly aged hydraulic fluids come into contact with the material. Do not use any hydrolysis/susceptible polyure-thane qualities.			
HFDU based on ester	Single-component color coatings, lead, galvanized zinc coatings, in part non-ferrous metals with zinc, tin, seals made of NBR. In some cases, the latter show major increases in volume when impermissibly aged hydraulic fluids come into contact with the material. Do not use any hydrolysis/susceptible polyure-thane qualities.			
HFDU based on glycol	Single-component color coatings, steel/aluminum tribocontacts, paper filters, polymethylmethacrylate (PMMA). The compatibility of NBR is to be examined for individual case.			

The material incompatibilities mentioned here do not automatically result in function problems. However the elements of the materials are found in the hydraulic fluids after use. The material incompatibilities described here may lead to accelerated aging of the hydraulic fluid and to reduced fire resistance.

3.1.5 Aging resistance

The way a water-free, fire-resistant hydraulic fluid ages depends on the thermal, chemical and mechanical stress to which it is subjected. The influence of water, air, temperature and contamination may be significantly greater than for mineral oils HLP/HVLP. Aging resistance can be greatly influenced by the chemical composition of the hydraulic fluids.

High fluid temperatures (e.g. over 80 °C) result in a approximate halving of the fluid service life for every 10 °C temperature increase and should therefore by avoided. The halving of the fluid service life results from the application of the Arrhenius equation (see Glossary).

Table 3: Reference values for temperature-dependent aging of the hydraulic fluid

Reservoir temperature	Fluid life cycle
80 °C	100 %
90 °C	50 %
100 °C	25 %

A modified aging test (ISO 4263-3 or ASTM D943 – without the addition of water) is specified for fluid classification HFDU. Fluid classification HFDR is described with a special procedure with respect to oxidation stability (EN 14832) and oxidation service life (ISO 4263-3). The calculated fluid service life is derived from the results of tests in which the long-term characteristics are simulated in a short period of time by applying more arduous conditions (condensed testing). This calculated fluid service life is not to be equated to the fluid service life in real-life applications.

Table 3 is a practical indicator for hydraulic fluids with water content < 0.1%, cf. chapter 4.10. "Water".

3.1.6 Environmentally acceptable

HFDU fluids based on ester and glycol are hydraulic fluids which may also be classified as environmentally acceptable. The main criteria for fire-resistant, water-free hydraulic fluids are the leak-free, technically problem-free use and the necessary fire resistance. Environmentally acceptable is merely a supplementary criterion. Notes on environmentally compatible hydraulic fluids can be found in RE 90221.

3.1.7 Air separation ability (ASA)

The air separation ability (ASA) describes the property of a hydraulic fluid to separate undissolved air. Hydraulic fluids always contain dissolved air. During operation, dissolved air may be transformed into undissolved air, leading to cavitation damages. Fluid classification, fluid product, reservoir size and design must be coordinated to take into account the dwell time and ASA value of the hydraulic fluid. The air separation capacity depends on the viscosity, temperature, basic fluid and aging. It cannot be improved by additives.

According to ISO 12922 for instance, an ASA value \leq 15 minutes is required for viscosity class ISO VG 46, practical values on delivery are < 10 minutes, lower values are preferable.

3.1.8 Demulsifying ability and water solubility

The capacity of a hydraulic fluid to separate water at a defined temperature is known as the demulsifying ability. ISO 6614 defines the demulsifying properties of hydraulic fluids.

The fluid classifications HFDU based on ester and HFDR separate water, but HFD hydraulic fluids have a different water separation ability to mineral oil HLP/HVLP. At 20 °C, in comparison to mineral oil HLP/HVLP, a multiple (> factor 3) of water can separate in the hydraulic fluid. Water solubility is also more temperature-dependent than for mineral oils. The fluid classification HFDU based on glycol usually dissolves water completely, see chapter "4.10 Water".

3.1.9 Filterability

Filterability describes the ability of a hydraulic fluid to pass through a filter, removing solid contaminants. The hydraulic fluids used require a good filterability, not just when new, but also during the whole of their service life. This can differ greatly depending on the different basic fluids (glycols, esters) and additives (VI enhancers, anti-fogging additives).

The filterability is a basic prerequisite for cleanliness, servicing and filtration of hydraulic fluids. Rexroth therefore requires the same degree of filterability of water-free, fire-resistant hydraulic fluids as for mineral oils HLP/HVLP to DIN 51524. As ISO 12922 does not comment on the filterability of hydraulic fluids, filterability comparable to that of mineral oils HLP/HVLP must be requested of lubricant manufacturers.

Filterability is tested with the new hydraulic fluid and after the addition of 0.2 % water. The underlying standard (ISO 13357-1/-2) stipulates that filterability must have no negative effects on the filters or the hydraulic fluid, see chapter 4 "Hydraulic fluids in operation".

3.1.10 Corrosion protection

Hydraulic fluids should not just prevent corrosion formation on steel components, they must also be compatible with non-ferrous metals and alloys. Corrosion protection tests on different metals and metal alloys are described in ISO 12922.

Rexroth components are usually tested with HLP hydraulic fluids or corrosion protection oils based on mineral oils before they are delivered.

3.1.11 Additivation

The properties described above can be modified with the help of suitable additives.

Bosch Rexroth does not prescribe any specific additive system.

3.2 Classification and fields of application

Table 4: Classification and fields of application

Classification	Features	Typical field of application	Notes
HFDU (glycol-based) according to ISO 12922	Base fluid: Glycols	Mobile systems with high thermal loading	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
Density at 15 °C: typically > 0.97 kg/dm ³			Very good viscosity/temperature characteristics, shear stability
VI: typical > 170			- Resistant to aging
vi. typicai > 170			- Can be water-soluble
The classification			- Can be mixed with water
"HFDU" is no longer			- Very good wear protection properties
listed in the current standard sheet			A higher implementation temperature with the same viscosity in comparison to mineral oil is to be expected
VDMA 24317.			Due to the higher density in comparison to HLP, lower suction pressures are to be anticipated for pumps. Reduce the maximum speed as required and optimize suction conditions.
			 Prior to commissioning, contact the lubricant manufacturer, as the components are tested with mineral oil HLP/corro- sion protection oil.
			Incompatible with mineral oil (exceptions must be confirmed by the lubricant manufacturer).
HFDU (ester-based) according to ISO 12922 Density at 15 °C:	Base fluid: Ester based on regenerative raw materials, synthetic	Suitable for most fields of application and components.	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
typically 0.90-0.93 kg/dm ³	typically 0.90-0.93 kg/dm³ VI: typical > 160 Iodine count < 90 The classification "HFDU" is no longer listed in the current lester and mixtures of different esters Because of the fire resistance, HFDU hydraulic fluids based on ester are usually partially saturated esters	of different esters Because of the fire resistance, HFDU hydraulic fluids based on ester are usually partially saturated esters	 Preferred use of FKM seals. Please enquire about shaft seal rings and implementation temperatures under −15 °C.
VI: typical > 160			Note shear stability (see chapter 4.11 "Fluid servicing, fluid analysis and filtration" and chapter 6 "Glossary")
louine count < 50			- Fire resistance is not stable over time
The classification "HFDU" is no longer listed in the current standard sheet			 In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity. Please check ATEX approvals for hydraulic components.
VDMA 24317.			Limit the lower (see chapter 3.1.2) and upper implementation temperatures (see chapter 3.1.5)
			- Good viscosity-temperature behavior
			Usually classified as insignificantly water-endangering (water hazard class WGK 1)
			- High dirt dissolving capacity on fluid changeovers
			In unfavorable operating conditions (high water content, high temperature), HFDU on ester basis have a tendency to hydrolysis. The acidic organic decomposition products can chemically attack materials and components.

Classification	Features	Typical field of application	Notes
HFDR according to ISO 12922 Density at 15 °C:	Base fluid: phos- phoric acid ester	Turbine control systems	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
typically 1.1 kg/dm ³ VI : typical 140–160			Classified as hazardous materials (for transportation and storage)
VI. typicai 140 100			- Hazardous working material
			- Water-endangering (Water hazard class 2 - WGK2)
			- Develops toxic vapors in case of fire
			 Preferred use of FKM, and possibly PTFE seals. Please enquire for shaft seal rings and implementation tempera- tures under –15 °C.
			 In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity
			 Phosphoric acid esters display a tendency to hydrolysis when they come into contact with moisture. Under the influence of water/moisture, they become unstable or form highly aggressive, acidic components which could damage the hydraulic fluid and component beyond repair.
			- Poor viscosity/temperature characteristics
			 Due to the higher density in comparison to HLP, lower suction pressures are to be anticipated for pumps. Reduce the maximum speed as required and optimize suction conditions.
			 In unfavorable operating conditions (high water content, high temperature), HFDR have a tendency to hydrolysis. The acidic inorganic decomposition products chemically attack materials and components.
HFDU (continued)	Based on triglycer- ides, mineral oils or related hydrocarbons	Not recommended for Rexroth components!	Hydraulic fluids based on polyalphaolefines are not recommended on account of their poor fire resistance. This classification can usually be identified from: density < 0.89; VI < 140 to 160
			Hydraulic fluids based on triglycerides are not recommended on account of their aging resistance. This classification can usually be identified from: density > 0.92; VI > 190; iodine count > 90
			Consult your lubricant manufacturer or your Bosch Rexroth sales partner if the classification of a hydraulic fluid is not clear.
HFDS HFDT	Based on haloge- nated hydrocarbons or mixtures with halogenated hydrocarbons	Not approved for Rexroth compo- nents!	HFDS and HFDT have not been permitted to be manufactured or used since 1989 for environmental reasons.

11/16

4 Hydraulic fluids in operation

4.1 General

The properties of hydraulic fluids can change continually during storage and operation.

Please note that the fluid standard ISO 12922 merely describes minimum requirements for hydraulic fluids in new condition at the time of filling into the bins. The operator of a hydraulic system must ensure that the hydraulic fluid remains in a utilizable condition throughout its entire period of use.

Deviations from the characteristic values are to be clarified with the lubricant manufacturer, the test labs or Bosch Rexroth.

Bosch Rexroth will accept no liability for damage to its components within the framework of the applicable liability legislation insofar as the latter is due to non-observance of the following instructions.

Please note the following aspects in operation.

4.2 Storage and handling

Hydraulic fluids must be stored correctly in accordance with the instructions of the lubricant manufacturer. Avoid exposing the containers to lengthy periods of direct heat. Containers are to be stored in such a way that the risk of any foreign liquid or solid matter (e.g. water, foreign fluids or dust) ingression into the inside of the container can be ruled out. After taking hydraulic fluids from the containers, these are immediately to be properly resealed.

Recommendation:

- Store containers in a dry, roofed place
- Store barrels on their sides
- Clean reservoir systems and machine reservoirs regularly

4.3 Filling of new systems

Usually, the cleanliness levels of the hydraulic fluids as delivered do not meet the requirements of our components. Hydraulic fluids must be filtered using an appropriate filter system to minimize solid particle contamination and water in the system.

As early as possible during test operation, new systems should be filled with the selected hydraulic fluid so as to reduce the risk of accidentally mixing fluids (see chapter 4.5 "Mixing and compatibility of different hydraulic fluids"). Changing the hydraulic medium at a later point represents significant additional costs (see following chapter).

4.4 Hydraulic fluid changeover

Problems may be encountered in particular when changing over from water-containing, fire-resistant hydraulic fluid or mineral oils to water-free, fire-resistant hydraulic fluids (e.g. incompatibilities in the form of gelling, silting, stable foam, reduced filterability or filter blockage). This may also happen when changing products within the same classification.

In the case of changeovers of the fluid in hydraulic systems, it is important to ensure compatibility of the new hydraulic fluid with the remains of the previous hydraulic fluid. Bosch Rexroth recommends obtaining verification of compatibility from the

manufacturer or supplier of the new hydraulic fluid. The quantity of old fluid remaining should be minimized. Mixing hydraulic fluids should be avoided, see following chapter.

Information about changing to a hydraulic fluid of a different classification can be found, for example, in VDMA 24314 and in ISO 7745. In addition, the information given in chapter 3.1.4 "Material compatibility" is also to be observed.

Bosch Rexroth will not accept liability for any damage to its components resulting from inadequate hydraulic fluid changeovers!

4.5 Mixing and compatibility of different hydraulic fluids

If hydraulic fluids from different manufacturers or different types from the same manufacturer are mixed, gelling, silting and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions and damage to the hydraulic system.

If the fluid contains more than 2 % of another fluid then it is considered to be a mixture. Exceptions apply for water, see chapter 4.10 "Water".

Mixing with other hydraulic fluids is not generally permitted. This includes hydraulic fluids with the same classification. If individual lubricant manufacturers advertise miscibility and/or compatibility, this is entirely the responsibility of the lubricant manufacturer.

Bosch Rexroth customarily tests all components with mineral oil HLP before they are delivered.

Note: With connectible accessory units and mobile filtering systems, there is a considerable risk of non-permitted mixing of the hydraulic fluids!

Rexroth will not accept liability for any damage to its components resulting from mixing hydraulic fluids!

4.6 Re-additivation

Additives added at a later point in time such as colors, wear reducers, VI enhancers or anti-foam additives, may negatively affect the performance properties of the hydraulic fluid and the compatibility with our components and therefore are not permissible.

Rexroth will not accept liability for any damage to its components resulting from re-additivation!

4.7 Foaming behavior

Foam is created by rising air bubbles at the surface of hydraulic fluids in the reservoir. Foam that develops should collapse as quickly as possible.

Common hydraulic fluids in accordance with ISO 12922 are sufficiently inhibited against foam formation in new condition. On account of aging and adsorption onto surfaces, the defoamer concentration may decrease over time, leading to a stable foam.

Defoamers may be re-dosed only after consultation with the lubricant manufacturer and with his written approval.

Defoamers may affect the air separation ability.

4.8 Corrosion

The hydraulic fluid is to guarantee sufficient corrosion protection of components under all operating conditions, even in the event of impermissible water contamination.

Water-free, fire-resistant hydraulic fluids are tested for corrosion protection in the same way as mineral oil HLP/HVLP. When used in practice other corrosion mechanisms are revealed in detail and in individual cases, for the most part in contact with non-ferrous and white alloys.

4.9 Air

Under atmospheric conditions the hydraulic fluid contains dissolved air. In the negative pressure range, for instance in the suction pipe of the pump or downstream of control edges, this dissolved air may transform into undissolved air. The undissolved air content represents a risk of cavitation and of the diesel effect. This results in material erosion of components and increased hydraulic fluid aging.

With the correct measures, such as suction pipe and reservoir design, and an appropriate hydraulic fluid, air intake and separation can be positively influenced.

See also chapter 3.1.7 "Air separation ability (ASA)".

4.10 Water

Water contamination in hydraulic fluids can result from direct ingress or indirectly through condensation of water from the air due to temperature variations.

HFDU hydraulic fluids on glycol basis are water-soluble or can be mixed with water. This means that any water that has ingressed into the system cannot be drained off in the sump of the reservoir.

In the case of HDFU hydraulic fluids on ester basis, undissolved water can be drained off from the reservoir sump, the remaining water content is however too high to ensure that the maximum permissible water limit values are observed in the long term.

With the fluid classification HFDR, the greater density of the ester means that the any water that has ingressed will be on the surface of the hydraulic fluid. This means that any water that has ingressed into the system cannot be drained off in the sump of the reservoir.

Water in the hydraulic fluid can result in wear or direct failure of hydraulic components. Furthermore, a high water content in the hydraulic fluid negatively affects aging and filterability and increases susceptibility to cavitation. During operation, the water content in all hydraulic fluids, determined according to the "Karl Fischer method" (see chapter 6 "Glossary") for all water-free, fire-resistant hydraulic fluids must constantly be kept below 0.1% (1000 ppm). To ensure a long service life of both hydraulic fluids and components, Bosch Rexroth recommends that values below 0.05% (500 ppm) are permanently maintained.

Due to the higher water solubility in comparison to mineral oil HLP/HVLP it is urgently advised that precautions be taken when using water-free, fire-resistant hydraulic fluids, such as a dehumidifier on the reservoir ventilation.

Water content has an affect particularly in the case of HEDU hydraulic fluid on ester basis and HFDR in that it accelerates aging (hydrolysis) of the hydraulic fluid and biological degradation, see chapter 4.11 "Fluid servicing, fluid analysis and filtration".

4.11 Fluid servicing, fluid analysis and filtration

Air, water, operating temperature influences and solid matter contamination will change the performance characteristics of hydraulic fluids and cause them to age.

To preserve the usage properties and ensure a long service life for hydraulic fluid and components, the monitoring of the fluid condition and a filtration adapted to the application requirements (draining and degassing if required) are indispensable.

The effort is higher in the case of unfavorable usage conditions, increased stress for the hydraulic system or high expectations as to availability and service life, see chapter 2 "Solid particle contamination and cleanliness levels".

When commissioning a system, please note that the required minimum cleanliness level can frequently be attained only by flushing the system. Due to severe start-up contamination, it may be possible that a fluid and/or filter replacement becomes necessary after a short operating period (< 50 operating hours).

The hydraulic fluid must be replaced at regular intervals and tested by the lubricant manufacturer or recognized accredited test labs. We recommend a reference analysis after commissioning.

The minimum data to be tested for analyses are:

- Viscosity at 40 °C and 100 °C
- Neutralization number NN (acid number AN)
- Water content (Karl-Fischer method)
- Particle measurement with evaluation according to ISO 4406 or mass of solid foreign substances with evaluation to EN 12662
- Element analysis (RFA (EDX) / ICP, specify test method)
- Comparison with new product or available trend analyses
- Assessment / evaluation for further use
- Also recommended: IR spectrum

No differences are needed in the maintenance and care of water-free, fire-resistant hydraulic fluids with the appropriate suitability parameters compared to HLP/HVLP mineral oils. Attention is however drawn to the note in chapter 1.3.

After changing over hydraulic fluids it is recommended that the filters be replaced again after 50 operating hours as fluid aging products may have detached themselves ("self-cleaning effect").

Compared to the pure unused hydraulic fluid the changed neutralization number NN (acid number AN) indicates how many aging products are contained in the hydraulic fluid. This difference must be kept as small as possible. The lubricant manufacturer should be contacted as soon as the trend analysis notes a significant increase in values.

A higher viscosity than that of new materials indicates that the hydraulic fluid has aged. Evaluation by the test lab or lubricant manufacturers is however authoritative, whose recommendation should be urgently observed.

On systems where the possibility of water contamination cannot be completely ruled out (also condensation), it should be ensured via the hydraulic system circuit that fluid aging products are not accumulating in individual areas of the hydraulic system, but are being removed from the system in a controlled manner via the filtration system. This should be ensured via suitable hydraulic circuits (e.g. flushing circuit) or system manufacturer's operating instructions/specifications.

In case of warranty, liability or guarantee claims to Bosch Rexroth, service verification and/or the results of fluid analyses are to be provided.

5 Disposal and environmental protection

All water-free, fire-resistant hydraulic fluids, are, like mineral oil-based hydraulic fluids, subject to special disposal obligations.

The respective lubricant manufacturers provide specifications on environmentally acceptable handling and storage. Please ensure that spilt or splashed fluids are absorbed with appropriate adsorbents or by a technique that prevents it contaminating water courses, the ground or sewerage systems.

It is also not permitted to mix fluids when disposing of hydraulic fluids. Regulations governing the handing of used oils stipulate that used oils are not to mixed with other products, e.g. substances containing halogen. Non-compliance will increase disposal costs. Comply with the national legal provisions concerning the disposal of the corresponding hydraulic fluid. Comply with the local safety data sheet of the lubricant manufacturer for the country concerned.

6 Glossary

Additivation

Additives are chemical substances added to the basic fluids to achieve or improve specific properties.

Aging

Hydraulic fluids age due to oxidation (see chapter 3.1.5 "Aging resistance"). Liquid and solid contamination acts as a catalyzer for aging, meaning that it needs to be minimized as far as possible by careful filtration. Please refer to Hydrolysis.

Arrhenius equation

The quantitative relation between reaction rate and temperature is described by an exponential function, the Arrhenius equation. This function is usually visualized within the typical temperature range of the hydraulic system. For a practical example, see chapter 3.1.5 "Aging resistance".

Basic fluids

In general, a hydraulic fluid is made up of a basic fluid, or base oil, and chemical substances, the so-called additives. The proportion of basic fluid is generally greater than 90%.

Diesel effect

If hydraulic fluid that contains air bubbles is compressed quickly, the bubbles are heated to such a degree that a self-ignition of the air-gas mix may occur. The resultant temperature increase may lead to seal damage and increased aging of the hydraulic fluid.

Partially saturated esters

In contrast to saturated esters, partially saturated esters have double/multiple bonds between C atoms. Rexroth defines partially saturated esters as unsaturated bonds and mixtures of esters with unsaturated and saturated bonds. Esters with unsaturated bonds are produced on the basis of renewable raw materials.

Depending on their number and position, these unsaturated bonds between the C atoms are instable. These bonds can detach themselves and form new bonds, thus changing the properties of those liquids (an aging mechanism). Attention is however drawn to the note in chapter 1.3.

Hydrolysis

Hydrolysis is the splitting of a chemical bond through the reaction with water under the influence of temperature.

ICP (atomic emission spectroscopy)

The ICP procedure can be used to determine various wear metals, contamination types and additives. Practically all elements in the periodic system can be detected with this method.

lodine count

The iodine count is a yardstick for the quantity of single and multiple unsaturated bonds between C atoms in the basic fluid. A low iodine count indicates that the hydraulic fluid contains few unsaturated bonds and is thus considerably more resistant to aging than a hydraulic fluid with a high iodine count. A statement about the position at which these multiple bonds are located and about how "stable" they are against influencing factors cannot be derived simply by stating the iodine count.

Karl Fischer method

Method to determine the water content in fluids. Indirect coulometric determination procedure in accordance with DIN EN ISO 12937 in connection with DIN 51777-2. Only the combination of both standards will assure adequately accurate measured values. For hydraulic fluids based on glycol, DIN EN ISO 12937 is to be applied in conjunction with DIN 51777-1.

Cavitation

Cavitation is the creation of cavities in fluids due to pressure reduction below the saturated vapour pressure and subsequent implosion when the pressure increases. When the cavities implode, extremely high acceleration, temperatures and pressure may occur temporarily, which may damage the component surfaces.

Neutralization number (NN)

The neutralization number (NN) or acid number (AN) specifies the amount of caustic potash required to neutralize the acid contained in one gram of fluid.

Pour point

The lowest temperature at which the fluid still just flows when cooled down under set conditions. The pour point is specified in the lubricant manufacturers' technical data sheets as a reference value for achieving this flow limit.

RFA (wavelength dispersive x-ray fluorescence analysis)

Is a procedure to determine nearly all elements in liquid and solid samples with nearly any composition. This analysis method is suitable for examining additives and contamination, delivering fast results.

Shearing/shear loss

Shearing of molecule chains during operation can change the viscosity of hydraulic fluids with long chain VI enhancers and anti-fogging additives. The initially high viscosity index drops. This needs to be taken into account when selecting the hydraulic fluid.

The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part -6. Please note that there are practical applications that create a much higher shear load on such hydraulic fluids than can be achieved by this test.

Viscosity

Viscosity is the measure of the internal friction of a fluid to flow. It is defined as the property of a substance to flow under tension. Viscosity is the most important characteristic for describing the load-bearing capacity of a hydraulic fluid.

Kinematic viscosity is the ratio of the dynamic viscosity and the density of the fluid; the unit is mm²/s. Hydraulic fluids are classified by their kinematic viscosity into ISO viscosity classes. The reference temperature for this is 40 °C.

Viscosity index (VI)

Refers to the viscosity temperature behavior of a fluid. The lower the change of viscosity in relation the temperature, the higher the VI.

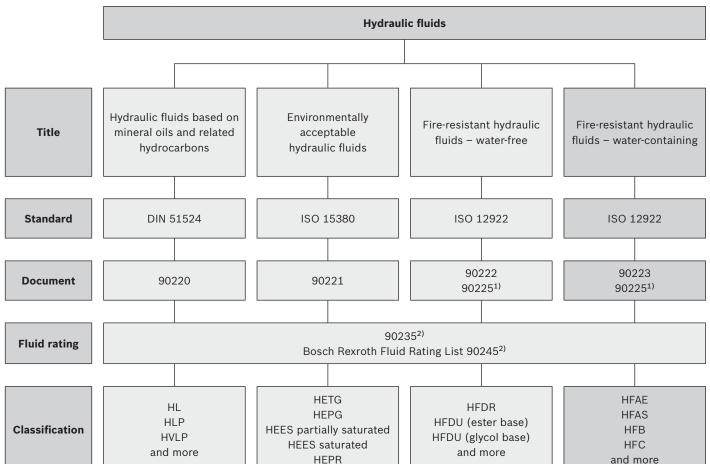
Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52 / 18-0
Fax +49 (0) 93 52 / 18-23 58
documentation@boschrexroth.de
www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.


Fire-resistant hydraulic fluids – water-containing (HFAE, HFAS, HFB, HFC)

RE 90223

Edition: 01.2015

Application notes and requirements for Rexroth hydraulic components

- 1) Valid for Bosch Rexroth axial piston units
- 2) Valid for Bosch Rexroth Business Unit "Mobile Applications" pumps and motors

RE 90223/01.2015, Bosch Rexroth AG

Fire-resistant hydraulic fluids - containing water

Contents

2

1	Basic information	3
1.1	General instructions	3
1.2	Fire resistance	4
1.3	Scope	4
1.4	Safety instructions	5
2	Solid particle contamination and cleanliness levels	5
3	Selection of the hydraulic fluid	6
3.1	Selection criteria for the hydraulic fluid	6
3.1.2	Viscosity temperature behavior	8
3.1.3	Wear protection capability	8
3.1.4	Material compatibility	8
3.1.5	Aging resistance	10
3.1.6	Environmental compatibility	10
3.1.7	Air separation ability (ASA)	10
3.2	Classification and fields of application	11
4	Hydraulic fluids in operation	12
4.1	General	12
4.2	Storage and handling	12
4.3	Filling of new systems	12
4.4	Hydraulic fluid changeover	12
4.5	Mixing and compatibility of different	
	hydraulic fluids	13
4.6	Re-additivation	13
4.7	Foaming behavior	13
4.8	Corrosion protection	13
4.9	Dissolved and undissolved air	13
4.10	Fluid servicing, fluid analysis, and filtration	13
5	Disposal and environmental protection	15
6	Standardization	15
7	Glossary	15

1 Basic information

1.1 General instructions

Hydraulic fluid is the common element in any hydraulic system and must be selected very carefully. Quality and cleanliness of the hydraulic fluid are decisive factors for the operational reliability, efficiency, and life cycle of the system. Hydraulic fluids must conform, be selected and used in accordance with the generally acknowledged rules of technology and safety provisions. Reference is made to the country-specific standards and directives (in Germany the directive of the Employer's Liability Insurance Association BGR 137).

This document includes recommendations and regulations concerning the selection, operation, and disposal of water-containing, fire-resistant hydraulic fluids in the application of Rexroth hydraulic components.

The individual selection of hydraulic fluid or the choice of classification are the responsibility of the operator.

It is also the responsibility of the operator to ensure that appropriate measures are taken for safety and health protection and to ensure compliance with statutory regulations. The recommendations of the lubricant manufacturer and the specifications given in the safety data sheet are to be observed when using hydraulic fluid.

This document does not release the operator from verifying the conformity and suitability of the respective hydraulic fluid for his system. The operator of a hydraulic system must ensure that the hydraulic fluid remains fit for purpose throughout its entire period of use.

The currently valid standard for fire-resistant hydraulic fluids is ISO 12922. In addition, even more detailed documents, guidelines, specifications, and laws (the observance of which the operator shall also be responsible) may be valid. This includes, for instance:

- a. 90235 Assessment of hydraulic fluids used in Rexroth hydraulic components (pumps and motors)
- b. 7th Luxembourg Report: Luxembourg, April 1994 Doc. No. 4746/10/91 EN "Requirements and tests applicable to fire-resistant hydraulic fluids used for power transmission and control (hydrostatic and hydrokinetic)"
- c. VDMA 24314 (1981-11): "Change of pressure liquids Directives"
- d. VDMA 24317 (2005-11): "Fire-resistant hydraulic fluids Minimum technical requirements"

- e. FM Approval Standard 6930 (2009-04): "Flammability Classification of Industrial Fluids" (only available in English)
- f. DIN Technical Report CEN/TR 14489 (2006-01): "Selection guidelines for protecting safety, health, and the environment"
- g. BGR 137 Handling hydraulic fluids (1997-04): German trade association rules health and safety at work.
- h. DIN 24320: "Fire-resistant fluids Hydraulic fluids of categories HFAE and HFAS Characteristics and requirements"
- List of hydraulic fluids in the set of regulations for the mining sector (coal mining): http://www. bezregarnsberg.nrw.de/themen/s/schwerentflammbare_ hydraulikfluessigkeiten/index.php
- j. RAG N 762010 (2012-10): "Fire-resistant hydraulic fluids HFC-E, requirements"
- k. RAG N 762011 (2012-09): "Requirements on synthetic, fire-resistant hydraulic fluids (HFA-S and synthetic emulsions)"
- I. Ordinance for all mining sectors ABBergV (1995-10): General Federal Mining Ordinance
- m. Occupational Health and Safety Ordinance for Mines (GesBergV) (1991-07): Mining ordinance for the health protection of mineworkers

We recommend that you maintain constant, close contact with lubricant manufacturers to support you in the selection, maintenance, care, and analyses.

When disposing of used hydraulic fluids, apply the same care as during use.

4 Fire-resistant hydraulic fluids - containing water Basic information

1.2 Fire resistance

There is no clear legal definition of fire-resistant hydraulic fluids. There are great differences regarding fire resistance. Selection is the sole responsibility of the system operator with respect to requirements (application, construction and design of the system, hottest ignition source in the system, required fire protection).

The most important task in determining the fire resistance of hydraulic fluids is to find a test method that reproduces the situation occurring in a specific application. Different test methods are used to assess the fire resistance according to ISO 12922:

- ► Spray ignition characteristics according to ISO 15029-1 (Spray flame persistence Hollow-cone nozzle method)
- Spray ignition characteristics according to ISO 15029-2 (Stabilized flame heat release method) Flammability index (RI))
- ► Wick flame persistence of fluids according to ISO 14935 (average flame persistence)
- ► Flammability on hot surfaces according to ISO 20823 (ignition temperature, spread of flame)

 The required minimum values for the ignition temperature differ according to ISO 12922:

HFB: 650 °C, HFC: 600 °C, HFDU: 400 °C, HFDR: 700 °C In general, fire-resistant hydraulic fluids are distinguished between fire-resistant, **water-free**, and fire-resistant, **water-containing** hydraulic fluids. The fire-resistant, water-free hydraulic fluids are described in Document 90222. Fire resistant, water-containing hydraulic fluids are normally understood as hydraulic fluids with a proportion greater than 35% by mass of water (according to ISO 12922).

Information

- ► Only fire-resistant, water-containing hydraulic fluids can currently receive approval from the mining authorities for use in coal mining below ground.
- ► In contrast to water-free fluids, all fire-resistant, watercontaining hydraulic fluids do not have a flash point or combustion point.
- ► The test conditions for determining the flammability on hot surfaces vary significantly within ISO 12922 between fire-resistant, water-free and fire-resistant, water-containing hydraulic fluids (e.g. different testing temperatures).
- ▶ Just as much care should be taken when working with fire-resistant hydraulic fluids as with other hydraulic fluids, e.g. mineral oils. Leakage in the hydraulic system must be prevented. The best and most cost-effective protection against fire and explosion is to prevent leakage with meticulous servicing, and maintenance and care of the hydraulic system.
- ► If possible, the system should be designed such that fires and explosions cannot arise.

1.3 Scope

This document must be applied when using fire-resistant, water-containing hydraulic fluids in Bosch Rexroth hydraulic components. Please note that the specifications in this document may be further defined by the data sheets for the individual components.

The use of the individual fire-resistant, water-containing hydraulic fluids according to the intended purpose can be found in the safety data sheets or other product description documents of the lubricant manufacturers.

Rexroth hydraulic components may only be operated with fire-resistant, water-containing hydraulic fluids according to ISO 12922 if this is specified in the respective component data sheet or if a Rexroth approval for use is furnished.

The manufacturers of hydraulic systems must adjust their systems and operating instructions to the fire-resistant, water-containing hydraulic fluids.

Bosch Rexroth will accept no liability for its components for any damage resulting from failure to comply with the notes below.

1.4 Safety instructions

Hydraulic fluids can constitute a risk for persons and the environment. These risks are described in the hydraulic fluid safety data sheets. The operator is to ensure that a current safety data sheet for the hydraulic fluid used is available and that the measures stipulated therein are complied with.

See also sub-paragraphs 1.1 b., f., g., j., k., and l.

2 Solid particle contamination and cleanliness levels

Solid particle contamination is the major reason for faults occurring in hydraulic systems. It may lead to a number of effects in the hydraulic system. Firstly, single large solid particles may lead directly to a system malfunction, and secondly small particles cause continuous elevated wear. For fire-resistant, water-containing hydraulic fluids, the cleanliness level is given as a three-digit numerical code in accordance with ISO 4406. The determination of this is made pursuant to the microscope method according to ISO 4407. The automatic method cannot be applied for fire-resistant, water-containing hydraulic fluids, since oil droplets could be counted as particles, for instance. This numerical code denotes the number of particles present in a hydraulic fluid for a defined quantity. Only particles > 5 μm and > 15 μm are counted here. The specification of the cleanliness level according to ISO 4406 thus only relates to those two particle sizes; for example: "ISO 4406: - / 18 / 15". The type of measuring method applied must always be specified as well when the cleanliness level is being determined. ISO 4406 is generally preferred in hydraulics. Moreover, foreign solid matter is not to exceed a mass of

50 mg/kg (gravimetric examination according to ISO 4405).

In general, compliance with a minimum cleanliness level of 20/18/15 according to ISO 4406 or better is to be maintained during operation. Special servo valves require better cleanliness levels of at least 18/16/13. An ordinal number lower by one signifies one half of the number of particles, and thus a higher level of cleanliness. Lower numbers in cleanliness levels should always be striven for, and extend the service life of hydraulic components. The component with the highest cleanliness requirements determines the required cleanliness for the overall system. Please also note the information given in Table 1: "Cleanliness levels according to ISO 4406" and in the respective data sheets for the various hydraulic components.

As an option, SAE AS 4059 can be used instead of ISO 4406 if particles above the size of 14 μm are going to be identified. The specification of cleanliness levels using cumulative particle counts is indicated by way of a letter/numerical code, although usually the particle size with the highest code is specified.

Hydraulic fluids frequently fail to meet the cleanliness requirements on delivery (basic contamination in containers). Careful filtering is therefore required during operation and, in particular, during filling in order to ensure the required cleanliness levels in the system. Your lubricant manufacturer can tell you the cleanliness levels of hydraulic fluids as delivered. To maintain the required cleanliness level over the operating period, it is recommended that a tank breather filter be used.

Information

Note: the specifications of the lubricant manufacturer relating to cleanliness levels are based on the time at which the container concerned is filled and not on the conditions during transport and storage.

Further information about solid matter contamination and cleanliness levels can be found in the Bosch Rexroth oil cleanliness booklet R999000239.

Filter inspections and tests can be ordered at Bosch Rexroth as a service using the number R928037504 -Filter inspection - (inspection of used filter cartridges).

6 Fire-resistant hydraulic fluids - containing water

Selection of the hydraulic fluid

Table 1: Cleanliness levels according to ISO 4406 (determination according to ISO 4407)

	-				
Particles per 100 ml		Ordinal number			
More than	Up to and including				
8,000,000	16,000,000	24			
4,000,000	8,000,000	23	- /	18 /	15
2,000,000	4,000,000	22		> 5 µm	> 15 µm
1,000,000	2,000,000	21	-		
500,000	1,000,000	20	-		
250,000	500,000	19	-		
130,000	250,000	18			
64000	130,000	17	-		
32000	64000	16	-		
16000	32000	15			
8000	16000	14			
4000	8000	13			
2000	4000	12	-		
1000	2000	11	-		
500	1000	10	-		
250	500	9	-		
130	250	8	-		
64	130	7	-		
32	64	6	-		

3 Selection of the hydraulic fluid

Fire-resistant, water-containing hydraulic fluids for Bosch Rexroth hydraulic components are assessed on the basis of their fulfillment of the minimum requirements according to ISO 12922.

Based on this, hydraulic fluids can be used that were assessed by Bosch Rexroth according to 90235 (fluid rating).

3.1 Selection criteria for the hydraulic fluid

The specified limit values for all components employed in the hydraulic system, for example required viscosities and cleanliness levels, need to be complied with while observing the specified operating conditions with the hydraulic fluid used. Please refer to the data sheet for the respective Rexroth hydraulic component for the permissible viscosity range, the required cleanliness levels, and the approved operating data.

Hydraulic fluid suitability depends, among other things, on the following factors:

3.1.1 Viscosity

Viscosity is a basic property of hydraulic fluids. The permissible viscosity range of complete systems needs to be determined taking account of the permissible viscosity of all components, and it is to be observed for each individual component.

The viscosity at operating temperature determines the response characteristics of closed control loops, stability and damping of systems, the efficiency factor, and the degree of wear.

We recommend that the optimum operating viscosity range of each component be kept within the permissible temperature range.

If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. However, internal

leakage losses will be fewer. If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which could lead to cavitation damage.

If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination, and a shorter life cycle in the components will result.

Please ensure that the permissible temperature and viscosity limits are observed for the respective components. This usually requires either cooling or heating, or both.

The viscosity is influenced by the water content. If water loss occurs during operation owing to temperatures
> +40 °C, then the viscosity will increase firstly (mainly in

Bosch Rexroth AG, RE 90223/01.2015

open systems). If the viscosity drops when the water content is reduced or if it remains the same, then the polymers in the water-glycol mixture are either damaged or sheared.

Fig. 1: Example v-T-diagram HFA, HFAS concentrated, HFC compared to HFDR, HFDU (ester based) and HLP (reference values, double-logarithmic presentation)

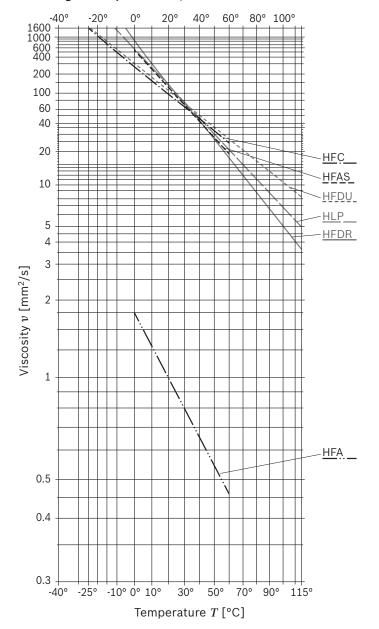


Table 2: Examples of typical viscosity data [mm²/s] in different hydraulic fluids

Temperature	-20 °C	0 °C	40 °C	60 °C	100 °C
HFA	_1)	1.75	0.65	0.47	_2)
HFAS concentrated	_1)	550	42	18.7	_2)
HFC	1183	295	46	24.3	_2)
compare HFDR (see 90222)	(14250) ³⁾	956	43	17.1	(5) ³⁾
compare HFDU (ester based) (see 90222)	1195	310	50	26.5	10.4
compare HLP (see 90220)	(4034) ³⁾	547	46	20.8	(6.9) ³⁾

- 1) Not applicable (see Pour point)
- 2) Not applicable (water loss in depressurized reservoir)
- 3) Observe permissible viscosity range for the respective hydraulic component.

3.1.2 Viscosity temperature behavior

In hydraulic fluids, it is primarily the viscosity temperature behavior (v-T-behavior) that is of particular importance. In hydraulic fluids, the viscosity is characterized in that it drops when the temperature increases and rises when the temperature drops. The interrelation between viscosity and temperature is described by the viscosity index (VI). HFC hydraulic fluids have a better viscosity temperature behavior than HLP mineral oil.

In HFA hydraulic fluids, the dependency of the viscosity on the temperature is negligible.

The differing viscosity temperature behavior needs to be taken into consideration when selecting hydraulic fluid for the required temperature range.

Owing to a high vapor pressure in comparison to a similar HLP mineral oil, the maximum operating temperature when working with fire-resistant, water-containing hydraulic fluids must be limited. Reservoir temperatures above +50 °C must be prevented in open systems, because they can lead to serious water loss and accelerate the aging process in the hydraulic fluid. Furthermore, in HFC hydraulic fluids, water losses that are too high can lead to both an increase in viscosity and to a reduction in the fire-resistant properties.

Information

- ► The minimum operating temperature for HFA hydraulic fluids is +5 °C.
- ► HFC hydraulic fluids respond very well at low temperatures and have a lower pour point when compared to HLP mineral oils.

3.1.3 Wear protection capability

Wear protection capability describes the property of hydraulic fluids to prevent or minimize wear within the components.

This is described in ISO 12922 for HFC hydraulic fluids using the following test methods:

- Mechanical testing in the vane pump (ISO 20763), method B (reduced temperature and working pressure when compared to HLP mineral oil)
- ► Testing in the four-ball apparatus (ISO 20623)
- ► Testing in the FZG test machine for mechanical stress in the gears (ISO 14635-1), reduced test temperature when compared with HLP mineral oil: in accordance with the 7th Luxembourg Report or ISO 12922 for HFB and HFC at 60 °C.

These test methods cannot be applied for HFA hydraulic fluids.

The test methods and test conditions for fire-resistant, water-containing hydraulic fluids are not comparable to those used for HLP/HVLP mineral oils. This is why the operating data for Rexroth hydraulic components that were optimized for HLP/HVLP mineral oils are (in part) limited. To some extent, Rexroth hydraulic components specifically developed for fire-resistant, water-containing hydraulic fluids are available without the limitation of operating data (e.g. in 92053, the A4VSO axial piston variable pump for HFC hydraulic fluids).

3.1.4 Material compatibility

The hydraulic fluid must not negatively affect the materials used in the components. Compatibility with coatings, seals, hoses, metals, and plastics is to be observed in particular. The fluid classifications specified in the respective components data sheets are tested by the manufacturer with regard to material compatibility. Parts and components not supplied by us are to be checked by the user.

The material incompatibilities mentioned here do not automatically result in function problems. However the elements of the materials are found in the hydraulic fluid after use. Material incompatibilities may, where applicable, lead to an accelerated aging process in the hydraulic fluid and to increased wear and corrosion of the components.

Table 3: Known incompatibilities of materials

Classification	Incompatible with
Water-containing HF general	Seals/plastics/coatings
	FKM elastomers are normally not resistant, NBR elastomers are recommended.
	Seals, plastics, coatings (of control cabinets, too), outer coatings of hydraulic components, and
	accessory components (connectors, wiring harnesses, control cabinets) are to be tested for
	stability.
	Note: hydraulic fluid vapors can also lead to incompatibility!
	Coatings on the inside of the reservoir
	Single component lacquer (e.g. zinc dust paint) is unstable; the use of stainless steel reservoirs
	(rustproof steel) is recommended.
	Zinc
	Zinc and zinc coatings exhibit in the static immersion test only a minimal amount of change in
	weight. If zinc (e.g. Zn die-cast housings for filters etc.) is attacked even to a minimal extent, then
	voluminous reaction products are formed (e.g. zinc soaps) that may block the filters, solenoids
	etc.
	Aluminum
	Aluminum alloys are not stable in all cases (risk of corrosion with cast aluminum). Above all, it is
	the simpler properties that get attacked, especially if they come into contact with steel parts.
	The electrochemical reaction with steel (potential difference
	approx. 1.23 V) may cause a severe case of aluminum removal. Anodized aluminum is suitable for
	static loading.
	Aluminum wrought alloys offer improved stability.
	All main woods a color improved stability.
	Cadmium/magnesium
	Cadmium and magnesium alloys are not compatible.
	Lead
	Pure lead is noticeably attacked already in the static compatibility test.
HFB	Seals
	Polyurethane (AU) not stable
HFC	Seals
	Polyurethane (AU) not stable
	Tin and zinc
	Tin and zinc should be avoided in systems using HFC hydraulic fluids.
	Residual amounts of HLP mineral oils containing zinc and oils used for corrosion protection must
	be avoided.

3.1.5 Aging resistance

Fire-resistant, water-containing hydraulic fluids are less subject to thermal load than HLP mineral oils, which is why they are substantially less subject to aging.

In HFAE hydraulic fluids, microbial contamination can cause undesirable aging in the hydraulic fluid. Fungal slime, cakes of fungus, and yeasts can clog filters and lines.

3.1.6 Environmental compatibility

Fire-resistant, water-containing hydraulic fluids are hydraulic fluids that can also be environmentally acceptable at the same time. The main criterion for fire-resistant, water-containing hydraulic fluids is the leak-free, technically problem-free application with the necessary fire resistance. Environmental compatibility is merely a supplementary criterion. You can recognize the environmental compatibility in the technical data sheet for the hydraulic fluid using the reference to:

- ▶ DIN Technical Report CEN/TR 14489
- ▶ BGR 137
- ► 7th Luxembourg Report, Part IV "assessment of health hazards" and Part VI "assessment of environmental compatibility"
- Occupational Health and Safety Ordinance for Mines (GesBergV)

Please refer to the safety data sheet of the respective hydraulic fluids for more information on environmental compatibility.

Information on other environmentally acceptable hydraulic fluids can be found (without reference to fire resistance) in Document 90221.

3.1.7 Air separation ability (ASA)

The air separation ability (ASA) describes the property of a hydraulic fluid to separate undissolved air. Hydraulic fluids always contain dissolved air. During operation, dissolved air may be transformed into undissolved air, leading to cavitation damage.

Furthermore, the system behavior can differ due to the higher proportion of undissolved air when compared with HLP mineral oil. According to ISO 12922, a specific value for the air separation ability is not required for the HFAE and HFAS classifications.

The air separation ability for the HFC classification depends

on the viscosity, the temperature, basic fluid, and aging. It cannot be improved by additives.

Fluid classification, fluid product, reservoir size and design must be coordinated to take into account the dwell time and ASA value of the hydraulic fluid.

According to ISO 12922 for instance, an ASA value of ≤ 25 minutes is required for HFC in viscosity class ISO VG 46, lower values are preferable.

3.2 Classification and fields of application

Table 4: Classification and fields of application

Classification	Features	Typical field of application	Information
HFAE according to ISO 12922	Oil-in-water emulsions	Mine support, hydrostatic drives, hydraulic strut extension below ground	Approved for all components that allow "HFAE according to ISO 12922" in the product data sheet for hydraulic fluids. Observe limitations in the operating data for the respective components
Density at 15 °C	Viscosity at		- Water-polluting (WGK 1 to 3)
typically	40 °C:		- Reservoir temperature +5 °C to +50 °C
1.00 kg/dm ³	max. 5 mm²/s		Resistance to aging, see chapter 3.1.5Owing to the higher density by comparison to HLP, lower intake
Normal water content ≥ 95% (m/m)	Appearance: milky to translu- cent emulsion		pressures are to be expected in pumps and, where applicable, the flow must be reduced and the intake conditions optimized (higher cavitation tendency)
HFAS according to ISO 12922	Chemical solu- tions in water	Mine support, foundry technology, press hydrau- lics (example: hydroform-	Approved for all components that allow "HFAS according to ISO 12922" in the product data sheet for hydraulic fluids. Observe limitations in the operating data for the respective compo-
Density at 15 °C	Viscosity at 40 °C:	ing)	nents.
typically	max. 5 mm ² /s or		- Mineral-oil free
1.00 kg/dm ³	thickened variants up to ISO VG 68		- Water-polluting (WGK 1 to 2) - Reservoir temperature +5 °C to +50 °C
Normal water content ≥ 95% (m/m)	Appearance: transparent		 Owing to the higher density by comparison to HLP, lower intake pressures are to be expected in pumps and, where applicable, the flow must be reduced and the intake conditions optimized (higher cavitation tendency)
HFB	Water-in-oil emul-	Mostly in coal mining be-	Practical requirements are frequently not fulfilled by hydraulic fluids
according to ISO 12922	sions	low ground, primarily in the U.K.	in this classification. As a result of a high mineral oil content up to 60%, they do not meet the limit values for spray ignition characteris-
Density at 15 °C	Viscosity classes:	(hydrostatic control sys-	tics (fire resistance) prescribed in Germany. Observe limitations in
typically	ISO VG 46 up	tems and drives)	the operating data for the respective components.
0.92 to 1.05 kg/dm ³	to 100		- Water-polluting (WGK 1 to 3)
Normal water content			 Reservoir temperature +5 °C to +50 °C Owing to the higher density by comparison to HLP mineral oil,
≥ 40% (m/m)			lower intake pressures are to be expected in pumps and, where applicable, the flow must be reduced and the intake conditions optimized (higher cavitation tendency)
HFC	Watery	All application areas	Approved for all components that allow "HFC according to ISO 12922"
according to ISO 12922	polymer solutions	where water-free hydrau- lic fluids are not permit-	in the product data sheet for hydraulic fluids. Observe limitations in the operating data for the respective compo-
Density at 15 °C	Viscosity classes:	ted due to the risk of fire.	nents.
typically	ISO VG 22 up	For example:	- Categorized as non-/minimally water-polluting (NWG/WGK 1)
1.07 to 1.09 kg/dm ³	to 68	The steel industry, coking	- Reservoir temperatures -20 °C to +50 °C
VI: typically > 150	Usually ISO VG 46		- Owing to the higher density by comparison to HLP mineral oil,
Normal water content		presses, injection molding and pressure die casting	lower intake pressures are to be expected in pumps and, where applicable, the flow must be reduced and the intake conditions op-
≥ 35% (m/m)		machines, mining technol-	timized (higher cavitation tendency).
		ogy (exception: salt min- ing)	 A reservoir with an inspection port above the fill level is recom- mended in order to remove floating residual oil.
HFC-E	Watery		- Like HFC, but improved protection against wear and extended
not standardized ac-	polymer	Mostly in coal mining be- low ground, primarily in	temperature range up to 70 °C
cording to ISO 12922	solutions	Germany	
Density at 15 °C typically	Viscosity classes: ISO VG 46 up		
1.07 to 1.14 kg/dm ³	to 68		
VI: typically > 135	Normally ISO VG 68		
Normal water content 18 to 20% (m/m)			

4 Hydraulic fluids in operation

4.1 General

The properties of hydraulic fluids can change continually during storage and operation.

Please note that the fluid standard ISO 12922 merely describes minimum requirements for hydraulic fluids in new condition at the time of filling into the delivery containers. The operator of a hydraulic system must ensure that the hydraulic fluid remains fit for purpose throughout its entire period of use.

Deviations from the characteristic values are to be clarified with the lubricant manufacturer, the test labs, or Bosch Rexroth.

Bosch Rexroth will accept no liability for damage to its components within the framework of the applicable liability legislation insofar as the latter is due to non-observance of the following instructions.

Please note the following aspects in operation.

4.2 Storage and handling

Hydraulic fluids must be stored correctly in accordance with the instructions of the lubricant manufacturer. Avoid exposing the containers to lengthy periods of direct heat. A container is to be stored such that the risk of any foreign liquid or solid matter (e.g. water, foreign fluids, or dust) ingression into the inside of the container can be ruled out. After taking hydraulic fluids from the containers, these are to be properly resealed immediately. HFAE and HFAS hydraulic fluids are delivered in a concentrated form. Please observe the hardness (°dH) in order to produce the finished product, lower hardness values should be aimed at (°dH, calcium oxide CaO in ppm).

Recommendation:

- ► Store containers in a dry, roofed place
- Store HFA containers frost-protected
- Clean reservoir systems and machine reservoirs regularly

Please refer to the respective safety data sheet for the minimum storage duration and storage conditions.

4.3 Filling of new systems

Usually, the cleanliness levels of the hydraulic fluids as delivered do not meet the requirements of our hydraulic components at the company. When filling, hydraulic fluids must be filtered using an appropriate filter system to minimize solid particle contamination in the system.

As early as possible during test operation, new systems should be filled with the selected hydraulic fluid so as to reduce the risk of accidentally mixing the fluids (see chapter 4.5 "Mixing and compatibility of different hydraulic fluids"). Changing the hydraulic medium at a later point represents significant additional costs (see following section).

4.4 Hydraulic fluid changeover

Problems may be encountered in particular when changing over from fire-resistant, water-free hydraulic fluids or mineral oils to fire-resistant, water-containing hydraulic fluids (e.g. incompatibilities in the form of gelling, silting, stable foam, reduced filterability, or filter blockage). This may also happen when changing products within the same classification. In the case of changeovers of the fluid in hydraulic systems, it is important to ensure compatibility and miscibility of the new hydraulic fluid with the remains of the previous hydraulic fluid from the system.

Bosch Rexroth recommends obtaining verification of compatibility and miscibility from the manufacturer or supplier of the new hydraulic fluid. The remainder quantities of the old fluid need to be minimized. Mixing hydraulic fluids should be avoided; see following section.

Information on changing over hydraulic fluids with different classifications can be found in VDMA 24314 and ISO 7745, among others. Beyond that, please observe chapter 3.1.4 "Material compatibility".

Bosch Rexroth will not accept liability for any damage to its components resulting from inadequate hydraulic fluid changeovers!

4.5 Mixing and compatibility of different hydraulic fluids

If hydraulic fluids from different manufacturers or different types from the same manufacturer are mixed, gelling, silting, and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions, and damage to the hydraulic system.

If the fluid contains more than 2% of another fluid then it is considered to be a mixture.

Mixing with other hydraulic fluids is not generally permitted. This includes hydraulic fluids with the same classification. If individual lubricant manufacturers advertise miscibility and/or compatibility, this is entirely the responsibility of the lubricant manufacturer.

Bosch Rexroth customarily tests all components with HLP mineral oil.

Bosch Rexroth will not accept liability for any damage to its components resulting from mixing hydraulic fluids!

4.6 Re-additivation

Additives added at a later point in time such as colors, wear reducers, VI enhancers or anti-foam additives, may negatively affect the performance properties of the hydraulic fluid and the compatibility with our components, and are not approved.

Bosch Rexroth will not accept liability for any damage to its components resulting from re-additivation!

4.7 Foaming behavior

Foam is created by rising air bubbles at the surface of hydraulic fluids in the reservoir. Foam that develops should collapse as quickly as possible.

The foaming behavior of fire-resistant, water-containing hydraulic fluids is normally worse than in HLP mineral oil.

4.8 Corrosion protection

Water generally has corrosive properties.

Corrosion protection is only possible to a limited extent due to the water content in fire-resistant, water-containing hydraulic fluids, despite the available corrosion protection additives.

Materials made of steel, copper, zinc, aluminum, bronze alloys and brass alloys, as well as combinations of these materials have a higher corrosion tendency.

4.9 Dissolved and undissolved air

Under atmospheric conditions, the hydraulic fluid contains dissolved air. In the negative pressure range, for instance in the suction pipe of the pump or downstream of control edges, this dissolved air may transform into undissolved air. The undissolved air content represents a risk of cavitation. The consequence of this is material erosion on components. With the correct measures, such as suction pipe and reservoir design, and an appropriate hydraulic fluid, air intake and separation can be positively influenced.

See also section 3.1.7 "Air separation ability (ASA)".

4.10 Fluid servicing, fluid analysis, and filtration

To preserve the usage properties and ensure a long service life for hydraulic fluid and components, both the monitoring of the fluid condition and a filtration adapted to the application requirements are indispensable.

The application of hydraulic system filters with a filtration rate > 200 for 10µm particles (β 10(c) > 200 according to ISO 16889) is not recommended for fire-resistant, water-containing hydraulic fluids, since finer filters can break down the chemical composition of the fluid. If finer filters are required despite that, then the fluid manufacturer needs to be consulted before they are used.

 $\beta10(c)$ > 75 according to ISO 16889 is recommended. The effort is higher in the case of unfavorable usage conditions, increased stress on the hydraulic system or high expectations as to availability and service life, see chapter 2 "Solid particle contamination and cleanliness levels". When commissioning a system, please note that the required minimum cleanliness level can frequently be attained only by flushing the system. Due to severe start-up contamination, it may be possible that a fluid and/or filter replacement becomes necessary after a short operating period (< 50 operating hours).

The hydraulic fluid must be replaced at regular intervals and tested by the lubricant manufacturer or recognized, accredited test labs. A reference inspection is recommended both for the unused hydraulic fluid (casks) and after commissioning.

14 Fire-resistant hydraulic fluids - containing water Hydraulic fluids in operation

Minimum information in analyses (recommended)

Property or test conditions	Test method	HFAE	HFAS	HFB	HFC
Appearance		•	•	•	•
Water content	HFAE, HFB: ISO 3733 HFAS: ISO 6296; HFC: DIN 51777-1	•	•	•	•
Density at 15 °C	ISO 3675, DIN 51757 incl. supplementary sheet 1	-	-	•	•
pH value at 20 °C	ISO 20843	•	•	_	•
Viscosity at 20 °C, 40 °C, and 50 °C	ISO 3104, DIN 51562-1, ASTM D7042	•	•	•	•
Volume fraction of emulsified concentrate	DIN 51368 in conjunction with DIN 51423-2	•	_	•	_
Foreign oil proportion		•	•	•	•
Cleanliness level	ISO 4406	•	•	•	•
Content of foreign solid matter	ISO 4405	•	•	•	•
Microbial stability with details on bacteria, fungi, yeasts, and germ count		•	•	•	_
Elements	DIN 51399-1	•	•	•	•

Optional information

Property or test conditions	Test method	HFAE	HFAS	HFB	HFC
Reserve alkalinity compared with pH values 3.3 and 5.	5	•	•	•	•
Testing in the four-ball apparatus	ISO 20623	-	-	-	•
Air separation ability at 50 °C	ISO 9120	-	-	-	•

Information

- ► If possible, compare the measurement results with the values of new oil or available trend analyses.
- ► The test report should include an evaluation / assessment pertaining to the further use of the hydraulic fluid.

When using fire-resistant, water-containing hydraulic fluids, the same servicing and maintenance requirements as applied for HLP/HVLP mineral oil are necessary. However, the scope of the analysis/analysis methods have to be adapted to the fluid properties.

After changing over hydraulic fluids, it is recommended that the filter be replaced again after 50 operating hours as fluid aging products may have detached themselves ("self-cleaning effect").

Fire-resistant, water-containing hydraulic fluids contain alkaline additives. They are used both for the neutralization of contamination and for corrosion protection in the hydraulic system. If the reserve alkalinity drops significantly below the value for the unused hydraulic fluid, there is a chance that fully developed, acidic reaction products can no longer be fully neutralized. The risk of electrochemical corrosion in the system increases, which is why the proportion of corrosion protection inhibitors have to be checked during operation (reserve alkalinity compared with pH values 3.3 and 5.5).

Bosch Rexroth AG, RE 90223/01.2015

If the water contained has noticeably vaporized, then distilled water or VE water needs to be replenished in order to set the initial viscosity; tap water must never be used. The addition of larger quantities of water should be done slowly and, if possible, in several positions during ongoing operation, so as to prevent the pump from occasionally sucking in pure water, and thus being damaged by that. It is recommended that the corresponding amount of water prior to the addition be mixed with approximately the same amount of HFC fluid, for example.

Ultimately, the evaluation by the test lab or lubricant manufacturers is authoritative. Their recommendation should be urgently observed.

In case of warranty, liability, or guarantee claims to Bosch Rexroth, service verification and/or the results of fluid analyses are to be provided.

Disposal and environmental protection

5 Disposal and environmental protection

All fire-resistant, water-containing hydraulic fluids, are, like mineral oil-based hydraulic fluids, subject to special disposal obligations.

The respective lubricant manufacturers provide specifications on environmentally friendly handling and storage. Please ensure that spilled or splashed fluids are absorbed with appropriate adsorbents or by a technique that prevents it contaminating water courses, the ground, or sewerage systems.

It is also not permitted to mix fluids when disposing of hydraulic fluids. Regulations governing the handing of used oils stipulate that used oils are not to be mixed with other products. Non-compliance will increase disposal costs.

Both the national legal or regulatory provisions and the information given in the respective safety data sheets (e.g. waste codes) must be observed for the disposal of the relevant hydraulic fluid.

6 Standardization

The information pertaining to the standards listed in this document relates to the respective standard edition currently valid.

7 Glossary

Additivation

Additives are chemical substances added to base fluids in small quantities to achieve or improve specific properties.

Alkaline additives

Hydraulic fluids can produce acids as a result of various aging processes. The hydraulic fluid contains alkaline additives in order to cushion/remove the acidification. These additives bind the acid residue and then become particles that are (can be) filtered out. A statement in regard of alkaline additives still effective is provided, on the one hand, by pH value, but better still is the statement pertaining to the content of free acids. In the alkaline f value range, acidic corrosion is not possible, even if acids are present.

Aging

The aging response in a hydraulic fluid describes the chronological sequence of the oxidative, thermal, and (sometimes) hydrolytic change in selected chemical and physical data under test conditions or in practice. (See chapter 3.1.5 "Aging resistance").

Arrhenius equation

The quantitative relation between reaction rate and temperature is described by an exponential function, the Arrhenius equation. This function is usually visualized within the typical temperature range of the hydraulic system.

ICP (optical emission spectrometry)

The ICP procedure can be used to determine various wear metals, contamination types, and additives. Practically all elements in the periodic system can be detected with this method.

Karl Fischer method

Method for determining the proportion of water in watercontaining hydraulic fluids: potentiometric method according to DIN 51777-1

Cavitation

Cavitation is the creation of vapor filled cavities (vapor bubbles) in fluids due to insufficient vapor pressure and subsequent implosion when the pressure increases. When the cavities implode, extremely high acceleration, temperatures, and pressures may occur temporarily, which may damage the component surfaces.

Reserve alkalinity

Determining the reserve alkalinity is used for the investigation of the corrosion protection still available. If the determined reserve alkalinity significantly drops below the initial value of the new oil, then acidic contamination can no longer be neutralized, this means that there is a potential threat to the system becoming damaged due to corrosion.

pH value

This is the measurement for the acidic or alkaline character of an aqueous solution or emulsion.

Pour point

This is the lowest temperature at which the fluid still just flows when cooled down under set conditions. The pour point is specified in the lubricant manufacturers' technical data sheets as a reference value for achieving this flow limit.

RFA (energy dispersive or wavelength dispersive X-ray fluorescence analysis)

Is a procedure to determine almost all elements in liquid and solid samples with nearly any composition. This analysis method is suitable for examining additives and contamination, delivering fast results.

VE water

Demineralized water, also known as deionized, fully desalinated water

Viscosity

Viscosity is the measure of the internal friction of a fluid to flow. It is defined as the property of a substance to flow under tension. Viscosity is the most important characteristic for describing the load-bearing capacity of a hydraulic fluid.

Kinematic viscosity is the ratio of the dynamic viscosity and the density of the fluid; the unit is mm²/s. Hydraulic fluids are categorized in ISO viscosity classes by kinematic viscosity. The reference temperature for this is 40 °C.

Viscosity index (VI)

Refers to the viscosity temperature behavior of a fluid. The lower the change of viscosity in relation the temperature, the higher the VI.

Bosch Rexroth AG

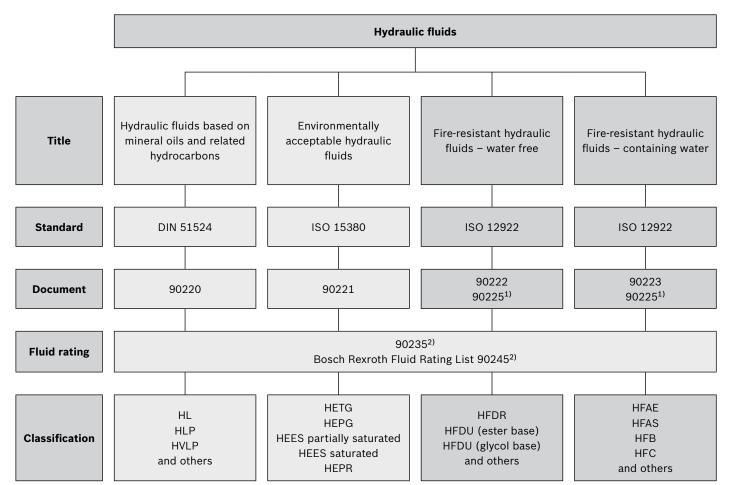
Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 info.brm@boschrexroth.de www.boschrexroth.com

Bosch Rexroth AG

Mobile Applications An den Kelterwiesen 14 72160 Horb, Germany Tel. +49 7451 92-0 © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. No statements concerning the suitability of a hydraulic fluid for a specific purpose can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

Subject to change.

Bosch Rexroth AG, RE 90223/01.2015


Axial piston units for operation with fire-resistant hydraulic fluids - water-free and water-containing (HFDR, HFDU, HFA, HFB, HFC)

RE 90225

Edition: 07.2016

Application requirements and technical data for axial piston units

- 1) Valid for Bosch Rexroth axial piston units
- $_{
 m 2)}$ Valid for Bosch Rexroth Business Unit "Mobile Applications" pumps and motors

RE 90225/07.2016, Bosch Rexroth AG

Axial piston units for operation with fire-resistant hydraulic fluids

Contents

2

1	Basic information	3	
2	Classification of HF-hydraulic fluids	4	
3	Technical data for axial piston units operating with		
	HF-hydraulic fluids	5	
3.1	Swashplate pumps for open circuit	5	
3.2	Swashplate pumps for closed circuit	9	
3.3	Bent-axis pumps for open circuit	11	
3.4	Swashplate motor	13	
3.5	Bent-axis motors	13	

1 Basic information

In accordance with DIN 51502 and DIN EN ISO 6743-4, fire resistant fluids – hereinafter referred to as HF hydraulic fluids – are divided into four groups A, B, C, D and correspondingly designated HFA, HFB, HFC, HFD. In the designation "HF", the "H" for "hydraulic fluid" and "F" is for "fire resistant".

In general, fire-resistant hydraulic fluids are divided into water-free, fire-resistant hydraulic fluids and water-containing, fire-resistant hydraulic fluids. The water-free, fire-resistant hydraulic fluids are described in Rexroth data sheet 90222, the water-containing ones are described in Rexroth data sheet 90223.

Compared with hydraulic fluids based on mineral oils and related hydrocarbons, fire-resistant hydraulic fluids do have other, sometimes disadvantageous, properties. This document is intended to show how these special properties have to be considered in the selection and operation of axial piston units.

For axial piston units which may, in accordance with product data sheet, be operated with fire-resistant hydraulic fluids, note the following:

- ► The operation with HFA, HFB and HFC hydraulic fluids usually requires a reduction in the permissible pressures and rotational speeds. Depending on the product size or nominal size, a special version of the axial piston unit is needed (version **E**-...).
 - However, Rexroth hydraulic components that have been specifically developed for water-containing, fire-resistant hydraulic fluids are available without limitation of operational data (e.g. 92053 axial piston variable pump A4VSO for HFC hydraulic fluids).
- ▶ When using hydraulic fluids of the category HFDU (ester base), there are permissible standard values for pressure and rotational speed for these axial piston units just as there are for hydraulic fluids based on mineral oils and related hydrocarbons. For operation with HFDR and HFDU (glycol base), for example, a reduction in the permissible rotational speeds results from the significantly higher density of the fluid.
- ► Note that for almost all HF hydraulic fluids, due to the higher density compared with hydraulic fluids based on mineral oils, the pressure will not fall below the minimum permissible suction pressure at the pump inlet.

Additional technical data and required sealing materials for the axial piston units are listed in the table on page 4.

When ordering the axial piston unit, please state in plain text the hydraulic fluid that is to be used.

2 Classification of HF-hydraulic fluids

Classification	Containing w	vater				Water-free		
	HFAE	HFAS	HFB	HFC	HFC-E ³⁾	HFDR	HFDU ⁴⁾ (Glycol base)	HFDU (Ester base)
Features	Oil-in-water emulsions	Chemical solutions in water	Water-in-oil emulsions	Watery polymer solutions	Watery polymer solutions	Basic fluids	Basic fluids	Basic fluids
						Phosphoric acid ester	Glycols	Ester
Water content [%(m/m)]	≥ 95	≥ 95	≥ 40	≥ 35	≥ 20±2	-	-	_
Reservoir temperature T [°C]	5 to 50	5 to 50	5 to 50	-20 to 50	-20 to 70	80	80	80
Optimal reservoir temperature T_{opt} [°C]	40	40	40	40	40	70	70	70
Bearing service life ¹⁾ [%]	10	10	20	100 ²⁾ 20	100 ²⁾ 20	100	100	100
Cleanliness level acc. to ISO 4406	- / 18 / 15	- / 18 / 15	- / 18 / 15	- / 18 / 15	- / 18 / 15	20 / 18 / 15	20 / 18 / 15	20 / 18 / 15
Filter material	Glass fiber, d	lo not use cellu	ılose (filter pap	oer)		-	_	_
Sealing material	NBR	NBR	NBR	NBR	NBR	FKM	FKM	FKM
Minimum suction pressure Port S $p_{\text{s min}}$ [bar] (operation as a pump, open circuit)	1.0 (abs.)	1.0 (abs.)	1.0 (abs.)	1.0 (abs.)	1.0 (abs.)	1.0 (abs.)	1.0 (abs.)	1.0 (abs.)

Notice

- ► Sealing material and filter grade is to be agreed upon with the manufacturer of the hydraulic fluid or with Bosch Rexroth Filtration System.
 - Link: Bosch Rexroth Filtration System
- Compared to hydraulic fluids based on mineral oils, HFC hydraulic fluids have a very good low-temperature performance, a lower pour point and a lower viscositypressure coefficients.
- ► Bosch Rexroth offers the rating of hydraulic fluids for Rexroth hydraulic components as a service. You can find further information on this in the following data sheet:
 - 90235: Rating of hydraulic fluids for Rexroth hydraulic components

Practical application cases show results that are much higher.

Bosch Rexroth AG, RE 90225/07.2016

Attainable bearing service life based on operation with hydraulic fluids based on mineral oils, according to the specifications of the bearing manufacturer.

Axial piston variable pump A4VSO for HFC hydraulic fluids, see document 92053

³⁾ Not standardized according to ISO 12922.

⁴⁾ Can be water-soluble

3 Technical data for axial piston units operating with HF-hydraulic fluids

Notice

- Maximum permissible rotational speeds
- ► In the following tables, HFA includes HFAE and HFAS
- Nominal pressure/maximum pressure for HFD corresponds to the specifications for mineral oil; see product data sheet
- ► For HFDU (ester and glycol) as well as for HFDR, there is no pressure limitation
- For HFDR and HFDU (glycol), the maximum allowable rotational speed must be reduced due to the high density of the hydraulic fluid
- ► The manufacturer's specifications concerning the suction performance, the temperatures, the working pressures and the rotational speeds are to be strictly adhered to for a long service life of the axial piston unit

3.1 Swashplate pumps for open circuit

Variable pump A4VSO series 1x and series 30

for open circuit (data sheet 92050)

Size			40	71	125	180	250	355	500	750	1000
HFA	Nominal pressure $p_{\rm N}$ = 140 bar Maximum pressure $p_{\rm max}$ = 160 bar	rpm	1950 ¹⁾	1650	1350	1350	1120	1120	10001)	900	750
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	2100 ¹⁾	1760	1450	1450	1200	1200	1050 ¹⁾	960	800
HFC	Nominal pressure p_N = 250 bar Maximum pressure p_{max} = 280 bar	rpm	2100 ¹⁾	2)	2)	2)	2)	2)	1050 ¹⁾	960	800
HFD	HFDR, HFDU (glycol base)	rpm	2100	1760	1450	1450	1200	1200	1050	960	800
	HFDU (ester base)	rpm	2600	2200	1800	1800	1500	1500	1320	1200	1000

Variable pump A4VSO series 1x and series 30 for HFC hydraulic fluids

for open circuit (data sheet 92053)

Size			71	125	180	250	355	
HFA				ble abov contact		ole pump	A4VSO	series 1x and series 30
HFB				ble abov contact	•	ole pump	A4VSO	series 1x and series 30
HFC	Nominal pressure p_N = 350 bar Maximum pressure p_{max} = 400 bar	rpm	2200 ³⁾	1800 ³⁾	1800 ³) 1500 ³⁾	⁴⁾ 1500 ³⁾	
HFD				ble abov contact	•	ole pump	A4VSO	series 1x and series 30

¹⁾ Version E-A4VSO

²⁾ See table below, variable pump A4VSO series 1x and series 30 for HFC hydraulic fluids

³⁾ Version A4VSO-F

⁴⁾ Version A4VSO-F2

Fixed pump A4FO series 10, series 3x

for open circuit (data sheet 91455)

Size			16	22	28	40	71	125	180	250	500
HFA	Nominal pressure p_N = 140 bar Maximum pressure p_{max} = 160 bar	rpm	-	-	-	-	1650 ¹⁾	1350 ¹⁾	1350 ¹⁾	1120 ¹⁾	10001)
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	-	-	-	-	1760 ¹⁾	1450 ¹⁾	1450 ¹⁾	12001)	10501)
HFC	Nominal pressure p_N = 250 bar Maximum pressure p_{max} = 280 bar	rpm	-	-	-	-	1760 ¹⁾	1450 ¹⁾	1450 ¹⁾	12001)	10501)
HFD	HFDR, HFDU (glycol base)	rpm	3200	2880	2400	2200	1760	1450	1450	1200	1050
	HFDU (ester base)	rpm	4000	3600	3000	2750	2200	1800	1800	1500	1320

Variable pump A10VO series 31

for open circuit (data sheet 92701)

Size			18 ²⁾	28	45	71	100	140
HFA	not permissible		-	-	-	-	-	-
HFB	not permissible		-	-	-	-	-	-
HFC	not permissible		-	-	-	-	-	-
HFD	HFDR, HFDU (glycol base)	rpm	2650	2400	2100	1760	1600	1450
	HFDU (ester base)	rpm	3300	3000	2600	2200	2000	1800

Variable pump A10VSO series 31

for open circuit (data sheet 92711)

Size			18	28	45	71	100	140
HFA	Nominal pressure $p_{\rm N}$ = 140 bar Maximum pressure $p_{\rm max}$ = 160 bar	rpm	2450 ³⁾	2250 ³⁾	1950 ³⁾	1650 ³⁾	1500 ³⁾	1350 ³⁾
HFB	Nominal pressure $p_{\rm N}$ = 140 bar Maximum pressure $p_{\rm max}$ = 160 bar	rpm	2650 ³⁾	2400 ³⁾	2100 ³⁾	1760 ³⁾	1600 ³⁾	1450 ³⁾
HFC	Nominal pressure p_N = 175 bar Maximum pressure p_{max} = 210 bar	rpm	2650 ³⁾	2400 ³⁾	2100 ³⁾	1760 ³⁾	1600 ³⁾	1450 ³⁾
HFD	HFDR, HFDU (glycol base)	rpm	2650	2400	2100	1760	1600	1450
	HFDU (ester base)	rpm	3300	3000	2600	2200	2000	1800

Variable pump A10VO series 32

for open circuit (data sheet 92705)

	, o., o., oa, (aa, a o., oo, o o o o o o o					
Size			45	71	100	140
HFA	not permissible		-	-	-	-
HFB	not permissible		-	-	-	-
HFC	not permissible		-	-	-	-
HFD	HFDR, HFDU (glycol base)	rpm	2100	1760	1600	1450
	HFDU (ester base)	rpm	2600	2200	2000	1800

¹⁾ Version E-A4FO

3) Version E-A10VSO

Bosch Rexroth AG, RE 90225/07.2016

²⁾ Version A10VSO

Variable pump A10VSO series 32

for open circuit (data sheet 92714)

Size			45	71	100	140	180
HFA	not permissible		-	-	-	-	-
HFB	not permissible		-	-	-	-	-
HFC	not permissible		_	_	_	_	-
HFD	HFDR, HFDU (glycol base)	rpm	2100	1760	1600	1450	On request
	HFDU (ester base)	rpm	2600	2200	2000	1800	On request

Variable pump A11VO series 1x

for open circuit (data sheet 92500)

Size			40	60	75	95	130	145	190	260
HFA	not permissible		-	-	-	-	-	-	-	-
HFB	not permissible		-	-	-	-	-	-	-	
HFC	not permissible		-	-	-	-	-	-	-	-
HFD	HFDR, HFDU (glycol base)	rpm	2400	2200	2050	1900	1700	1700	1700	1450
	HFDU (ester base)	rpm	3000	2700	2550	2350	2100	2100	2100	1800

Variable pump A11VLO series 1x

for open circuit (data sheet 92500)

Size			130	145	190	260
HFA	not permissible		_	-	-	-
HFB	not permissible		-	-	-	-
HFC	not permissible		-	-	-	-
HFD	HFDR, HFDU (glycol base)	rpm	2000	2000	2000	1850
	HFDU (ester base)	rpm	2500	2500	2500	2300

Variable pump A11VO series 411)

for open circuit (data sheet 92510)

Size			280
HFA	not permissible		-
HFB	not permissible		-
HFC	not permissible		
HFD	HFDR, HFDU (glycol base)	rpm	1450
	HFDU (ester base)	rpm	1800

¹⁾ Version P

VVariable pump A11VLO series 411)

for open circuit (data sheet 92510)

Size			280
HFA	not permissible		-
HFB	not permissible		-
HFC	not permissible		-
HFD	HFDR, HFDU (glycol base)	rpm	1850
	HFDU (ester base)	rpm	2300

Variable pump A15VO series 111)

for open circuit (data sheet 92800)

Size			280	
HFA	not permissible		-	
HFB	not permissible		_	
HFC	not permissible		-	
HFD	HFDR, HFDU (glycol base)	rpm	1450	
	HFDU (ester base)	rpm	1800	

Variable pump A15VLO series 111)

for open circuit (data sheet 92800)

Size			280	
HFA	not permissible		-	
HFB	not permissible		-	
HFC	not permissible		_	
HFD	HFDR, HFDU (glycol base)	rpm	1850	
	HFDU (ester base)	rpm	2300	

Variable pump A18VO series 11

for open circuit (data sheet 92270)

Size		55	80	107
HFA	not permissible	-	-	-
HFB	not permissible	_	-	-
HFC	not permissible	_	_	-
HFD				with HFD hydraulic fluids, limitations for the technical data and the sealing to be observed. Please contact us.

Bosch Rexroth AG, RE 90225/07.2016

¹⁾ Version P

Variable pump A18VLO series 11

for open circuit (data sheet 92280)

Size	80
HFA not permissible	-
HFB not permissible	-
HFC not permissible	
HFD	For operation with HFD hydraulic fluids, limitations for the technical data and the sealing materials are to be observed. Please contact us.

Variable double pump A20VO series 10

for open circuit (data sheet 93100)

Size			95	190	260	520
HFA	Nominal pressure p_N = 140 bar Maximum pressure p_{max} = 160 bar	rpm	-	-	-	1000
HFB	Nominal pressure $p_{\rm N}$ = 160(140 ¹) bar Maximum pressure $p_{\rm max}$ = 210(160 ¹) bar	rpm	-	-	-	1000
HFC	Nominal pressure $p_{\rm N}$ = 250(175 ¹⁾) bar Maximum pressure $p_{\rm max}$ = 280(210 ¹⁾) bar	rpm	-	-	-	1000
HFD	HFDR, HFDU (glycol base)	rpm	1900	2000	1850	1000
	HFDU (ester base)	rpm	2350	2500	2300	1300

3.2 Swashplate pumps for closed circuit

Variable pump A4VSG series 1x and series 30

for closed circuit (data sheet 92100)

Size			40	71	125	180	250	355	500	750	1000
HFA	Nominal pressure p_N = 140 bar Maximum pressure p_{max} = 160 bar	rpm	2750 ¹⁾²⁾	2400 ¹⁾²⁾	1950 ¹⁾²⁾	18001)2)	1650 ¹⁾²⁾	1500 ¹⁾²⁾	1350 ¹⁾²⁾	1200 ²⁾	1200²)
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	30001)2)	2550 ¹⁾²⁾	21001)2)	1920 ¹⁾²⁾	1750 ¹⁾²⁾	16001)2)	1450 ¹⁾²⁾	13002)	1300 ²⁾
HFC	Nominal pressure p_N = 250 bar Maximum pressure p_{max} = 280 bar	rpm	30001)2)	2550 ¹⁾²⁾	21001)2)	1920 ¹⁾²⁾	1750 ¹⁾²⁾	16001)2)	1450 ¹⁾²⁾	1300 ²⁾	1300 ²⁾
HFD		rpm	3700	3200	2600	2400	2200	2000	1800	1600	1600

Variable pump A4VG series 32

for closed circuit (data sheet 92003)

Size			28	40	56	71	90	125	180	250
HFA not perm	issible		-	-	-	-	-	-	-	-
HFB not perm	issible		-	-	-	-	-	-	-	-
HFC not perm	issible		-	-	-	-	-	-	-	-
HFD		rpm	4250	4000	3600	3300	3050	2850	2500	2400

¹⁾ Bearing flushing at **U** port required!

²⁾ Version E-A4VSG

10

Variable pump A4VG series 40

for closed circuit (data sheet 92004)

Size		45	65	85	110	145	175	210	280
HFA	not permissible	-	-	-	-	-	-	-	-
HFB	not permissible	_	-	-	-	-	-	-	-
HFC	not permissible	_	-	-	-	-	-	-	
HFD					D hydrau served. F				the technical data and the sealing

Variable pump A4VTG series 33

for closed circuit (data sheet 92013)

Size		71	90
HFA	not permissible	-	-
HFB	not permissible	-	-
HFC	not permissible	-	-
HFD			eration with HFD hydraulic fluids, limitations for the technical data and the sealing als are to be observed. Please contact us.

Variable pump A10VG series 10

for closed circuit (data sheet 92750)

Size			18	28	45	63	
HFA	not permissible		-	-	-	-	
HFB	not permissible		_	_	_	_	
HFC	not permissible		_	_	-	_	
HFD		rpm	5000	4250	3800	3500	

Variable double pump A20VG series 11 and A22VG series 11

for closed circuit (data sheet 93220)

Size	45
HFA not permissible	-
HFB not permissible	-
HFC not permissible	-
HFD	For operation with HFD hydraulic fluids, limitations for the technical data and the sealing materials are to be observed. Please contact us.

Bosch Rexroth AG, RE 90225/07.2016

Variable double pump A22VG series 40

for closed circuit (data sheet 93221)

Size	45
HFA not permissible	-
HFB not permissible	-
HFC not permissible	-
HFD	For operation with HFD hydraulic fluids, limitations for the technical data and the sealing materials are to be observed. Please contact us.

Variable double pump A24VG series 10

for closed circuit (data sheet 93240)

Size		45 - 45	65 - 45	65 - 65
HFA no	t permissible	-	-	-
HFB no	t permissible	-	-	-
HFC no	t permissible	_	_	-
HFD			vith HFD hydrauli be observed. Pl	c fluids, limitations for the technical data and the sealing ease contact us.

Variable double pump A30VG series 10

for closed circuit (data sheet 93430)

Size	28
HFA not permissible	-
HFB not permissible	
HFC not permissible	_
HFD	For operation with HFD hydraulic fluids, limitations for the technical data and the sealing materials are to be observed. Please contact us.

3.3 Bent-axis pumps for open circuit

Fixed pump A2FO series 6

for open circuit (data sheet 91401)

Size			5	10	12	16	23	28	32	45	56	63	80
HFA	not permissible		-	-	-	-	-	-	-	-	-	-	-
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	4500	2520	2520	2520	2000	2000	2000	1800	1600	1600	1440
HFC	Nominal pressure p_N = 200 bar Maximum pressure p_{max} = 250 bar	rpm	4500	2520	2520	2520	2000	2000	2000	1800	1600	1600	1440
HFD	HFDR, HFDU (glycol base)	rpm	4500	2520	2520	2520	2000	2000	2000	1800	1600	1600	1440
	HFDU (ester base)	rpm	5600	3150	3150	3150	2500	2500	2500	2240	2000	2000	1800
Size			90	107	125	160	180	200	250	355	500	710	1000
HFA	not permissible		-	-	-	-	-	-	-	-	-	-	-
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	1440	1280	1280	1160	1160	1240	1200 ¹⁾	1060 ¹⁾	950 ¹⁾	950 ¹⁾	750 ¹⁾
HFC	Nominal pressure p_N = 200 bar Maximum pressure p_{max} = 250 bar	rpm	1440	1280	1280	1160	1160	1240	12001)	10601)	950 ¹⁾	950 ¹⁾	750 ¹⁾
HFD	HFDR, HFDU (glycol base)	rpm	1440	1280	1280	1160	1160	1240	1200 ²⁾	1060 ²⁾	950 ²⁾	950 ²⁾	750 ²⁾
	HFDU (ester base)	rpm	1800	1600	1600	1450	1450	1550	1500 ²⁾	1320 ²⁾	1200 ²⁾	1200 ²⁾	950 ²⁾

Variable pump A7VO series 63

for open circuit (data sheet 92202)

Size			55	80	107	160
HFA	not permissible		-	-	-	-
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	2000	1800	1600	1400
HFC	Nominal pressure p_N = 200 bar Maximum pressure p_{max} = 250 bar	rpm	2000	1800	1600	1400
HFD	HFDR, HFDU (glycol base)	rpm	2000	1800	1600	1400
	HFDU (ester base)	rpm	2500	2240	2150	1900

Variable pump A7VLO series 63

for open circuit (data sheet 92203)

Size			250	355	500
HFA	not permissible		-	-	-
HFB	not permissible		-	-	-
HFC	not permissible		-	-	-
HFD	HFDR, HFDU (glycol base)	rpm	1200	1060	950
	HFDU (ester base)	rpm	1500	1320	1200

Bosch Rexroth AG, RE 90225/07.2016

82

¹⁾ Version E-A2FLO

²⁾ Version A2FLO

Variable double pump A8VO series 6x

for open circuit (data sheet 93010)

Size			55	80	107	140	200
HFA	not permissible		-	-	-	-	-
HFB	not permissible		-	-	-	-	-
HFC	not permissible		-	-	_	-	-
HFD	HFDR, HFDU (glycol base)	rpm	2000	1800	1600	_	-
	HFDU (ester base)	rpm	2500	2240	2150	2100	1950

Fixed pump A17FO series 10

for open circuit (data sheet 91520)

Size		23	32	45	63	80	107
HFA n	not permissible	-	-	-	-	-	-
HFB n	not permissible	-	-	-	-	-	-
HFC n	not permissible	_	-	-	-	-	-
HFD					•		limitations for the technical data and the sealing ntact us.

Fixed pump A17FNO series 10

for open circuit (data sheet 91510)

Size	125
HFA not permissible	-
HFB not permissible	-
HFC not permissible	
HFD	For operation with HFD hydraulic fluids, limitations for the technical data and the sealing materials are to be observed. Please contact us.

3.4 Swashplate motor

Fixed motor A4FM series 1x and series 3x

for open and closed circuit (data sheet 91120)

Size			22	28	40	56	71	125	250	500
HFA	Nominal pressure p_N = 140 bar Maximum pressure p_{max} = 160 bar	rpm	-	-	-	-	2400 ¹⁾	1950 ¹⁾	1650 ¹⁾	1350 ¹⁾
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	-	-	-	-	2550 ¹⁾	21001)	1750 ¹⁾	1450 ¹⁾
HFC	Nominal pressure p_N = 250 bar Maximum pressure p_{max} = 280 bar	rpm	-	-	-	-	2550 ¹⁾	21001)	1750 ¹⁾	1450 ¹⁾
HFD		rpm	4250	4250	4000	3600	3200	2600	2200	1800

¹⁾ Version E-A4FM

3.5 Bent-axis motors

Fixed motor A2FM series 6x

for open and closed circuit (data sheet 91001)

Size			10	12	16	23	28	32	45	56	63	80	90
HFA	not permissible		-	-	-	-	-	-	-	-	-	-	-
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	4800	4800	4800	3800	3800	3800	3400	3000	3000	2680	2680
HFC	Nominal pressure p_N = 200 bar Maximum pressure p_{max} = 250 bar	rpm	4800	4800	4800	3800	3800	3800	3400	3000	3000	2680	2680
HFD		rpm	8000	8000	8000	6300	6300	6300	5600	5000	5000	4500	4500
Size			107	125	160	180	200	250	355	500	710	1000	
Size HFA	not permissible		107	125 -	160	180 -	200	250	355 -	500	710	1000	
	not permissible Nominal pressure $p_{\rm N}$ = 160 bar Maximum pressure $p_{\rm max}$ = 210 bar	rpm	107 - 2400	125 - 2400	160 - 2100	180 - 2100	200 - 2200	250 - 2150 ¹⁾	355 - 1800 ¹⁾	500 - 1600 ¹⁾	710 - 1280 ¹⁾	1000 - 1280 ¹⁾	
HFA	Nominal pressure $p_{\rm N}$ = 160 bar	rpm	_	_	_	_	_	-	-	_	_	_	

Fixed motor A2FE series 6x

for open and closed circuit (data sheet 91008)

Size			28	32	45	56	63	80	90	107	125	160	180
HFA	not permissible		-	-	-	-	-	-	-	-	-	-	_
HFB	Nominal pressure $p_N = 160$ bar Maximum pressure $p_{max} = 210$ bar	rpm	3800	3800	3400	3000	3000	2680	2680	2400	2400	2100	2100
HFC	Nominal pressure p_N = 200 bar Maximum pressure p_{max} = 250 bar	rpm	3800	3800	3400	3000	3000	2680	2680	2400	2400	2100	2100
HFD		rpm	6300	6300	5600	5000	5000	4500	4500	4000	4000	3600	3600
Size			250	355									
HFA	not permissible	,	-	-									
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	2150 ³⁾	1800 ³⁾									
HFC	Nominal pressure p_N = 200 bar Maximum pressure p_{max} = 250 bar	rpm	2150 ³⁾	1800 ³⁾									
HFD			2700 ⁴⁾	2240 ⁴⁾									

Bosch Rexroth AG, RE 90225/07.2016

¹⁾ Version E-A2FLM

²⁾ Version A2FLM

³⁾ Version E-A2FLE

⁴⁾ Version A2FLE

Variable motor A6VM series 63

for open and closed circuit (data sheet 91604)

Size			28	55	80	107	140	160	200	250	355	500	1000
HFA	not permissible		-	-	-	-	-	-	-	-	-	-	-
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	3700	3000	2600	2300	2200	2100	1900	2150 ¹⁾	1800 ¹⁾	1600 ¹⁾	12801)
HFC	Nominal pressure p_N = 200 bar Maximum pressure p_{max} = 250 bar	rpm	3700	3000	2600	2300	2200	2100	1900	2150 ¹⁾	1800 ¹⁾	1600 ¹⁾	12801)
HFD		rpm	5550	4450	3900	3550	3250	3100	2900	2700 ²⁾	2240 ²⁾	2000 ²⁾	1600 ²⁾

Variable motor A6VE series 63

for open and closed circuit (data sheet 91606)

Size			28	55	80	107	160	250
HFA	not permissible		-	-	-	-	-	-
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	3700	3000	2600	2300	2100	2150 ³⁾
HFC	Nominal pressure p_N = 200 bar Maximum pressure p_{max} = 250 bar	rpm	3700	3000	2600	2300	2100	2150 ³⁾
HFD		rpm	5550	4450	3900	3550	3100	2700 ⁴⁾

Variable motor A6VM series 65

for open and closed circuit (data sheet 91607)

Size			55	80	107	140	160	200
HFA	not permissible		-	-	-	_	-	-
HFB	Nominal pressure $p_{\rm N}$ = 160 bar Maximum pressure $p_{\rm max}$ = 210 bar	rpm	3000	2600	2300	2200	2100	1900
HFC	Nominal pressure p_N = 200 bar Maximum pressure p_{max} = 250 bar	rpm	3000	2600	2300	2200	2100	1900
HFD		rpm	4450	3900	3550	3250	3100	2900

Variable motor A6VM series 71

for open and closed circuit (data sheet 91610)

Size			60	85	115	150	170	215
HFA	not permissible		-	-	-	-	-	-
HFB	Nominal pressure p_N = 160 bar Maximum pressure p_{max} = 210 bar	rpm	3000	2600	2300	2200	2100	1900
HFC	Nominal pressure p_N = 200 bar Maximum pressure p_{max} = 250 bar	rpm	3000	2600	2300	2200	2100	1900
HFD		rpm	4450	3900	3550	3250	3100	2900

¹⁾ Version E-A6VLM

²⁾ Version A6VLM

³⁾ Version E-A6VLE

⁴⁾ Version A6VLE

16

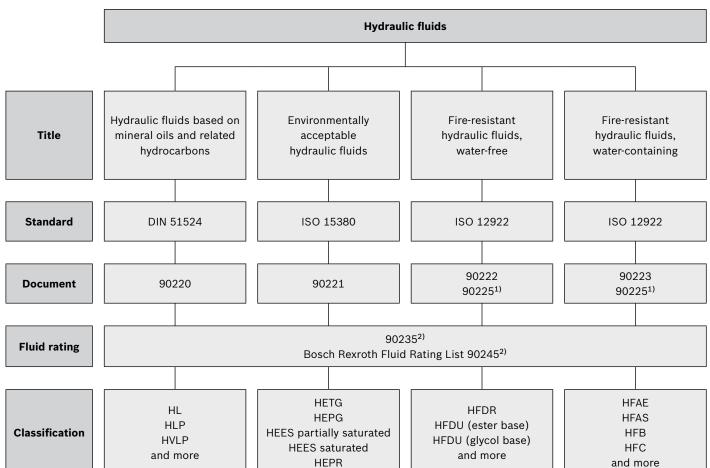
Bosch Rexroth AG

Mobile Applications Glockeraustrasse 4 89275 Elchingen, Germany Tel. +49 7308 82-0 info.ma@boschrexroth.de www.boschrexroth.com

Bosch Rexroth AG

Mobile Applications An den Kelterwiesen 14 72160 Horb, Germany Tel. +49 7451 92-0 © Bosch Rexroth AG 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 90225/07.2016


Rating of hydraulic fluids for Rexroth hydraulic components (pumps and motors)

RE 90235

Edition: 02.2015 Replaces 01.2013

Bosch Rexroth offers the rating of hydraulic fluids as service – inclusive assistance and consulting of experienced engineers.

- 1) Valid for Bosch Rexroth axial piston units
- 2) Valid for Bosch Rexroth Business Unit "Mobile Applications" pumps and motors

RE 90235/02.2015, Bosch Rexroth AG

2 Rating of hydraulic fluids

Description

The safe and reliable operation of industrial and mobile equipment is only possible if the hydraulic fluid used is selected with respect to the application. The main tasks of the hydraulic fluid are e.g. transmission of power, lubrication of the components, reduction of friction, corrosion prevention and heat dissipation. Unfortunately the common element "hydraulic fluid" is often disregarded during conceptual design.

Increased requirements on machines and equipment constantly raise the quality requirements on the hydraulic fluid used. For using a suitable hydraulic fluid, adequate knowledge and experience of this are necessary.

Therefore Bosch Rexroth offers the rating of hydraulic fluids for Rexroth hydraulic components as service.

Bosch Rexroth defines hydraulic fluids on the basis of the illustration on page 1. Application notes and requirements for Rexroth hydraulic components can be taken out of the data sheets mentioned in this illustration on page 1.

1 Description

Minimum requirements

At present the standards conformity for the minimum requirement on fluids is defined in our Bosch Rexroth component data sheets. The fluid manufacturers' technical data sheets have to include that the specific standards are met. The plausibility and correctness of the fluid data are not reviewed by Bosch Rexroth.

Bosch Rexroth Fluid Rating

Fluid data of the manufacturer has to be according to ISO (selected characteristic values of standards) and Bosch Rexroth requirements (tightened values of standards and extended Bosch Rexroth requirements). Bosch Rexroth demands the data to be confirmed in writing. The plausibility and correctness of the fluid data is reviewed by Bosch Rexroth.

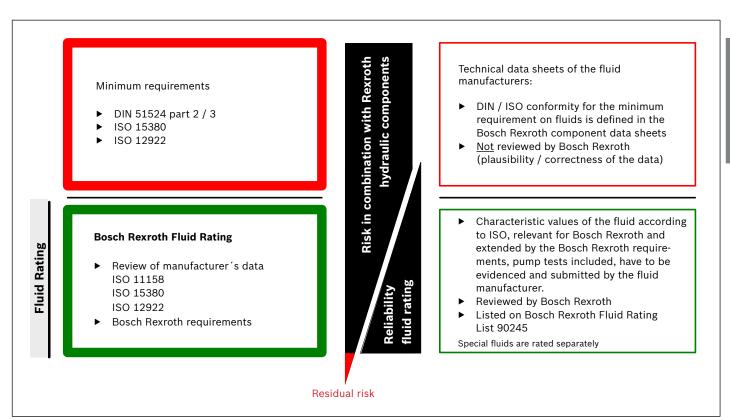
The extended Bosch Rexroth requirements are beneath others specific fluid tests, that show suitability of the hydraulic fluid with defined Rexroth components and which are constituents of the respective specification.

Depending on the utilized Rexroth hydraulic components and the oil type, the corresponding fluid test has to be passed prior to the assignment of the Bosch Rexroth fluid rating.

Retention samples (finished oil, base oil) are furthermore saved. The hydraulic fluids that fulfill the Bosch Rexroth Fluid Rating requirements will be listed on the following Bosch Rexroth document.

▶ 90245: Bosch Rexroth Fluid Rating List

Note


The Bosch Rexroth Fluid Rating requirements cannot cover all machine and system-dependent conditions (see residual risk on rating scheme on page 3). Only single Rexroth components pumps/motors can be examined in the fluid tests. Bosch Rexroth Fluid Rating does not cover all systems and applications.

Releases for special applications are excluded from the Bosch Rexroth Fluid Rating.

The responsibility for selection of the hydraulic fluid remains with the equipment/machinery operator and the fluid manufacturer.

By means of the requirements contained in the Bosch Rexroth Fluid Rating the risk of using hydraulic fluid in combination with Rexroth hydraulic components can be considerably reduced and the reliability significantly increased.

Bosch Rexroth AG, RE 90235/02.2015

2 Process

The process of a Fluid Rating includes the following steps:

(BR*	Contacting fluid manufacturer)
FM**	Registration for "Fluid Rating" on website of Bosch Rexroth (www.boschrexroth.com/fluidrating)
BR	Reviewing registration data of the fluid manufacturer for plausibility
BR	Assignation of registration number to fluid manufacturer Activating of fluid manufacturer's access to download area of "Fluid Rating" on the website of Bosch Rexr
BR	Information to fluid manufacturer: 1) Registration number (=user name for login in the download area "Fluid Rating") 2) Activating for download area is done
FM	Download of all documents (conditions, applications) necessary for "Fluid Rating"
FM	Submitting of all documents and retained samples necessary for "Fluid Rating" to Bosch Rexroth
BR	Reviewing of the manufacturer's data, storing of retained samples
BR	when the requirements are fulfilled - hydraulic fluid will be listed on the Bosch Rexroth Fluid Rating List 90245 → Fulfilled the requirements of Bosch Rexroth Fluid Rating 90245 validity period: 5 years

RE 90235/02.2015 Bosch Rexroth AG

4 Rating of hydraulic fluids Fluid tests

3 Fluid tests

3.1 Requests for Fluid Tests

Two different fluid tests may presently be requested by Bosch Rexroth:

- ► RFT-APU-CL Rexroth Fluid Test Axial Piston Unit Closed Loop (see **3.2**)
- ► RFT-APU-OL-HFC Rexroth Fluid Test Axial Piston Unit Open Loop-HFC (see **3.3**)

These tests may be requested independent of the Bosch Rexroth Fluid Rating. They are, however, a permanent specification of the Bosch Rexroth Fluid Rating.

Prior to the request for the Bosch Rexroth Fluid Rating the fluid test, required in the respective specification, has to be terminated positively.

The process of the fluid test includes the following steps:

FM	Request for quotation for fluid test by Bosch Rexroth (fluidrating@boschrexroth.de)					
FM	M Commissioning of fluid test, submission of further documents and supplying of the fluid for the test					
BR	Implementation of the requested fluid test using defined Rexroth components	RFT-APU-CL Rexroth Fluid Test - Axial Piston Unit Closed Loop	RFT-APU-OL-HFC Rexroth Fluid Test - Axial Piston Unit Open Loop-HFC	Further fluid tests in preparation		

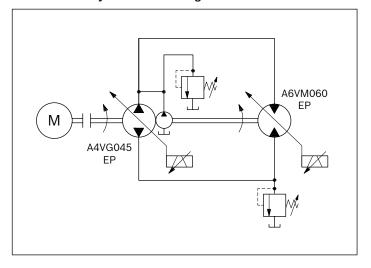
*BR: Bosch Rexroth **FM: Fluid Manufacturer

3.2 Rexroth fluid test RFT-APU-CL

(Rexroth Fluid Test Axial Piston Unit Closed Loop)

Fluid test for closed loop applications using a combination of units consisting of a hydraulic pump A4VG045EP and a hydraulic motor A6VM060EP. This fluid test represents the requirements on a hydrostatic transmission.

Features of the fluid test


The suitability of the hydraulic fluid is tested at high stress under laboratory conditions. The fluid test consists of a break-in test, swivel cycle test and a corner power test.

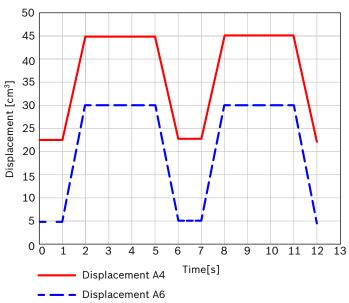
Rating criteria

- ► Examination of the interaction fluid / component
 - Measurement of the component weight change respectively dimensional change
 - Material compatibility
 - Visual inspection of components /component surfaces
 - Oil analysis (start of test (SOT), during test, end of test (EOT)
- ► Evidence of endurance performance
- ▶ Determination of efficiency (SOT, EOT)

Test bench

▼ Schematical hydraulic circuit diagram of the RFT-APU-CL

Technical data of the test components


Туре	A4VG045 EP	A6VM060 EP
Data sheet	92004	91610
Operation mode	pump	motor
Nominal volume	45 cm ³	62 cm ³
Maximum speed (at $V_{ m gmax}$)	4300 min ⁻¹	4450 min ⁻¹
Maximum pressure	500 bar	500 bar
Control	electric (EP)	electric (EP)

Operating data

1. Break-in test	A4VG045 EP	A6VM060 EP
Speed	2000 min ⁻¹	2000 min ⁻¹
Operating pressure	250 bar	250 bar
Leckage temperature		60 °C
Hydraulic motor		at port T
Operating time	10 h	10 h

2. Swivel cycle test	A4VG045 EP	A6VM060 EP
Speed	4000 min ⁻¹	4000 min ⁻¹
Operating pressure	450 bar	450 bar
Leckage temperature		100 °C
Hydraulic motor		at port T
Operating time	300 h	300 h

▼ Swivel cycle (schematic diagram)

3. Corner power test	A4VG045 EP	A6VM060 EP
Speed	4000 min ⁻¹	4000 min ⁻¹
Operating pressure	500 bar	500 bar
Leckage temperature		100 °C
Hydraulic motor		at port T
Operating time	200 h	200 h

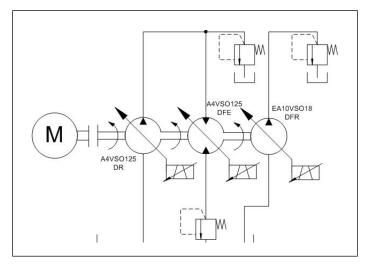
6 Rating of hydraulic fluids Fluid tests

3.3 Rexroth fluid test RFT-APU-OL-HFC

(Rexroth Fluid Test Axial Piston Unit Open Loop-HFC)

Fluid test for open loop applications using a combination of units consisting of a A4VSO swashplate axial piston combination unit (hydraulic pump and hydraulic motor) as well as an EA10VSO/31 hydraulic pump. This fluid test represents the requirements on applications demanding water-containing, fire-resistant hydraulic fluids of the HFC classification.

Features of the fluid test


The suitability of the hydraulic fluid is tested at high stress under laboratory conditions. The fluid test consists of a constant and swivel cycle test.

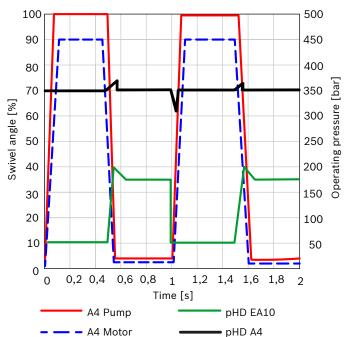
Rating criteria

- ► Examination of the interaction fluid / component
 - Wear and cavitation behaviour
 - Material compatibility
 - Visual inspection of components /component surfaces
 - Measuring records of functional relevant component surfaces
 - Oil analysis (SOT, during test, EOT)
- ► Evidence of endurance performance

Test bench

▼ Schematical hydraulic circuit diagram of the RFT-APU-OL-HFC

Technical data of the test components


Туре	A4VSO125 DR	A4VSO125 DFE	EA10VSO18 DFR/31
Data sheet	92053	92053	92711
Operation mode	pump, self-priming	motor	pump, self-priming
Nominal volume	125 cm ³	125 cm ³	18 cm ³
Maximum speed	2200 min ⁻¹	2200 min ⁻¹	3300 min ⁻¹
Maximum pressure	400 bar	400 bar	350 bar

Operating data

1. Constant test	A4VSO125 DR/DFE	EA10VSO18 DFR/31
Speed	1800 min ⁻¹	1800 min ⁻¹
Operating pressure	350 bar	175 bar
Displacement	$V_{ m g\ max}/V_{ m g\ min}$	$V_{ m g\ max}/V_{ m g\ min}$
Temperature	50 °C	50 °C
Operating time	100/100 h	100/100 h

2. Swivel cycle test	A4VSO125 DR/DFE	EA10VSO18 DFR/31
Speed	1800 min ⁻¹	1800 min ⁻¹
Operating pressure	350 bar	50 / 175 bar
Displacement	0,5 sec $V_{\rm g\ min}/$ 0,5 sec $V_{\rm g\ max}$	0,5 sec $V_{ m g\ min}/$ 0,5 sec $V_{ m g\ max}$
Temperature	50 °C	50 °C
Operating time	800 h	800 h

▼ Swivel cycle (schematic diagram)

Rating of hydraulic fluids

8

Bosch Rexroth AG

Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 info.brm@boschrexroth.de www.boschrexroth.com

An den Kelterwiesen 14 72160 Horb, Germany Tel. +49 7451 92-0 © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. No statements concerning the suitability of a hydraulic fluid for a specific purpose can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

Subject to change.

Bosch Rexroth AG, RE 90235/02.2015

Axial piston motors Fixed motors

Designation	Туре	Size	Series	Data sheet	Page
Fixed motor	A2FM	51000	6x	91001	97
Fixed plug-in motor	A2FE	28355	6x	91008	143
Fixed motor	A2FM/A2FE	45107	70	91071	167
Fixed motor	A4FM	22500	10/30/32	91120	191
Fixed motor	A10FM/A10FE	1063	52	91172	203

Product Catalog Mobile Hydraulics | Part 2: Motors, Gears

Axial Piston Fixed Motor A2FM

RE 91001/06.2012

1/46

Replaces: 09.07

Data sheet

Series 6

Size Nominal pressure/Maximum pressure

5 315/350 bar 10 to 200 400/450 bar 250 to 1000 350/400 bar Open and closed circuits

Contents

Ordering code for standard program	2
Technical data	4
Dimensions	11
Flushing and boost pressure valve	34
Pressure-relief valve	36
Counterbalance valve BVD and BVE	38
Speed sensors	42
Installation instructions	44
General instructions	46

Features

- Fixed motor with axial tapered piston rotary group of bentaxis design, for hydrostatic drives in open and closed circuits
- For use in mobile and stationary applications
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high-pressure and the low-pressure side.
- Finely graduated sizes permit far-reaching adaptation to the drive case
- High power density
- Small dimensions
- High total efficiency
- Good starting characteristics
- Economical design
- One-piece tapered piston with piston rings for sealing

Ordering code for standard program

	A2F		M		/	6		W	_	V						
01	02	03	04	05		06	07	08		09	10	11	12	13	14	15

Hydraulic fluid

	Mineral oil and HFD. HFD for sizes 2	250 to 1000 only in combination with long-life bearings "L" (without code)	
01	HFB, HFC hydraulic fluid	Sizes 5 to 200 (without code)	
		Sizes 250 to 1000 (only in combination with long-life bearings "L")	E-

Axial piston unit

02	Bent-axis design, fixed	A2F	ı
----	-------------------------	-----	---

	Drive shaft bearing	5 to 200	250 to 500	710 to 1000	
03	Standard bearing (without code)	•	•	_	
03	Long-life bearing	_	•	•	L

Operating mode

04	Motor (plug-in motor A2FE, see RE 91008)	M
----	--	---

Size (NG)

OF	Geometric displa	acen	nent,	see	table	e of v	/alue	s on	pag	e 7														
05		5	10	12	16	23	28	32	45	56	63	80	90	107	125	160	180	200	250	355	500	710	1000	

Series

06	6	1

Index

	NG10 to 180	1
07	NG200	3
	NG5 and 250 to 1000	0

Direction of rotation

08	Viewed on drive shaft, bidirectional	w	ĺ
00	viewed on drive shart, bidirectional	V V	1

Seals

0	FKM (fluor-caoutchouc)	V

	Drive shafts	5	10	12	16	23	28	32	45	56	63	80	90	107	125	160	180	200	250 to 1000	
	Splined shaft	-	•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	_	Α
	DIN 5480	_	•	•	-	•	•	-	•	•	-	•	-	•	-	•	-	-	•	Z
10	Parallel keyed shaft	•	•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	-	В
	DIN 6885	-	•	•	_	•	•	-	•	•	_	•	-	•	_	•	-	-	•	Р
	Conical shaft ¹⁾	•	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	С

Mounting flanges	5 to 250	355 to 1000	
ISO 3019-2 4-hole	•	_	

	mounting name		0 10 200	000 10 1000	
44	ISO 3019-2	4-hole	•	_	В
''		8-hole	-	•	Н

^{■ =} Available O = On request-= Not available = Preferred program

¹⁾ Conical shaft with threaded pin and woodruff key (DIN 6888). The torque must be transmitted via the tapered press fit.

Ordering code for standard program

	A2F		M		/	6		W	ı	V						
01	02	03	04	05		06	07	80		09	10	11	12	13	14	15

Port plates for service lines ²⁾			5	10-16	23	28, 32	45	56,63	80,90	107-125	160-180	200	250	355-500	1000	
SAE flange ports	01	0	-	-	•	•	•	•	•	•	•	•	•	•	•	010
A and B at rear		7	-	-	_	-	-	-	-	_	_	-	-	•	_	017
SAE flange ports	02	0	-	-	•	•	•	•	•	•	•	-	•	-	_	020
A and B at side, opposite		7	_	_	_	-	•	A	A	•	•	_	•	-	-	027
		9	-	-	_	-	-	•	•	-	_	_	_	-	_	029
Threaded ports A and B at side, opposite	03	0	•	•	•	•	-	-	-	-	_	-	-	-	1	030
Threaded ports A and B at side and rear ³⁾	04	0	-	•	•	•	•	•	-	-	-	-	O	-	-	04
SAE flange ports A and B at bottom (same side)	10	0	-	-	-	•	•	•	•	•	•	-	-	O	-	10
Port plate B' with 1-level pressure-	VD 17	1	-	-	_	-	-	_	-	•	-					17 ⁻ 178
relief valves for mounting a	18	8	_	_	_	•	•	•	•	•	•	_	-	-	_	18
counterbalance valve ⁵⁾ B'	VE 18		-	-	_	-	-	-	-	•	•	-	_4)	_	-	188
Port plate with	19	1	_	_	_	•	•	•	•	•	•	_	_	_	_	19
pressure-relief valves		2	_	_	_	•	•	•	•	•	•	_	_	_	_	19

Valves (see pages 34 to 41)	
Without valve	0
Pressure-relief valve (without pressure boost facility)	1
Pressure-relief valve (with pressure boost facility)	2
Flushing and boost pressure valve, mounted	7
Counterbalance valve BVD/BVE mounted ⁵⁾⁶⁾	8
Flushing and boost pressure valve, integrated	9

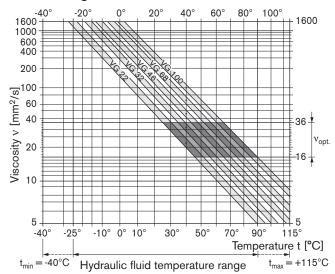
	Speed sensors (see pages 42 and 43)	5 to 16	23 to 180	200	250 to 500	710 to 1000 ⁴	
	Without speed sensor (without code)	•	•	•	•	•	
	Prepared for HDD speed sensor	-	A	A	•	-	F
13	HDD speed sensor mounted ⁷⁾	-	A	A	•	-	Н
	Prepared for DSA speed sensor	-	0	0	0	_	U
	DSA speed sensor mounted ⁷⁾	_	0	0	0	_	V

Special version

1.1	Standard version (without code)	
14	Special version for slew drives (standard with port plate 19)	J

Standard / special version

	Standard version (without code)	
15	Standard version with installation variants, e. g. T ports against standard open or closed	-Y
	Special version	-S


- 2) Fastening thread or threaded ports, metric
- 3) Threaded ports at the sides (sizes 10 to 63) plugged with threaded plugs
- 4) Please contact us.
- 5) Note the restrictions on page 39.
- 6) Specify ordering code of counterbalance valve according to data sheet (BVD RE 95522, BVE RE 95525) separately.
- 7) Specify ordering code of sensor according to data sheet (DSA RE 95133, HDD RE 95135) separately and observe the requirements on the electronics

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The fixed motor A2FM is not suitable for operation with HFA hydraulic fluid. If HFB, HFC or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum operating viscosity range (v_{opt.}, shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port U (sizes 250 to 1000) or using a flushing and boost pressure valve (see pages 34).

Viscosity and temperature of hydraulic fluid

tiooconty and tomporature	,		
	Viscosity [mm ² /s]	Temperature	Comment
Transport and storage at ambient temperature		$T_{min} \ge -50 ^{\circ}\text{C}$ $T_{opt} = +5 ^{\circ}\text{C} \text{ to } +20 ^{\circ}\text{C}$	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾	$v_{\text{max}} = 1600$	T _{St} ≥ -40 °C	$\begin{array}{l} t \leq 3 \text{ min, without load (p} \leq 50 \text{ bar),} \\ n \leq 1000 \text{ rpm (for sizes 5 to 200),} \\ n \leq 0.25 \bullet n_{nom} \text{ (for sizes 250 to 1000)} \end{array}$
Permissible temperature	e difference	$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid
Warm-up phase	$\nu <$ 1600 to 400	T = -40 °C to -25 °C	at $p \leq 0.7$ • $p_{nom}, n \leq 0.5$ • n_{nom} and $t \leq 15$ min
Operating phase			
Temperature difference		$\Delta T = approx. 12 K$	between hydraulic fluid in the bearing and at port T.
Maximum temperature		115 °C	in the bearing
		103 °C	measured at port T
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data
Short-term operation ²⁾	$\nu_{min} \geq 7$	T _{max} = +103 °C	measured at port T, t < 3 min, p < 0.3 • p _{nom}
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 5

¹⁾ At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

²⁾ Sizes 250 to 1000, please contact us.

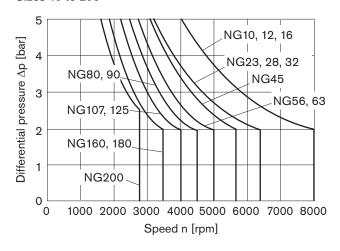
Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

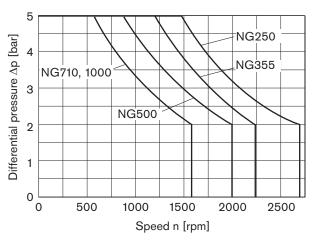
To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

If the above classes cannot be achieved, please contact us.


Shaft seal

Permissible pressure loading


The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

Sizes 10 to 200

Sizes 250 to 1000

The values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Direction of flow

Direction of rotation, viewed	l on drive shaft
clockwise	counter-clockwise
A to B	B to A

Speed range

No limit to minimum speed n_{min} . If uniformity of motion is required, speed n_{min} must not be less than 50 rpm. See table of values on page 7 for maximum speed.

Long-life bearing

Sizes 250 to 1000

For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible. Bearing and case flushing via port U is recommended.

Flushing flow (recommended)

		355	500	710	1000
q _{v flush} (L/min)	10	16	16	16	16

Operating pressure range

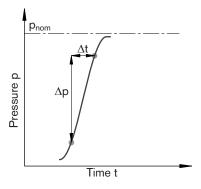
(operating with mineral oil)

Pressure at service line port A or B

Size 5

Nominal pressure p _{nom}	_315 bar absolute
Maximum pressure p _{max} Single operating period Total operating period	
Summation pressure (pressure A + pressure	re B) p _{Su} 630 bar
Sizes 10 to 200	
Nominal pressure pnom	400 bar absolute
Maximum pressure p _{max} Single operating period Total operating period	450 bar absolute 10 s 300 h
iotal operating period	30011

Sizes 250 to 1000

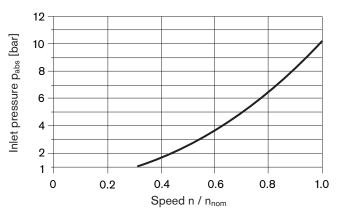

Nominal pressure pnom	350 bar absolute
Maximum pressure p _{max} _ Single operating period Total operating period	400 bar absolute 10 s 300 h
Summation pressure (pre	ssure A + pressure B) p _{Su} _ 700 bar

Summation pressure (pressure A + pressure B) p_{Su} _ 700 bar

Minimum pressure (high-pressure side) ___25 bar absolute

Rate of pressure change $R_{A\;max}$

with integrated pressure-relief valve______ 9000 bar/s without pressure-relief valve______ 16000 bar/s



Note

Values for other hydraulic fluids, please contact us.

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). The minimum pressure depends on the speed of the axial piston unit (see characteristic curve below).

This diagram is valid only for the optimum viscosity range from $v_{\text{opt}} = 36$ to 16 mm 2 /s.

Please contact us if these conditions cannot be satisfied.

Definition

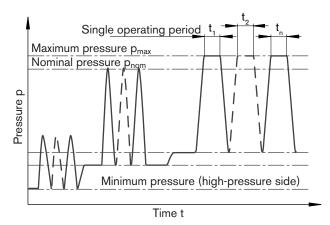
Nominal pressure p_{nom}

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Summation pressure p_{Su}

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t_n$

Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size		NG		5	10	12	16	23	28	32	45	56	63	80
Displacemer per revolutio	nt geometric, n	V_g	cm ³	4.93	10.3	12	16	22.9	28.1	32	45.6	56.1	63	80.4
Speed maxir	mum ¹⁾	n_{nom}	rpm	10000	8000	8000	8000	6300	6300	6300	5600	5000	5000	4500
		n _{max} ²⁾	rpm	11000	8800	8800	8800	6900	6900	6900	6200	5500	5500	5000
Input flow ³⁾														
at n _{nom} ar	nd V_g	q _V	L/min	49	82	96	128	144	177	202	255	281	315	362
Torque ⁴⁾														
at V_g and	$\Delta p = 350 \text{ bar}$	T	Nm	24.7 ⁵⁾	57	67	89	128	157	178	254	313	351	448
	$\Delta p = 400 \text{ bar}$	T	Nm	-	66	76	102	146	179	204	290	357	401	512
Rotary stiffne	ess	С	kNm/rad	0.63	0.92	1.25	1.59	2.56	2.93	3.12	4.18	5.94	6.25	8.73
Moment of ir rotary group		J_{GR}	kgm ²	0.00006	0.0004	0.0004	0.0004	0.0012	0.0012	0.0012	0.0024	0.0042	0.0042	0.0072
Maximum an acceleration	•	α	rad/s ²	5000	5000	5000	5000	6500	6500	6500	14600	7500	7500	6000
Case volume	Э	٧	L		0.17	0.17	0.17	0.20	0.20	0.20	0.33	0.45	0.45	0.55
Mass (appro	x.)	m	kg	2.5	5.4	5.4	5.4	9.5	9.5	9.5	13.5	18	18	23
Size		NG		90	107	125	160	180	200	250	355	500	710	1000
	nt geometric, n	NG V _g	cm ³	90	107 106.7	125 125	160.4	180	200	250 250	355 355	500	710 710	1000
Displacemen	n		cm ³											
Displacemer per revolutio	n	V _g		90	106.7	125	160.4	180	200	250	355	500	710	1000
Displacemer per revolutio	n	V _g	rpm	90 4500	106.7	125 4000	160.4 3600	180 3600	200 2750	250 2700	355 2240	500 2000	710 1600	1000
Displacemer per revolutio Speed maxir	n mum ¹⁾	V _g	rpm	90 4500	106.7	125 4000	160.4 3600	180 3600	200 2750	250 2700	355 2240	500 2000	710 1600	1000
Displacemer per revolutio Speed maxir Input flow ³⁾	n mum ¹⁾	$\frac{n_{nom}}{n_{max}^{2)}}$	rpm rpm	90 4500 5000	106.7 4000 4400	125 4000 4400	160.4 3600 4000	180 3600 4000	200 2750 3000	250 2700 -	355 2240 -	500 2000 -	710 1600 -	1000 1600 -
Displacemer per revolutio Speed maxir Input flow ³⁾ at n _{nom} ar	n mum ¹⁾	V_g $\frac{n_{nom}}{n_{max}^{2)}}$ q_V	rpm rpm	90 4500 5000	106.7 4000 4400	125 4000 4400	160.4 3600 4000	180 3600 4000	200 2750 3000	250 2700 -	355 2240 -	500 2000 -	710 1600 -	1000 1600 -
Displacemer per revolutio Speed maxir Input flow ³⁾ at n _{nom} ar Torque ⁴⁾	num ¹⁾ nd V _g	$\begin{array}{c} V_g \\ \hline n_{nom} \\ \hline n_{max}^{2} \end{array}$ q_V T	rpm rpm L/min	90 4500 5000 405	106.7 4000 4400 427	125 4000 4400 500	160.4 3600 4000 577	180 3600 4000 648	200 2750 3000 550	250 2700 - 675	355 2240 - 795	500 2000 - 1000	710 1600 - 1136	1000 1600 - 1600
Displacemer per revolutio Speed maxir Input flow ³⁾ at n _{nom} ar Torque ⁴⁾	mum ¹⁾ $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$	$\begin{array}{c} V_g \\ \hline n_{nom} \\ \hline n_{max}^{2} \end{array}$ q_V T	rpm rpm L/min Nm	90 4500 5000 405 501	106.7 4000 4400 427 594	125 4000 4400 500 696	160.4 3600 4000 577 893	180 3600 4000 648 1003	200 2750 3000 550	250 2700 - 675 1393	355 2240 - 795 1978	500 2000 - 1000 2785	710 1600 - 1136 3955	1000 1600 - 1600 5570
Displacemer per revolutio Speed maxin Input flow ³⁾ at n _{nom} ar Torque ⁴⁾ at V _g and	mum ¹⁾ $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ ess hertia for	$\begin{array}{c} V_g \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	rpm rpm L/min Nm Nm	90 4500 5000 405 501 573 9.14	106.7 4000 4400 427 594 679	125 4000 4400 500 696 796 11.9	160.4 3600 4000 577 893 1021	180 3600 4000 648 1003 1146	2750 3000 550 1114 1273 57.3	250 2700 - 675 1393 - 73.1	355 2240 - 795 1978 -	500 2000 - 1000 2785 -	710 1600 - 1136 3955 -	1000 1600 - 1600 5570
Displacemer per revolutio Speed maxir Input flow ³⁾ at n _{nom} ar Torque ⁴⁾ at V _g and Rotary stiffned Moment of in	mum ¹⁾ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ ess hertia for	$\begin{array}{c} V_g \\ \\ \\ n_{nom} \\ \\ \\ n_{max}^2) \\ \\ \\ q_V \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	rpm rpm L/min Nm Nm kNm/rad	90 4500 5000 405 501 573 9.14	106.7 4000 4400 427 594 679 11.2	125 4000 4400 500 696 796 11.9	160.4 3600 4000 577 893 1021 17.4	180 3600 4000 648 1003 1146 18.2	2750 3000 550 1114 1273 57.3	250 2700 - 675 1393 - 73.1	355 2240 - 795 1978 - 96.1 0.102	2000 - 1000 2785 - 144	710 1600 - 1136 3955 - 270	1000 1600 - 1600 5570 - 324
Displacemer per revolution Speed maximum and Input flow ³⁾ at n _{nom} ard Torque ⁴⁾ at V _g and Rotary stiffned Moment of irrotary group Maximum and Input flow in the stiffned	mum ¹⁾ $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ ess hertia for	$V_g \\ \frac{n_{nom}}{n_{max}^{2)}} \\ q_V \\ T \\ T \\ c \\ J_{GR}$	rpm rpm L/min Nm Nm kNm/rad kgm²	90 4500 5000 405 501 573 9.14 0.0072	106.7 4000 4400 427 594 679 11.2 0.0116	125 4000 4400 500 696 796 11.9 0.0116	160.4 3600 4000 577 893 1021 17.4 0.0220	180 3600 4000 648 1003 1146 18.2 0.0220	200 2750 3000 550 1114 1273 57.3 0.0353	250 2700 - 675 1393 - 73.1 0.061	355 2240 - 795 1978 - 96.1 0.102	2000 - 1000 2785 - 144 0.178	710 1600 - 1136 3955 - 270 0.55	1000 1600 - 1600 5570 - 324 0.55
Displacemer per revolution Speed maximum an art N _g and Rotary stiffned Moment of irrotary group Maximum an acceleration	mum ¹⁾ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ $\frac{\Delta p = 400 \text{ bar}}{\Delta p = 400 \text{ bar}}$ ess hertia for	$\begin{array}{c} V_g \\ \hline n_{nom} \\ \hline n_{max}^{2)} \\ \hline q_V \\ \hline T \\ T \\ c \\ J_{GR} \\ \hline \alpha \\ \end{array}$	rpm rpm L/min Nm Nm kNm/rad kgm² rad/s²	90 4500 5000 405 501 573 9.14 0.0072 6000	106.7 4000 4400 427 594 679 11.2 0.0116	125 4000 4400 500 696 796 11.9 0.0116	160.4 3600 4000 577 893 1021 17.4 0.0220	180 3600 4000 648 1003 1146 18.2 0.0220 3500	200 2750 3000 550 1114 1273 57.3 0.0353	250 2700 - 675 1393 - 73.1 0.061	355 2240 - 795 1978 - 96.1 0.102 8300	500 2000 - 1000 2785 - 144 0.178	710 1600 - 1136 3955 - 270 0.55 4300	1000 1600 - 1600 5570 - 324 0.55 4500

- 1) The values are valid:
 - for the optimum viscosity range from $v_{\text{opt}} = 36 \text{ to } 16 \text{ mm}^2\text{/s}$
 - with hydraulic fluid based on mineral oils
- 2) Intermittent maximum speed: overspeed for unload and overhauling processes, t < 5 s and $\Delta p < 150$ bar
- Restriction of input flow with counterbalance valve, see page 39
- 4) Torque without radial force, with radial force see page 8
- 5) Torque at $\Delta p = 315$ bar

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible radial and axial forces of the drive shafts

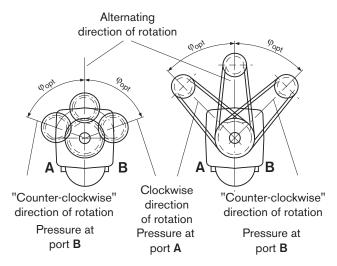
(splined shaft and parallel keyed shaft)

	NG										
	NG		5	5 ³⁾	10	10	12	12	16	23	23
	Ø	mm	12	12	20	25	20	25	25	25	30
Fq	F _{q max}	kN	1.6	1.6	3.0	3.2	3.0	3.2	3.2	5.7	5.4
a		mm	12	12	16	16				16	16
e	T _{max}	Nm	24.7	24.7	66	66	76	76	102	146	146
е ∆р	Δp_{perm}	bar	315	315	400	400	400	400	400	400	400
E +→ _ _ _ _ _ _ _ _ _ _		N	180	180	320	320	320	320	320	500	500
ax — — — — — — — — — — — — — — — — — — —			0	0	0	0	0	0	0	0	0
par operating pressure	±F _{ax perm/bar}	N/bar	1.5	1.5	3.0	3.0	3.0	3.0	3.0	5.2	5.2
	NG		28	28	32	45	56	56 ⁴⁾	56	63	80
	Ø	mm	25	30	30	30	30	30	35	35	35
Į ^F q⊓	F _{q max}	kN	5.7	5.4	5.4	7.6	9.5	7.8	9.1	9.1	11.6
a	a	mm	16	16	16	18	18	18	18	18	20
е	T _{max}	Nm	179	179	204	290	357	294	357	401	512
е Др	Δp_{perm}	bar	400	400	400	400	400	330	400	400	400
Maximum axial force ²⁾		N	500	500	500	630	800	800	800	800	1000
F _{ax} ±==	-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per bar operating pressure											40.0
par operating pressure	±F _{ax perm/bar}	N/bar	5.2	5.2	5.2	7.0	8.7	8.7	8.7	8.7	10.6
par operating pressure	±F _{ax perm/bar}	N/bar	5.2 80 ⁴⁾	5.2 80	5.2 90	7.0 107	8.7 107	8.7 125	8.7 160	8.7 160	180
par operating pressure		N/bar mm									
par operating pressure	NG		804)	80	90	107	107	125	160	160	180
par operating pressure	NG Ø	mm	80 ⁴⁾ 35	80 40	90 40	107 40	107 45	125 45	160 45	160 50	180 50
par operating pressure	NG Ø F _{q max}	mm kN	80 ⁴⁾ 35 11.1	80 40 11.4	90 40 11.4	107 40 13.6	107 45 14.1	125 45 14.1	160 45 18.1	160 50 18.3	180 50 18.3
Fq	NG Ø F _{q max}	mm kN mm	80 ⁴⁾ 35 11.1 20	80 40 11.4 20	90 40 11.4 20	107 40 13.6 20	107 45 14.1 20	125 45 14.1 20	160 45 18.1 25	160 50 18.3 25	180 50 18.3 25
F _q	NG Ø F _{q max} a T _{max}	mm kN mm	80 ⁴⁾ 35 11.1 20 488	80 40 11.4 20 512	90 40 11.4 20 573	107 40 13.6 20 679	107 45 14.1 20 679	125 45 14.1 20 796	160 45 18.1 25	160 50 18.3 25	180 50 18.3 25
F _q	NG Ø F _{q max} a T _{max} Δp perm	mm kN mm Nm bar	80 ⁴⁾ 35 11.1 20 488 380	80 40 11.4 20 512 400	90 40 11.4 20 573 400	107 40 13.6 20 679 400	107 45 14.1 20 679 400	125 45 14.1 20 796 400	160 45 18.1 25 1021 400	160 50 18.3 25 1021 400	180 50 18.3 25 1146 400
F _q	NG Ø F _{q max} a T _{max} Δp perm +F _{ax max} -F _{ax max}	mm kN mm Nm bar N	80 ⁴⁾ 35 11.1 20 488 380 1000	80 40 11.4 20 512 400 1000	90 40 11.4 20 573 400 1000	107 40 13.6 20 679 400 1250	107 45 14.1 20 679 400 1250	125 45 14.1 20 796 400 1250	160 45 18.1 25 1021 400 1600	160 50 18.3 25 1021 400 1600	180 50 18.3 25 1146 400 1600
e e Δp F _{ax} ±————————————————————————————————————	NG Ø F _{q max} a T _{max} Δp perm +F _{ax max} -F _{ax max}	mm kN mm Nm bar N	80 ⁴⁾ 35 11.1 20 488 380 1000 0	80 40 11.4 20 512 400 1000	90 40 11.4 20 573 400 1000	107 40 13.6 20 679 400 1250	107 45 14.1 20 679 400 1250	125 45 14.1 20 796 400 1250	160 45 18.1 25 1021 400 1600	160 50 18.3 25 1021 400 1600	180 50 18.3 25 1146 400 1600
e e Δp F _{ax} ±————————————————————————————————————	$\begin{array}{l} \text{NG} \\ \emptyset \\ F_{q \text{ max}} \\ a \\ \\ \Delta p_{\text{ perm}} \\ + F_{ax \text{ max}} \\ - F_{ax \text{ max}} \\ \\ \pm F_{ax \text{ perm/bar}} \end{array}$	mm kN mm Nm bar N	80 ⁴⁾ 35 11.1 20 488 380 1000 0	80 40 11.4 20 512 400 1000 0	90 40 11.4 20 573 400 1000 0	107 40 13.6 20 679 400 1250 0	107 45 14.1 20 679 400 1250 0	125 45 14.1 20 796 400 1250 0	160 45 18.1 25 1021 400 1600	160 50 18.3 25 1021 400 1600	180 50 18.3 25 1146 400 1600
e e Δp F _{ax} ±————————————————————————————————————	$\begin{array}{c} \textbf{NG} \\ \emptyset \\ F_{q \text{max}} \\ \\ a \\ \\ T_{max} \\ \\ \Delta p_{ perm} \\ \\ +F_{ax max} \\ \\ -F_{ax max} \\ \\ \pm F_{ax perm/bar} \\ \\ \textbf{NG} \end{array}$	mm kN mm Nm bar N N N	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6	80 40 11.4 20 512 400 1000 0 10.6	90 40 11.4 20 573 400 1000 0 10.6	107 40 13.6 20 679 400 1250 0 12.9	107 45 14.1 20 679 400 1250 0 12.9	125 45 14.1 20 796 400 1250 0 12.9	160 45 18.1 25 1021 400 1600	160 50 18.3 25 1021 400 1600	180 50 18.3 25 1146 400 1600
e e Δp Fax±====================================	$\begin{array}{c} \textbf{NG} \\ \textbf{Ø} \\ \textbf{F}_{q \text{ max}} \\ \textbf{a} \\ \\ \textbf{T}_{max} \\ \Delta \textbf{p}_{perm} \\ \textbf{+F}_{ax \text{ max}} \\ \textbf{-F}_{ax \text{ max}} \\ \\ \textbf{\pm F}_{ax \text{ perm/bar}} \\ \\ \textbf{NG} \\ \textbf{Ø} \\ \end{array}$	mm kN mm Nm bar N N N n mm	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6	80 40 11.4 20 512 400 1000 0 10.6 250 50 1.2 ⁶) 41	90 40 11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5	107 40 13.6 20 679 400 1250 0 12.9 500 70 1.96) 52.5	107 45 14.1 20 679 400 1250 0 12.9 710 90	125 45 14.1 20 796 400 1250 0 12.9 1000 90 2.6 ⁶⁾ 67.5	160 45 18.1 25 1021 400 1600	160 50 18.3 25 1021 400 1600	180 50 18.3 25 1146 400 1600
e e Δp Fax±====================================	$\begin{array}{c} \textbf{NG} \\ \emptyset \\ F_{q \; max} \\ a \\ \\ \Delta p_{\; perm} \\ + F_{ax \; max} \\ - F_{ax \; max} \\ \\ \textbf{VG} \\ \textbf{NG} \\ \emptyset \\ F_{q \; max} \\ \end{array}$	mm kN mm bar N N N N kN kN kN	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 200 50 20.3	80 40 11.4 20 512 400 1000 0 10.6 250 50 1.26)	90 40 11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾	107 40 13.6 20 679 400 1250 0 12.9 500 70 1.9 ⁶) 52.5	107 45 14.1 20 679 400 1250 0 12.9 710 90 3.0 ⁶⁾ 67.5	125 45 14.1 20 796 400 1250 0 12.9 1000 90 2.6 ⁶) 67.5	160 45 18.1 25 1021 400 1600	160 50 18.3 25 1021 400 1600	180 50 18.3 25 1146 400 1600
e e Δp Fax±====================================	$\begin{array}{c} \textbf{NG} \\ \emptyset \\ F_{q \; max} \\ a \\ \\ \Delta p_{\; perm} \\ + F_{ax \; max} \\ - F_{ax \; max} \\ \\ \textbf{VG} \\ \textbf{MG} \\ \emptyset \\ F_{q \; max} \\ \\ a \\ \end{array}$	mm kN mm bar N N N N kN mm kN mm	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 200 50 20.3	80 40 11.4 20 512 400 1000 0 10.6 250 50 1.2 ⁶) 41	90 40 11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5	107 40 13.6 20 679 400 1250 0 12.9 500 70 1.96) 52.5	107 45 14.1 20 679 400 1250 0 12.9 710 90 3.0 ⁶⁾ 67.5	125 45 14.1 20 796 400 1250 0 12.9 1000 90 2.6 ⁶⁾ 67.5	160 45 18.1 25 1021 400 1600	160 50 18.3 25 1021 400 1600	180 50 18.3 25 1146 400 1600
e e Δp Fax±====================================	$\begin{array}{c} \textbf{NG} \\ \emptyset \\ F_{q \; max} \\ a \\ \\ \Delta p_{\; perm} \\ + F_{ax \; max} \\ - F_{ax \; max} \\ \\ \textbf{MG} \\ \emptyset \\ F_{q \; max} \\ a \\ \\ T_{max} \\ \end{array}$	mm kN mm bar N N N N N kN N N N N N N N N N N N N N	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 200 50 20.3 25 1273	80 40 11.4 20 512 400 1000 0 10.6 250 50 1.26 41	90 40 11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶) 52.5	107 40 13.6 20 679 400 1250 0 12.9 500 70 1.9 ⁶) 52.5	107 45 14.1 20 679 400 1250 0 12.9 710 90 3.0 ⁶⁾ 67.5	125 45 14.1 20 796 400 1250 0 12.9 1000 90 2.6 ⁶) 67.5	160 45 18.1 25 1021 400 1600	160 50 18.3 25 1021 400 1600	180 50 18.3 25 1146 400 1600
e e Δp Fax±====================================	NG Ø Fq max a Tmax Δp perm +Fax max -Fax perm/bar NG Ø Fq max a Tmax Δp perm	mm kN mm bar N N N N N N N N N N N N N N N N N N N	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 200 50 20.3 25 1273 400	80 40 11.4 20 512 400 1000 0 10.6 250 50 1.2 ⁶) 41	90 40 11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶) 52.5	107 40 13.6 20 679 400 1250 0 12.9 500 70 1.9 ⁶) 52.5	107 45 14.1 20 679 400 1250 0 12.9 710 90 3.0 ⁶⁾ 67.5	125 45 14.1 20 796 400 1250 0 12.9 1000 90 2.6 ⁶) 67.5	160 45 18.1 25 1021 400 1600	160 50 18.3 25 1021 400 1600	180 50 18.3 25 1146 400 1600
-	e Δp Fax±====================================	a $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a mm 12 12 16 16 T _{max} Nm 24.7 24.7 66 66 Ap_{perm} bar 315 315 400 400 Ap_{perm} bar 180 180 320 320 Ap_{perm} Nm 0 0 0 0 0 Ap_{perm} Nr 1.5 1.5 3.0 3.0 The second of	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a mm 12 12 16 16 16 16 16 T _{max} Nm 24.7 24.7 66 66 76 76 102 Δρ ρεrm bar 315 315 400 400 400 400 400 +F _{ax max} N 180 180 320 320 320 320 320 -F _{ax max} N 0 0 0 0 0 0 0 0 ar operating pressure ±F _{ax perm/bar} N/bar 1.5 1.5 3.0 3.0 3.0 3.0 3.0 NG 28 28 32 45 56 56 ⁴⁾ 56 Ø mm 25 30 30 30 30 30 30 35 F _{q max} kN 5.7 5.4 5.4 7.6 9.5 7.8 9.1 a mm 16 16 16 18 18 18 18 T _{max} Nm 179 179 204 290 357 294 357 Ap ρerm bar 400 400 400 400 400 330 400 +F _{ax max} N 500 500 500 630 800 800 800	a mm 12 12 16 16 16 16 16 16 16 a T _{max} Nm 24.7 24.7 66 66 76 76 102 146 a Δρ perm bar 315 315 400

- 1) With intermittent operation
- 2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition
- 3) Conical shaft with threaded pin and woodruff key (DIN 6888)
- 4) Restricted technical data only for splined shaft
- 5) Please contact us.

6) When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.

Note


Influence of the direction of the permissible axial force:

- $+F_{ax max}$ = Increase in service life of bearings
- $-F_{ax max}$ = Reduction in service life of bearings (avoid)

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

	Toothed gear drive	V-belt output
NG	Форт	φopt
5 to 180	± 70°	± 45°
200 to 1000	± 45°	± 70°

Determining the operating characteristics

Input flow
$$q_v = \frac{V_g \cdot n}{1000 \cdot \eta_v}$$
 [L/min]

Speed
$$n = \frac{q_V \cdot 1000 \cdot \eta_V}{V_g}$$
 [min⁻¹]

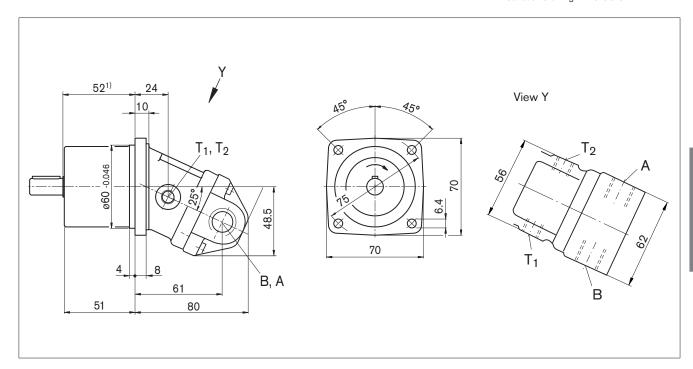
Torque
$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}$$
 [Nm]

Power
$$P = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600} [kW]$$

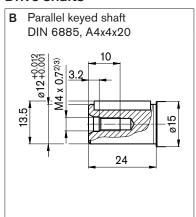
V_g = Displacement per revolution in cm³

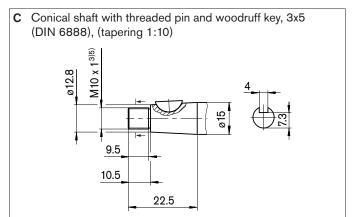
p = Differential pressure in bar

Speed in rpm


η_ν = Volumetric efficiency

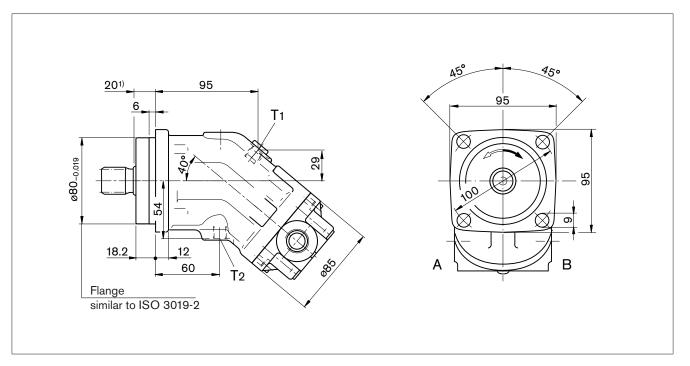
η_{mh} = Mechanical-hydraulic efficiency


 η_t = Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)


Dimensions size 5

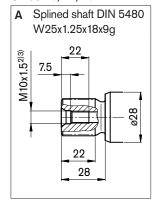
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

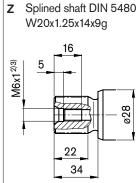

Ports

Designation	Port for	Standard ⁶⁾	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line	DIN 3852	M18 x 1.5; 12 deep	350	Ο
T ₁	Drain line	DIN 3852	M10 x 1; 8 deep	3	0
T ₂	Drain line	DIN 3852	M10 x 1; 8 deep	3	0

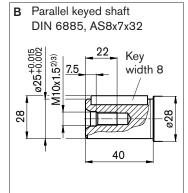
- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Thread according to DIN 3852, maximum tightening torque: 30 Nm
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)

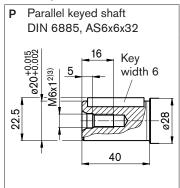

Dimensions sizes 10, 12, 16

Before finalizing your design, request a binding installation drawing. Dimensions in mm.



Drive shafts


Sizes 10, 12, 16

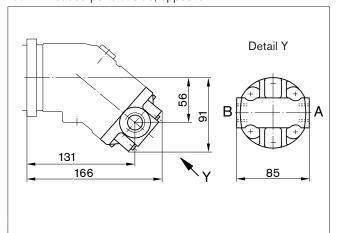

Sizes 10, 12

Sizes 10, 12, 16

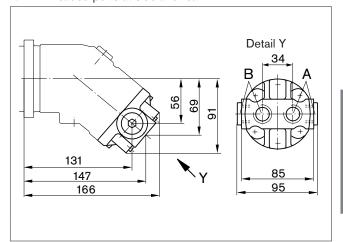
Sizes 10, 12

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M12 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M12 x 1.5; 12 deep	3	O ⁵⁾


- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Dimensions sizes 10, 12, 16


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

03 - Threaded ports at side, opposite

04 - Threaded ports at side and rear

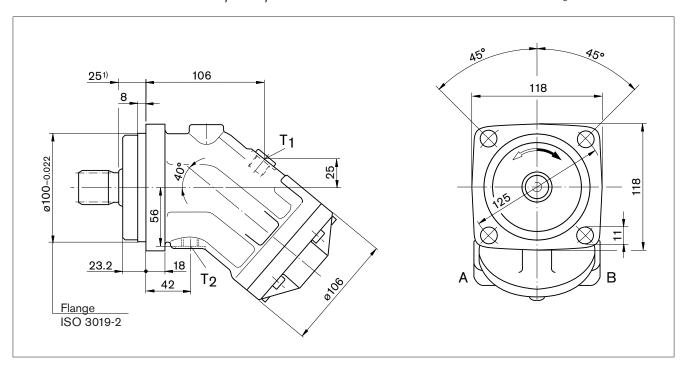
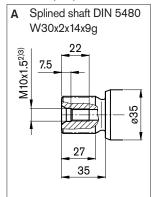
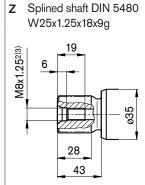


Plate	Designation	Port for	Standard ³⁾	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
03	A, B	Service line	DIN 3852	M22 x 1.5; 14 deep	450	Ο
04		Service line	DIN 3852	M22 x 1.5; 14 deep	450	1x O each

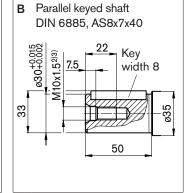
- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) The spot face can be deeper than specified in the appropriate standard.
- 4) O = Must be connected (plugged on delivery)

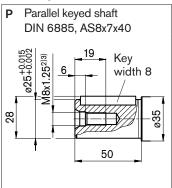

Dimensions sizes 23, 28, 32

Before finalizing your design, request a binding installation drawing. Dimensions in mm.



Drive shafts

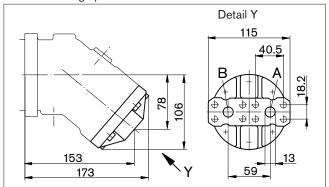

Sizes 23, 28, 32


Sizes 23, 28

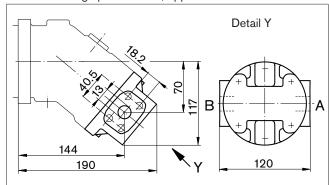
Sizes 23, 28, 32

Sizes 23, 28

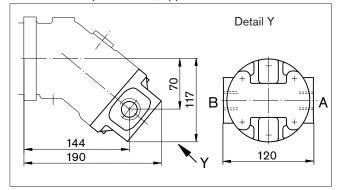
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M16 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M16 x 1.5; 12 deep	3	O ⁵⁾

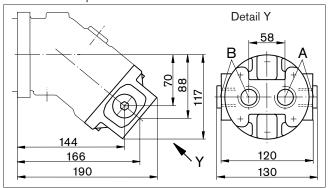

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

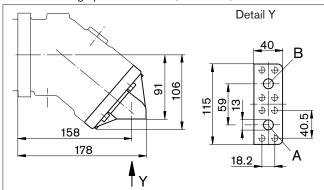
Dimensions sizes 23, 28, 32


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

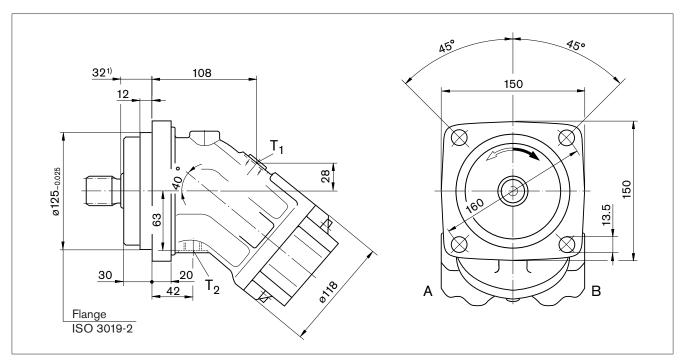

01 - SAE flange ports at rear


02 - SAE flange ports at side, opposite

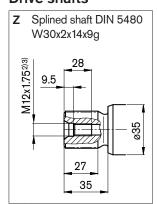

03 - Threaded ports at side, opposite

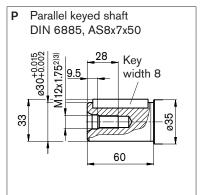
04 - Threaded ports at side and rear

10 - SAE flange ports at bottom (same side)⁴⁾


Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
01, 02, 10	A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1/2 in M8 x 1.25; 15 deep	450	O
03		Service line	DIN 3852 ⁵⁾	M27 x 2; 16 deep	450	0
04		Service line	DIN 3852 ⁵⁾	M27 x 2; 16 deep	450	1x O each

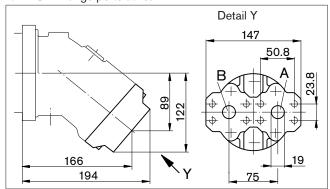
- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard
- 4) Only sizes 28 and 32
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)


Note

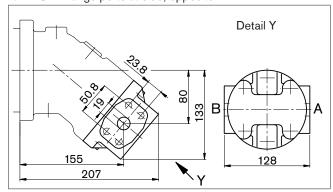

Port plates 18 and 19: see pages 37 and 40

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

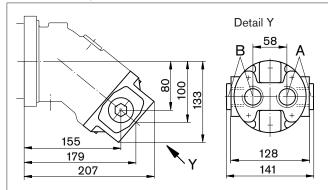
Drive shafts

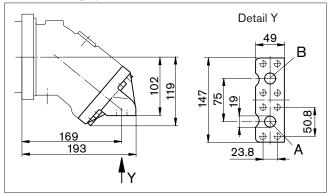

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁵⁾

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

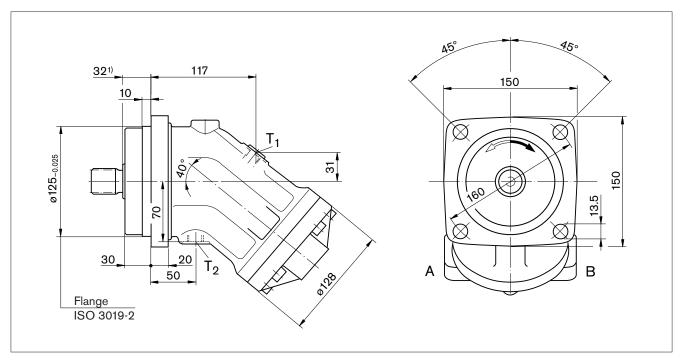

01 - SAE flange ports at rear


02 - SAE flange ports at side, opposite

04 - Threaded ports at side and rear

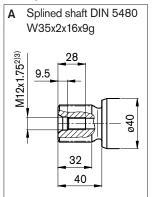
10 - SAE flange ports at bottom (same side)

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁵⁾
01, 02, 10	А, В	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	450	0
04		Service line	DIN 3852 ⁴⁾	M33 x 2; 18 deep	450	1x O each

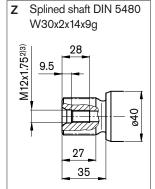

- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- $\,$ The spot face can be deeper than specified in the appropriate standard.
- 5) O = Must be connected (plugged on delivery)

Note

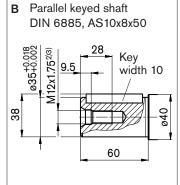
Port plates 18 and 19: see pages 37 and 40

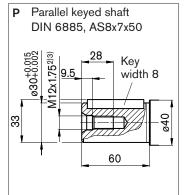

Dimensions sizes 56, 63

Before finalizing your design, request a binding installation drawing. Dimensions in mm.



Drive shafts


NG56, 63

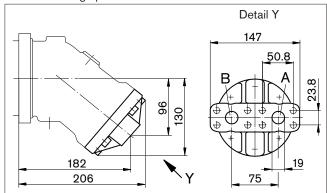

NG56

NG56, 63

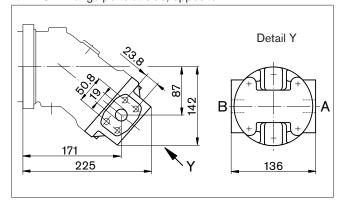
NG56

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁵⁾

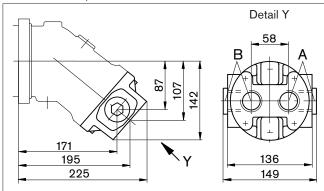
- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

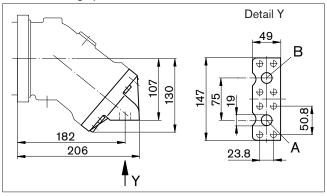

19/46

Dimensions sizes 56, 63


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

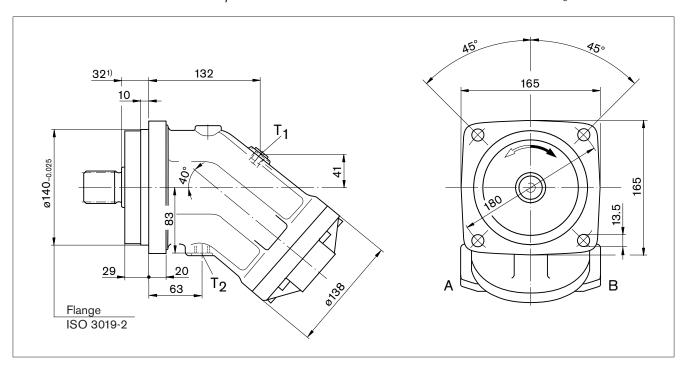

01 - SAE flange ports at rear


02 - SAE flange ports at side, opposite

04 - Threaded ports at side and rear

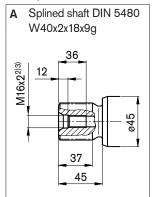
10 - SAE flange ports at bottom (same side)

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁵⁾
01, 02, 10	А, В	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	450	0
04		Service line	DIN 3852 ⁴⁾	M33 x 2; 18 deep	450	1x O each

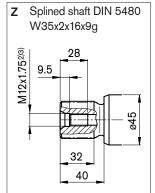

- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) The spot face can be deeper than specified in the appropriate standard.
- 5) O = Must be connected (plugged on delivery)

Note

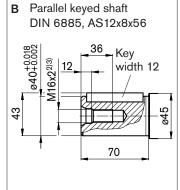
Port plates 18 and 19: see pages 37 and 40

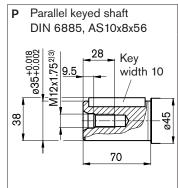

Dimensions sizes 80, 90

Before finalizing your design, request a binding installation drawing. Dimensions in mm.



Drive shafts

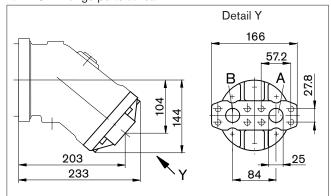

NG80, 90



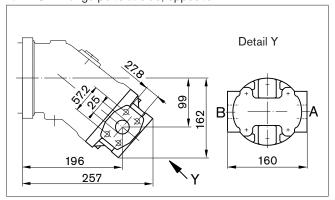
NG80, 90

NG80

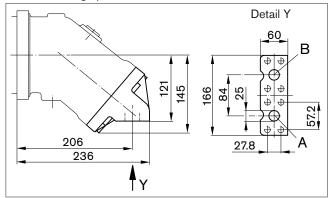
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁵⁾


- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Dimensions sizes 80, 90


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

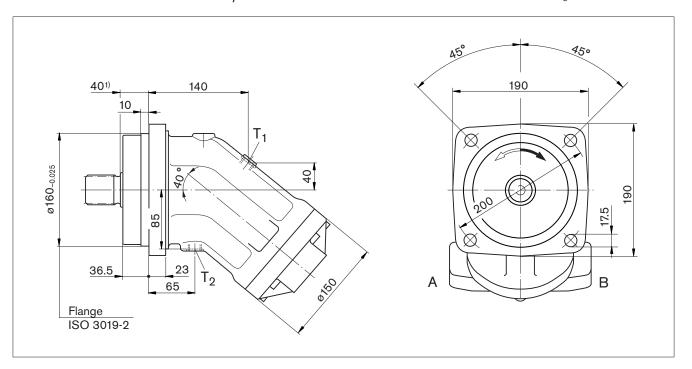
Location of the service line ports on the port plates


01 - SAE flange ports at rear

02 - SAE flange ports at side, opposite

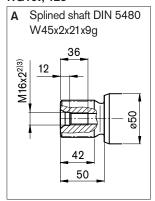
10 - SAE flange ports at bottom (same side)

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01, 02, 10	А, В	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 in M12 x 1.75; 17 deep	450	0

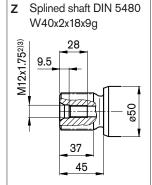

- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- $_{
 m 3)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)

Note

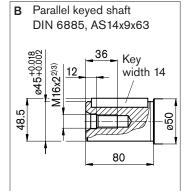
Port plates 18 and 19: see pages 37 and 40

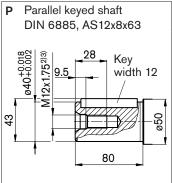

Dimensions sizes 107, 125

Before finalizing your design, request a binding installation drawing. Dimensions in mm.



Drive shafts

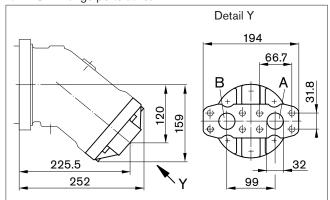

NG107, 125



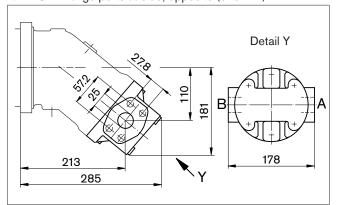
NG107, 125

NG107

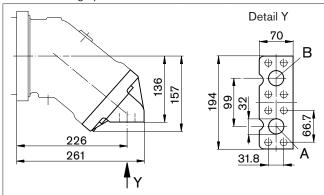
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁵⁾

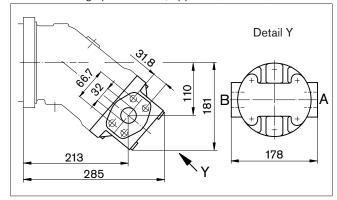

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Dimensions sizes 107, 125


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

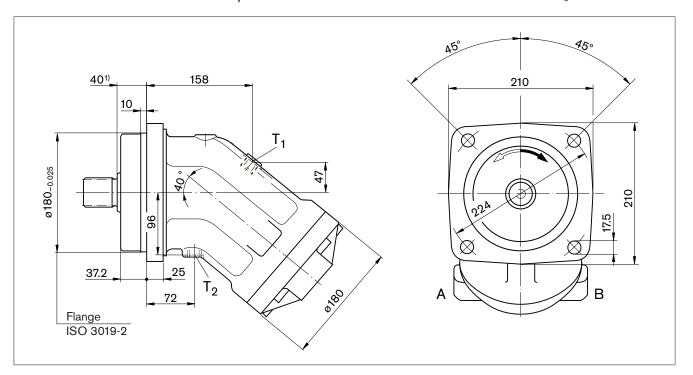

01 - SAE flange ports at rear


02 - SAE flange ports at side, opposite (size 107)

10 - SAE flange ports at bottom (same side)

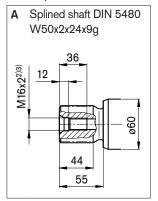
02 - SAE flange ports at side, opposite (size 125)

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01, 10	А, В	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0
02 (size 107)		Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 in M12 x 1.75; 17 deep	450	0
02 (size 125)		Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0

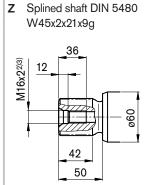

- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)

Note

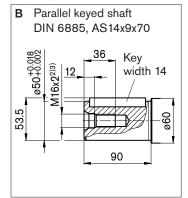
Port plates 17, 18 and 19: see pages 37 and 40

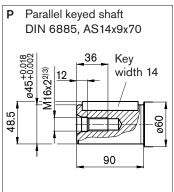

Dimensions sizes 160, 180

Before finalizing your design, request a binding installation drawing. Dimensions in mm.



Drive shafts

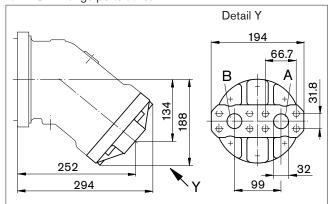

NG160, 180



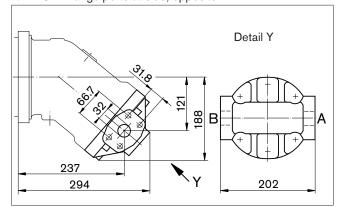
NG160, 180

NG160

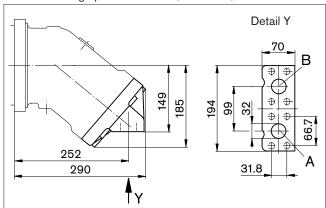
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	O ⁵⁾


- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Dimensions sizes 160, 180


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

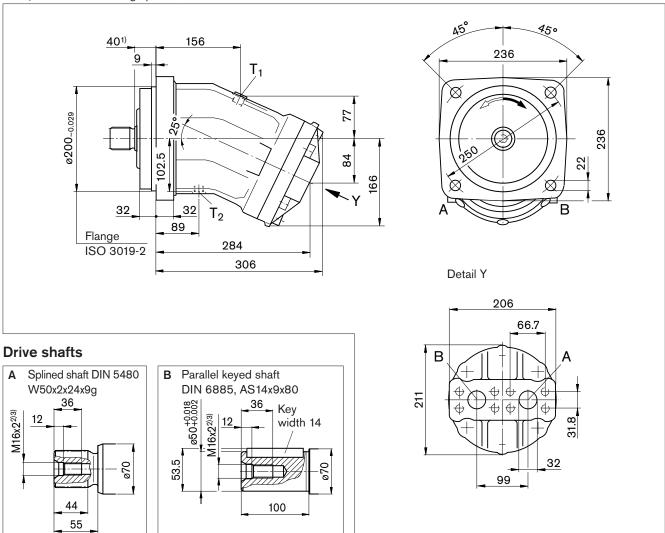
Location of the service line ports on the port plates


01 - SAE flange ports at rear

02 - SAE flange ports at side, opposite

10 - SAE flange ports at bottom (same side)

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01, 02, 10	A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0

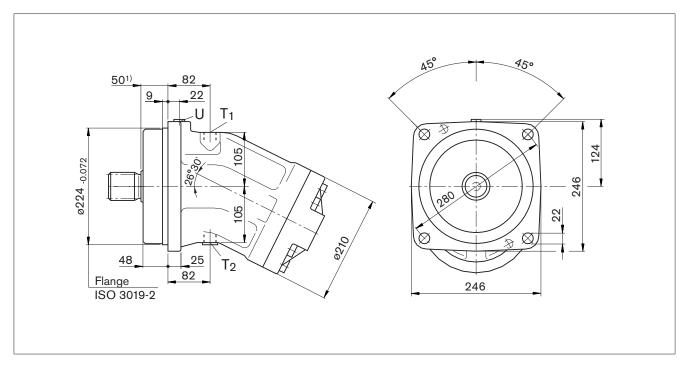

- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)

Note

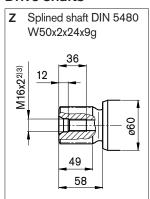
Port plates 18 and 19: see pages 37 and 40

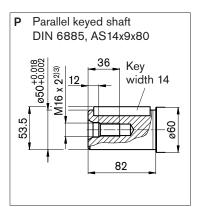
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear



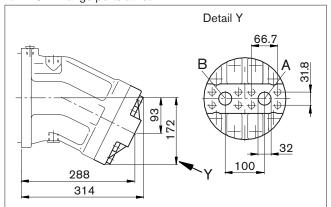
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J5185 ⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0
T ₁	Drain line	DIN 3852 ⁷⁾	M22 x 1.5; 14 deep	3	X ⁶⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M22 x 1.5; 14 deep	3	O ⁶⁾


- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

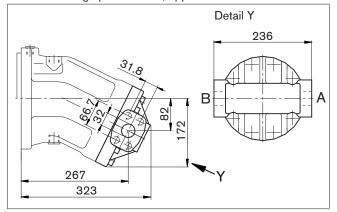

Notes

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts


Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			400	
T ₁	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	O ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	X ⁵⁾
U	Bearing flushing	DIN 3852 ⁶⁾	M14 x 1.5; 12 deep	3	Χ

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- $_{5)}$ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- $_{7)}$ O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

01 - SAE flange ports at rear

02 - SAE flange ports at side, opposite

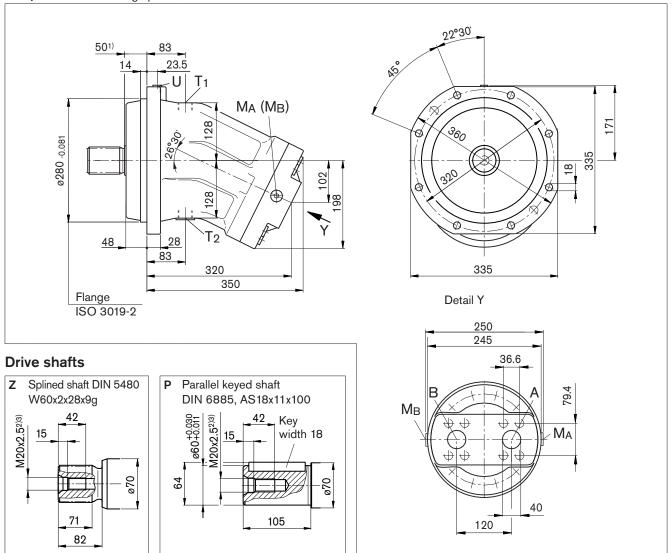
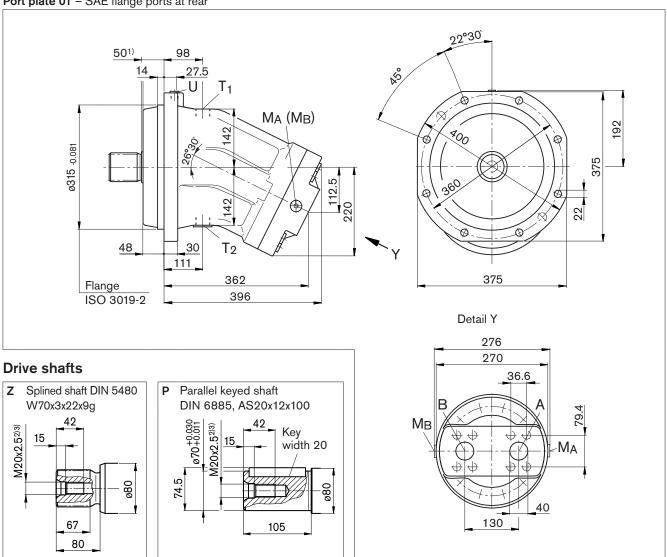


Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01, 02	A, B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	400	0

- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear

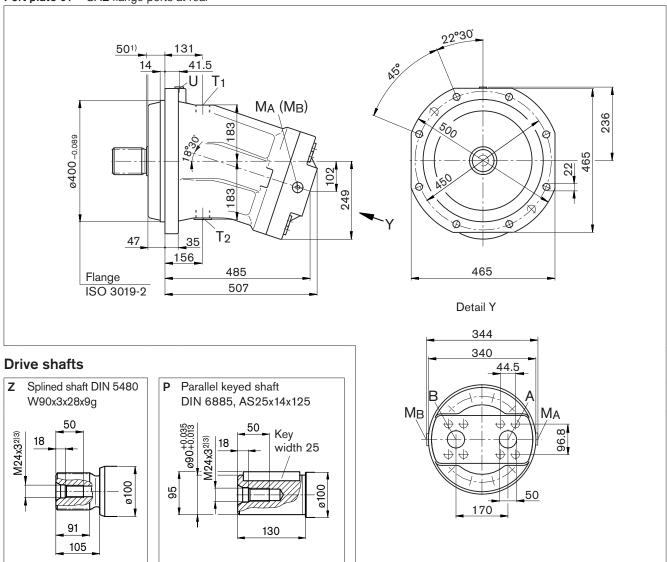


Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴)	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J5185 ⁾ DIN 13	1 1/2 in M16 x 2; 21 deep	400	0
T ₁	Drain line	DIN 3852 ⁷⁾	M33 x 2; 18 deep	3	O ⁶⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M33 x 2; 18 deep	3	X ⁶⁾
U	Bearing flushing	DIN 3852 ⁷⁾	M14 x 1.5; 12 deep	3	Χ
M _A , M _B	Measuring operating pressure	DIN 3852 ⁷⁾	M14 x 1.5; 12 deep	400	Χ

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear

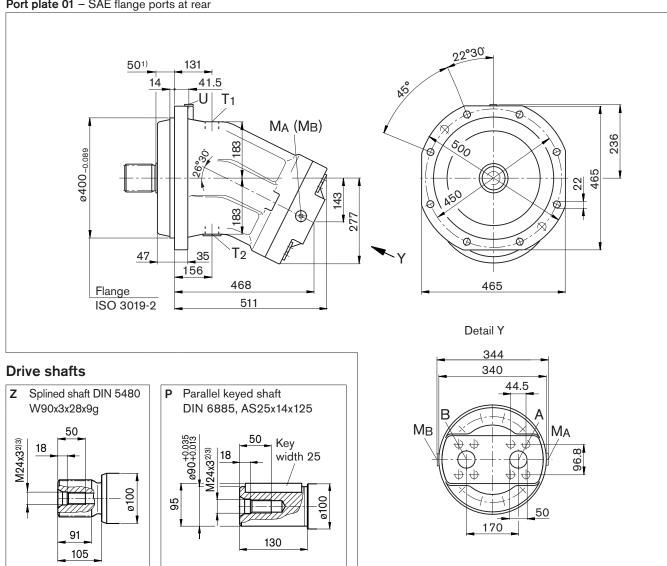


Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J5185 ⁾ DIN 13	1 1/2 in M16 x 2; 21 deep	400	0
T ₁	Drain line	DIN 3852 ⁷⁾	M33 x 2; 18 deep	3	O ⁶⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M33 x 2; 18 deep	3	X ⁶⁾
U	Bearing flushing	DIN 3852 ⁷⁾	M18 x 1.5; 12 deep	3	Χ
M _A , M _B	Measuring operating pressure	DIN 3852 ⁷⁾	M14 x 1.5; 12 deep	400	Χ

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear



B	D. LC.	Clarate at	C: -3)		C1 - 1 - 8)
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line	SAE J518 ⁵⁾	2 in	400	0
	Fastening thread A/B	DIN 13	M20 x 2.5; 30 deep		
T ₁	Drain line	DIN 3852 ⁷⁾	M42 x 2; 20 deep	3	O ⁶⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M42 x 2; 20 deep	3	X ⁶⁾
U	Bearing flushing	DIN 3852 ⁷⁾	M18 x 1.5; 12 deep	3	Χ
M_A,M_B	Measuring operating pressure	DIN 3852 ⁷⁾	M14 x 1.5; 12 deep	400	Χ

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J518 ⁵⁾ DIN 13	2 in M20 x 2.5; 30 deep	400	0
T ₁	Drain line	DIN 3852 ⁷⁾	M42 x 2; 20 deep	3	O ⁶⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M42 x 2; 20 deep	3	X ⁶⁾
U	Bearing flushing	DIN 3852 ⁷⁾	M18 x 1.5; 12 deep	3	Χ
M _A , M _B	Measuring operating pressure	DIN 3852 ⁷⁾	M14 x 1.5; 12 deep	400	Χ

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Flushing and boost pressure valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

With port plate 027, the valve is mounted directly on the fixed motor (sizes 45 to 180, 250); with port plate 017 (sizes 355 and 500) on a plate.

Cracking pressure of pressure retaining valve

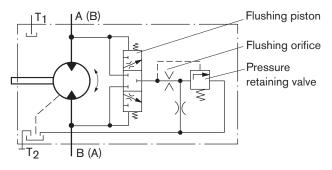
(observe when setting the primary valve)

Sizes 45 to 500, fixed setting 16 bar

Switching pressure of flushing piston ∆p

Sizes 45 to 500 ______ 8±1 bar

Flushing flow q_v


Orifice (throttles with integrated valve) can be used to set the flushing flows as required.

Following parameters are based on:

 $\Delta p_{ND} = p_{ND} - p_G = 25$ bar and v = 10 mm²/s

 $(p_{ND} = low pressure, p_G = case pressure)$

Schematic

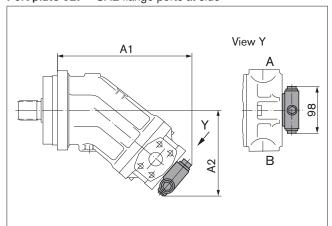
Standard flushing flows

Flushing and boost pressure valve, mounted (code 7)

Size	Flushing flow q _v [L/min]	ø [mm]	Mat. No. of orifice
45	3.5	1.2	R909651766
107, 125	8	1.8	R909419696
160, 180	10	2.0	R909419697
250	10	2.0	R909419697
355, 500	16	2.5	R910803019

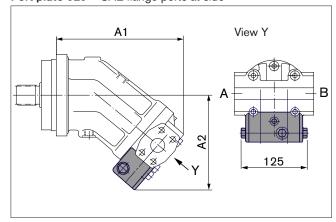
With sizes 45 to 180, orifices can be supplied for flushing flows from 3.5 to 10 L/min. For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 12 to 14 L at low pressure $\Delta p_{ND} = 25$ bar.

Flushing and boost pressure valve, integrated (code 9)

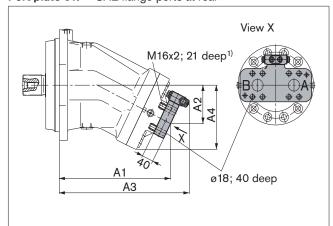

Size	Throttle ø [mm]	q _v [L/min]
56, 63,	1.5	6
80, 90	1.8	7.3

Flushing and boost pressure valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dimensions

Port plate 027 - SAE flange ports at side


Size	A1	A2
45	223	151
107, 125	294	192
160, 180	315	201
250	344	172

Port plate 029 - SAE flange ports at side

Size	A1	A2
56, 63	225	176
80, 90	257	186.7

Port plate 017 - SAE flange ports at rear

Size	A1	A2	А3	A4
355	356	120	421	198
500	397	130	464	220

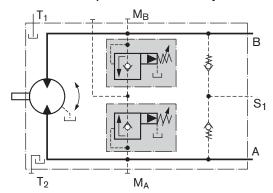
1) DIN 13, observe the general instructions on page 46 for the maximum tightening torques

Pressure-relief valve

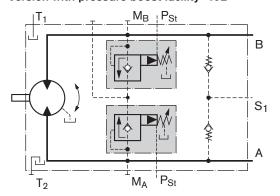
The MHDB pressure-relief valves (see RE 64642) protect the hydraulic motor from overload. As soon as the set cracking pressure is reached, the hydraulic fluid flows from the high-pressure side to the low-pressure side.

The pressure-relief valves are only available in combination with port plates 181, 191 or 192 (counterbalance valve for mounting to port plate 181: see next page).

Cracking pressure setting range ______ 50 to 420 bar

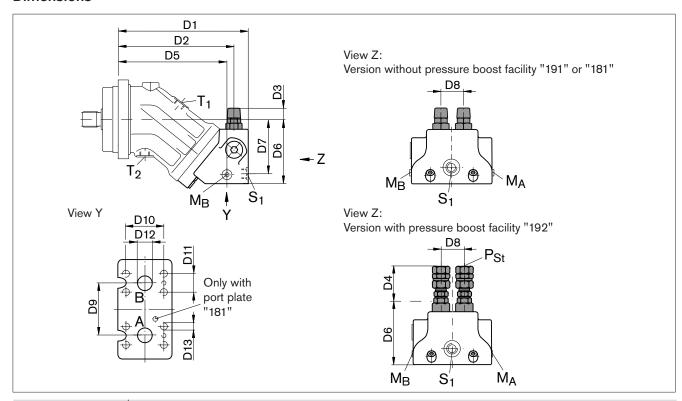

With the version "with pressure boost facility" (192), a higher pressure setting can be realized by applying an external pilot pressure of 25 to 30 bar to port P_{St} .

When ordering, please state in plain text:


- Cracking pressure of pressure-relief valve
- Cracking pressure with pilot pressure applied to P_{St} (only with version 192)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Version without pressure boost facility "191"


Version with pressure boost facility "192"

Pressure-relief valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

Size		D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13 ²⁾
28, 32	MHDB. 16	209	186	25	68	174	102	87	36	66	50.8	23.8	ø19	M10; 17 deep
45	MHDB. 16	222	198	22	65	187	113	98	36	66	50.8	23.8	ø19	M10; 17 deep
56, 63	MHDB. 22	250	222	19	61	208	124	105	42	75	50.8	23.8	ø19	M10; 13 deep
80, 90	MHDB. 22	271	243	17.5	59	229	134	114	42	75	57.2	27.8	ø25	M12; 18 deep
107, 125	MHDB. 32	298	266	10	52	250	149.5	130	53	84	66.7	31.8	ø32	M14; 19 deep
160, 180	MHDB.32	332	301	5	47	285	170	149	53	84	66.7	31.8	ø32	M14; 19 deep

Size	A, B	S ₁ ¹⁾	M _A , M _B ¹⁾	P _{St} ¹⁾
28, 32	3/4 in	M22 x 1.5; 14 deep	M20 x 1.5; 14 deep	G 1/4
45	3/4 in	M22 x 1.5; 14 deep	M20 x 1.5; 14 deep	G 1/4
56, 63	3/4 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
80, 90	1 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
107, 125	1 1/4 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
160, 180	1 1/4 in	M26 x 1.5; 16 deep	M30 x 1.5; 16 deep	G 1/4

Assembly instructions for port plate with pressure boost facility "192":

The lock nut must be counterheld when installing the hydraulic line at the pst port!

Designation	Port for	Standard	Size	Maximum pressure [bar] ²⁾	State ³⁾
A, B	Service line	SAE J518	See above	450	0
S ₁	Supply (only with port plate 191/192)	DIN 3852	See above	5	0
M _A , M _B	Measuring operating pressure	DIN 3852	See above	450	Χ
P _{St}	Pilot pressure (only with port plate 192)	DIN ISO 228	See above	30	0

- 1) Observe the general instructions on page 46 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

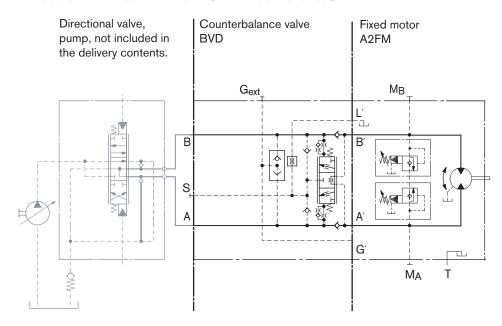
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note

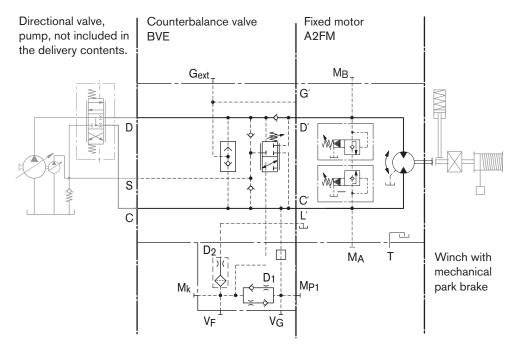

- BVD available for sizes 28 to 180 and BVE available for sizes 107 to 180.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A2FM90/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525!
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive on wheeled excavators A2FM090/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Winch counterbalance valve BVD...W and BVE

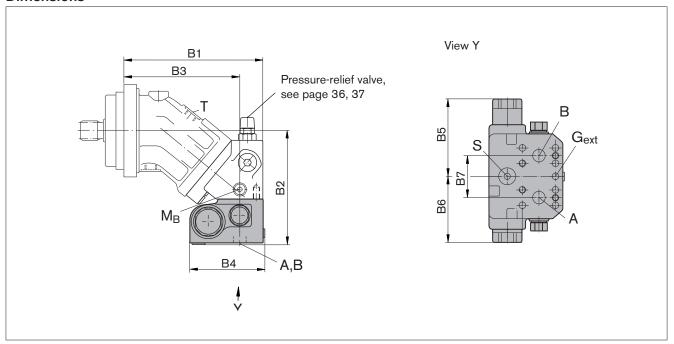
Application options

- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes A2FM090/61W-VAB188 + BVE25W385/51ND-V100K00D4599T30S00-0

Permissible input flow or pressure in operation with DBV and BVD/BVE

	Without val	ve	Restricted v	Restricted values in operation with DBV an				BVD/BVE			
Motor			DBV				BVD/BVE				
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	
28	400/450	176	16	350/420	100	181	20	350/420	100	188	
32		201				191, 192	(BVD)				
45		255									
56		280	22		240				220		
63		315									
80		360									
90		405									
107		427				171				178	
125		500				191, 192					
107		427	32		400	181	25		320	188	
125		500				191, 192	(BVD/BVE)				
160		577									
180		648									


DBV ______ pressure-relief valve

BVD _____counterbalance valve, double-acting

BVE _____counterbalance valve, one-sided

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A2FM	Counterbalar	nce valve								
Size	Туре	Ports	Dimen	sions						
		A, B	B1	B2	В3	B4 (S)	B4 (L)	B5	В6	B7
28, 32	BVD 20 16	3/4 in	209	175	174	142	147	139	98	66
45	BVD 20 16	3/4 in	222	196	187	142	147	139	98	66
56, 63	BVD 20 17	3/4 in	250	197	208	142	147	139	98	75
80, 90	BVD 20 27	1 in	271	207	229	142	147	139	98	75
107, 125	BVD 20 28	1 in	298	238	251	142	147	139	98	84
107, 125	BVD 25 38	1 ¹ / ₄ in	298	239	251	158	163	175	120.5	84
160, 180	BVD 25 38	1 ¹ / ₄ in	332	260	285	158	163	175	120.5	84
107, 125	BVE 25 38	1 ¹ / ₄ in	298	240	251	167	172	214	137	84
160, 180	BVE 25 38	1 ¹ / ₄ in	332	260	285	167	172	214	137	84
250					On requ	est				

Designation	Port for	Version	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
A, B	Service line		SAE J518	see table above	420	0
S	Infeed	BVD20	DIN 3852 ³⁾	M22 x 1.5; 14 deep	30	Χ
		BVD25, BVE25	DIN 3852 ³⁾	M27 x 2; 16 deep	30	Χ
Br	Brake release, reduced high pressure	L	DIN 3852 ³⁾	M12 x 1.5; 12.5 deep	30	0
G _{ext}	Brake release, high pressure	S	DIN 3852 ³⁾	M12 x 1.5; 12.5 deep	420	Х
M _A , M _B	Measuring pressure A and B		ISO 6149 ³⁾	M12 x 1.5; 12 deep	420	X

 $_{\mbox{\scriptsize 1)}}$ Observe the general instructions on page 46 for the maximum tightening torques.

²⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

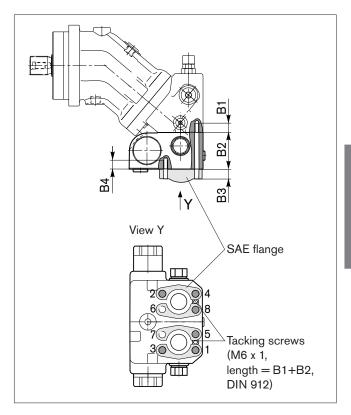
³⁾ The spot face can be deeper than specified in the appropriate standard.

⁴⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8) _____ length B1+B2+B3 2 screws (6, 7) ____ length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10	10.9	75
M12	10.9	130
M14	10.9	205

Size	28, 32, 45	56, 63	80, 90	107, 125, 160, 180	107, 125
Port plate	18				17
B1 ¹⁾	M10 x 1.5; 17 deep	M10 x 1.5; 17 deep	M12 x 1.75; 18 deep	M14 x 2; 19 deep	M12 x 1.75; 17 deep
B2	78 ²⁾	68	68	85	68
B3	customer-specific				
B4	M10 x 1.5; 15 deep	M10 x 1.5; 15 deep	M12 x 1.75; 16 deep	M14 x 2; 19 deep	M12 x 1.75; 17 deep

- 1) Minimum required thread reach 1 x ø-thread
- 2) Including sandwich plate

Speed sensors

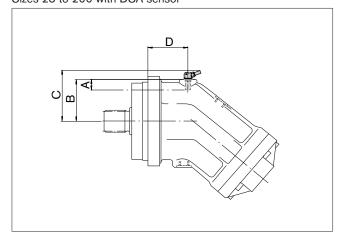
The versions A2FM...U and A2FM...F ("prepared for speed sensor", i.e. without sensor) is equipped with a toothed ring on the rotary group.

On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.

With the DSA or HDD speed sensor mounted a signal proportional to motor speed can be generated.

The sensors measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet.

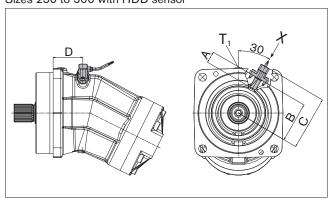

DSA _____ RE 95133
HDD ____ RE 35135
The sensor is mounted at the specially provided port D as fol-

lows:

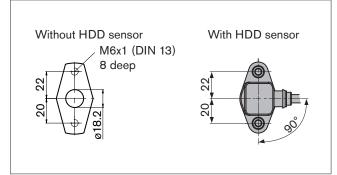
DSA ______with one mounting bolt
HDD _____with two mounting bolts

We recommend ordering the A2FM fixed motor complete with sensor mounted.

Version "V" Sizes 23 to 200 with DSA sensor



Version "V" Sizes 250 to 500 with DSA sensor


On request

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Version "H" Sizes 250 to 500 with HDD sensor

View X

Speed sensors

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Size			23, 28, 32	45	56, 63	80, 90	107, 125
Numbe	r of te	eeth	38	45	47	53	59
DSA	Α	Insertion depth (tolerance ± 0.1)	18.4	18.4	18.4	18.4	18.4
	В	Contact surface	57.9	64.9	69.9	74.9	79.9
	С		74.5	81.5	86.5	91.5	96.5
	D		54.7	54.3	61.5	72.5	76.8
Size	Size			200	250	355	500
Numbe	r of te	eeth	67	80	78	90	99
HDD	Α	Insertion depth (tolerance \pm 0.1)	_	_	32	32	32
	В	Contact surface	_	_	110.5	122.5	132.5
	С		_	_	149	161	171
	D		_	-	82	93	113
DSA	Α	Insertion depth (tolerance \pm 0.1)	18.4	18.4	32	32	32
	В	Contact surface	87.4	100.9	-	_	-
	С		104	117.5	-	_	-
	D		86.8	97.5			

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 8. Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

Note

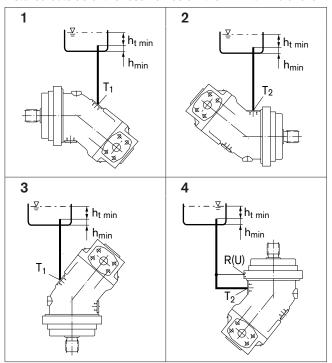
With sizes 10 to 200 with installation position "shaft upward", an air-bleed port R is required (state in plain text when ordering - special version). With sizes 250 to 1000, port U is provided as standard in the area near the bearings for air bleeding.

Installation position	Air bleed	Filling
1	_	T ₁
2	_	T_2
3	_	T ₁
4	R (U)	T ₂
5	L ₁	T ₁ (L ₁)
6	L ₁	T ₂ (L ₁)
7	L ₁	T ₁ (L ₁)
8	R (U)	T ₂ (L ₁)

L₁ Filling / air bleed

R Air bleed port (special version)U Bearing flushing / air bleed port

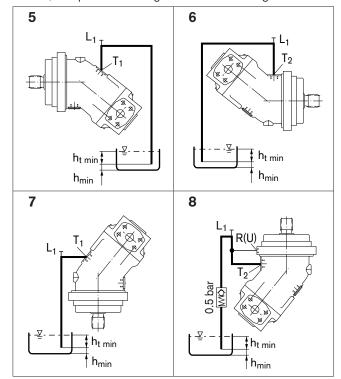
T₁, T₂ Drain port


h_{t min} Minimum required immersion depth (200 mm)

 \mathbf{h}_{\min} Minimum required spacing to reservoir bot-

tom (100 mm)

Below-reservoir installation (standard)


Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Recommendation for installation position 8 (drive shaft upward): A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the motor housing.

General instructions

- The motor A2FM is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:
 Observe the manufacturer's instructions regarding tightening torques of the fittings used.
 - Mounting bolts:
 For mounting bolts with metric ISO thread according to DIN 13 or with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.
 - Female threads in the axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.
 - Threaded plugs:
 For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports		Maximum permissible tight- ening torque of the	Required tightening torque of the	WAF hexagon socket of the
Standard	Size of thread	female threads M _{G max}	threaded plugs M _V ¹⁾	threaded plugs
DIN 38521)	M10 x 1	30 Nm	15 Nm ²⁾	5 mm
	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm
	M14 x 1.5	80 Nm	35 Nm	6 mm
	M16 x 1.5	100 Nm	50 Nm	8 mm
	M18 x 1.5	140 Nm	60 Nm	8 mm
	M20 x 1.5	170 Nm	80 Nm	10 mm
	M22 x 1.5	210 Nm	80 Nm	10 mm
	M26 x 1.5	230 Nm	120 Nm	12 mm
	M27 x 2	330 Nm	135 Nm	12 mm
	M30 x 2	420 Nm	215 Nm	17 mm
	M33 x 2	540 Nm	225 Nm	17 mm
	M42 x 2	720 Nm	360 Nm	22 mm
DIN ISO 228	G 1/4	40 Nm	=	-

The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.

2) In the "lightly oiled" state, the M_V is reduced to 10 Nm for M10 x 1 and 17 Nm for M12 x 1.5.

Bosch Rexroth AG Mobile Applications Glockeraustrasse 4 89275 Elchingen, Germany Tel.: +49-7308-82-0 Fax: +49-7308-72-74

info.brm@boschrexroth.de www.boschrexroth.com/axial-piston-motors

An den Kelterwiesen 14 72160 Horb, Germany Tel.: +49-7451-92-0 Fax: +49-7451-82-21 © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Fixed Plug-In Motor A2FE

RE 91008/06.2012

1/24

Replaces: 09.07

Data sheet

Series 6

Size Nominal pressure/Maximum pressure

28 to 180 400/450 bar 250 to 355 350/400 bar Open and closed circuits

Contents

Ordering code for standard program	2
Technical data	4
Dimensions sizes 28 to 180	10
Dimensions size 250	12
Dimensions size 355	13
Flushing and boost pressure valve	14
Pressure-relief valve	16
Counterbalance valve BVD and BVE	18
Speed sensors	22
Installation instructions	23
General instructions	24

Features

- Fixed plug-in motor with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in open and closed circuits
- Far-reaching integration in mechanical gearbox due to recessed mounting flange located in the center of the case (extremely space-saving construction)
- The output speed is dependent on the flow of the pump and the displacement of the motor
- The output torque increases with the pressure differential between the high-pressure and the low-pressure side.
- Small dimensions
- High total efficiency
- Complete unit, ready-assembled and tested
- Easy to install, simply plug into the mechanical gearbox
- No configuration specifications to be observed when installing

Ordering code for standard program

	A2F		Е		/	6		W	-	V						
01	02	03	04	05		06	07	08		09	10	11	12	13	14	15

Hydraulic fluid

	Mineral oil and HFD. HFD for sizes 250 and 355 only in combination with long-life bearings "L" (without code)									
01	HFB, HFC hydraulic fluid Sizes 28 to 180 (without code)									
		Sizes 250 to 355 (only in combination with long-life bearings "L")	E-							

Axial piston unit

02 Bent-axis design, fixed A2F

	Drive shaft bearing	28 to 180	250 to 355	
03	Standard bearing (without code)	•	•	
	Long-life bearing	-	•	L

Operating mode

04 Motor, plug-in version

Sizes (NG)

0.5	Geometric displacement	ent, see	table c	of values	on pag	ge 7									
05		28	32	45	56	63	80	90	107	125	160	180	250	355	Ì

Series

	6	- 1	
06	16		

Index

07	NG28 to 180	1	
07	NG250 and 355	0	

Direction of rotation

08 Viewed on drive shaft, bidirectional

Seals

09 FKM (fluor-caoutchou	uc)									V	l
D: 1.0		 4-	 	 	407	405	400	400	 055		

	Drive shafts	28	32	45	56	63	80	90	107	125	160	180	250	355	
10	Splined shaft	•	•	-	•	•	•	•	•	•	•	•	-	-	Α
10	DIN 5480	•	-	•	•	-	•	-	•	-	•	-	•	•	Z

 Mounting flanges
 28 to 180
 250 and 355

 11
 ISO 3019-2
 2-hole
 L

 4-hole
 M

● = Available

O = On request

- = Not available

= Preferred program

Ordering code for standard program

	A2F		Ε		/	6		W	_	٧						
01	02	03	04	05		06	07	08		09	10	11	12	13	14	15

	Port plates ¹⁾				28	32	45	56	63	80	90	107	125	160	180	250	355	
	SAE flange ports O1 0 A and B at rear 7		-	_	_	-	-	-	_	-	-	_	_	•	0	010		
				7	-	-	_	-	-	-	-	-	-	_	-	-	О	017
	SAE flange ports		02	0	-	-	_	-	-	-	_	-	-	_	-	•	О	020
	A and B at side, opposite			7	-	-	•	A	A	A	A	•	•	•	•	•	-	027
			Γ	9	-	-	-	•	•	•	•	-	-	_	-	-	-	029
Î	SAE flange ports 10 0		0	•	•	•	•	•	•	•	•	•	•	•	-	•	100	
	A and B at bottom (same side	de)		7	-	-	-	-	-	-	-	-	-	_	-	-	•	107
	Port plate with 1-level pressure-relief	BVD	17	1	-	-	-	_	-	-	-	•	•	-	-	-	-	171 178
	valves for mounting a coun-		18	8	•	•	•	•	•	•	•	•	•	•	•	-	-	181
12	terbalance valve ²⁾	BVE	18		-	-	_	-	-	-	-	•	•	•	•	_4)	-	188
	Port plate with		19	1	•	•	•	•	•	•	•	•	•	•	•	-	-	191
	pressure-relief valves			2	•	•	•	•	•	•	•	•	•	•	•	_	_	192

Valves (see pages 14 to 21) Without valve Pressure-relief valve (without pressure boost facility)	
Valves (see pages 14 to 21)	
Without valve	0
Pressure-relief valve (without pressure boost facility)	1
Pressure-relief valve (with pressure boost facility)	2
Flushing and boost pressure valve, mounted	7
Counterbalance valve BVD/BVE mounted ²⁾³⁾	8
Flushing and boost pressure valve, integrated	9

Speed sensor (see page 22)

28 to 45 56 to 180 250 355⁴⁾

	Without speed sensor (without code)	•	•	•	•	
13	Prepared for HDD speed sensor	_	A	•	-	F
	HDD speed sensor mounted ⁵⁾	-	A	•	-	Н
	Prepared for DSA speed sensor	0	0	0	_	U
	DSA speed sensor mounted ⁵⁾	0	0	0	_	V

Special version (only sizes 28 to 180)

	<u></u>		_
11	Standard version (without code)		
14	Special version for slew drives (standard with port plate 19)	J	1

Standard / special version

		Standard version (without code)	
	15	Standard version with installation variants, e. g. T ports against standard open or closed	-Y
		Special version	-S

1) Fastening thread or threaded ports, metric

O = On request

2) Note the restrictions on page 19.

3) Specify ordering code of counterbalance valve according to data sheet (BVD – RE 95522, BVE – RE 95525) separately.

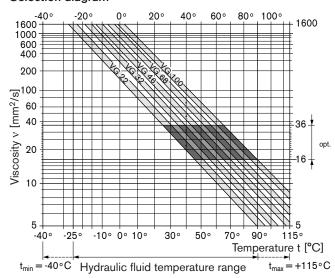
▲ = Not for new projects

- = Not available

4) Please contact us.

● = Available

⁵⁾ Specify ordering code of sensor according to data sheet (DSA – RE 95133, HDD – RE 95135) separately and observe the requirements on the electronics


= Preferred program

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The plug-in motor A2FE is not suitable for operation with HFA hydraulic fluid. If HFB, HFC or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt}), see shaded area of the selection diagram. We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum operating viscosity range (v_{opt.}, shaded area) this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend the use of a flushing and boost pressure valve (see page 14).

Viscosity and temperature of hydraulic fluid

viscosity and temperature of right and india							
	Viscosity [mm ² /s]	Temperature	Comment				
Transport and storage at ambient temperature		$T_{min} \ge -50 \text{ °C}$ $T_{opt} = +5 \text{ °C to } +20 \text{ °C}$	factory preservation: up to 12 months with standard, up to 24 months with long-term				
(Cold) start-up ¹⁾	$v_{\text{max}} = 1600$	$T_{St} \ge -40 ^{\circ}C$	$t \le 3$ min, without load (p ≤ 50 bar), n ≤ 1000 rpm (for sizes 28 to 180) n $\le 0.25 \cdot n_{nom}$ (for sizes 250 and 355)				
Permissible temperature	difference	$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid				
Warm-up phase	$\nu <$ 1600 to 400 $$	$T = -40 ^{\circ}\text{C}$ to -25 $^{\circ}\text{C}$	at $p \leq 0.7$ • $p_{nom}, n \leq 0.5$ • n_{nom} and $t \leq 15$ min				
Operating phase							
Temperature difference		$\Delta T = approx. 12 K$	between hydraulic fluid in the bearing and at port T.				
Maximum temperature		115 °C	in the bearing				
		103 °C	measured at port T				
Continuous operation	v = 400 to 10 $v_{\text{opt}} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data				
Short-term operation ²⁾	$\nu_{min} \geq 7$	T _{max} = +103 °C	measured at port T, t $<$ 3 min, p $<$ 0.3 • p _{nom}				
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 5				

¹⁾ At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

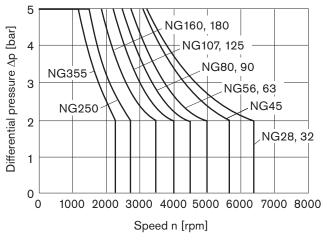
²⁾ Sizes 250 and 355, please contact us.

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


If the above classes cannot be achieved, please contact us.

Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

The values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 $^{\circ}$ C to +115 $^{\circ}$ C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Direction of flow

Direction of rotation, viewed on drive shaft								
clockwise	counter-clockwise							
A to B	B to A							

Speed range

No limit to minimum speed n_{min} . If uniformity of motion is required, speed n_{min} must not be less than 50 rpm. See table of values on page 7 for maximum speed.

Long-life bearing

Sizes 250 and 355

For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible.

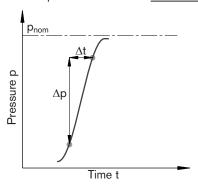
Operating pressure range

(operating with mineral oil)

Pressure at service line port A or B

Sizes 28 to 180

Nominal pressure p _{nom}	400 bar absolute
Maximum pressure p _{max} Single operating period	450 bar absolute
Total operating period	300 h
Summation pressure (pressure A +	pressure B) p _{Su} 700 bar

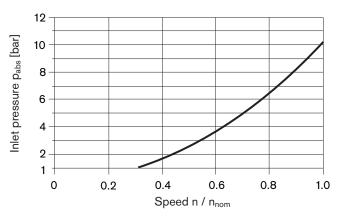

Sizes 250 and 355

Nominal pressure pnom	350 bar absolute
Maximum pressure p _{max} Single operating period Total operating period	_ 400 bar absolute 10 s 300 h
Summation pressure (pressure A + pressur	e B) p _{Su} _ 700 bar

Minimum pressure (high-pressure side) 25 bar absolute

Rate of pressure change $R_{A \; max}$

with integrated pressure-relief valve______ 9000 bar/s without pressure-relief valve______ 16000 bar/s



Note

Values for other hydraulic fluids, please contact us.

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). The minimum pressure depends on the speed of the axial piston unit (see characteristic curve below).

This diagram is valid only for the optimum viscosity range from $v_{\text{opt}} = 36 \text{ to } 16 \text{ mm}^2\text{/s.}$

Please contact us if these conditions cannot be satisfied.

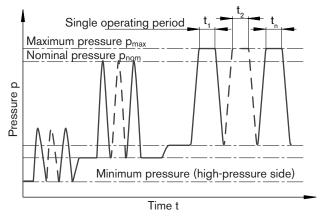
Definition

Nominal pressure p_{nom}

The nominal pressure corresponds to the maximum design pressure.

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Summation pressure p_{Su}

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t$

Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size		NG		28	32	45	56	63	80	
Displacement g per revolution	eometric,	V_{g}	cm ³	28.1	32	45.6	56.1	63	80.4	
Speed maximur	m ¹⁾	n _{nom}	rpm	6300	6300	5600	5000	5000	4500	
		n _{max} ²⁾	rpm	6900	6900	6200	5500	5500	5000	
Input flow ³⁾										
at n _{nom} and	V_g	q _V	L/min	177	202	255	281	315	362	
Torque ⁴⁾										
at V_g and	$\Delta p = 350 \text{ bar}$	T	Nm	157	178	254	313	351	448	
	$\Delta p = 400 \text{ bar}$	Т	Nm	179	204	290	357	401	512	
Rotary stiffness		С	kNm/ rad	2.93	3.12	4.18	5.94	6.25	8.73	
Moment of inertia for rotary group		J_{GR}	kgm ²	0.0012	0.0012	0.0024	0.0042	0.0042	0.0072	
Maximum angular acceleration		α	rad/s ²	6500	6500	14600	7500	7500	6000	
Case volume	Case volume		L	0.20	0.20	0.33	0.45	0.45	0.55	
Mass (approx.)		m	kg	10.5	10.5	15	18	19	23	
Size		NG		90	107	105	160	100	050	255
			om3		107	125	160	180	250	355
	eometric, per revolution	Vg	cm ³	90	106.7	125	160.4	180	250	355
Speed maximur	n' [,]	n _{nom}	rpm	4500	4000	4000	3600	3600	2700	2240
1 (1 0)		n _{max} ²⁾	rpm	5000	4400	4400	4000	4000	_	_
Input flow3)	V			405	400	F00		0.40	0.00	505
at n _{nom} and	V _g	qv	L/min	405	427	500	577	648	675	795
Torque ⁴⁾		-		F.0.4	F0.4	000	000	1000	1000	1000
at V_g and	$\Delta p = 350 \text{ bar}$	T T	Nm	501	594	696	893	1003	1393	1978
$\Delta p = 400 \text{ bar}$										
	Δp = 400 bai	- 1	Nm	573	679	796	1021	1146	_	_
Rotary stiffness	Δρ — 400 bai	С	kNm/ rad	9.14	11.2	11.9	17.4	18.2	73.1	96.1
-	tia for rotary group		kNm/							
-	tia for rotary group	С	kNm/ rad	9.14	11.2	11.9	17.4	18.2	73.1	96.1
Moment of inert	tia for rotary group	c J _{GR}	kNm/ rad kgm²	9.14 0.0072	11.2 0.0116	11.9 0.0116	17.4 0.0220	18.2	73.1 0.061	96.1 0.102

- 1) The values are valid:
 - for the optimum viscosity range from $v_{\text{opt}} = 36 \text{ to } 16 \text{ mm}^2\text{/s}$
 - with hydraulic fluid based on mineral oils
- 2) Intermittent maximum speed: overspeed for unload and overhauling processes, t < 5 s and $\Delta p < 150$ bar
- Restriction of input flow with counterbalance valve, see page 19
- 4) Torque without radial force, with radial force see page 8

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible radial and axial forces of the drive shafts

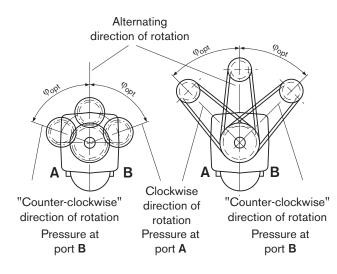
(splined shaft and parallel keyed shaft)

(spilited stiart and para	nor keyed onart,									
Size		NG		28	28	32	45	56	56 ⁴⁾	56
Drive shaft		Ø	mm	25	30	30	30	30	30	35
Maximum radial force ¹⁾	Fq	F _{q max}	kN	5.7	5.4	5.4	7.6	9.5	7.8	9.1
at distance a (from shaft collar)	a	a	mm	16	16	16	18	18	18	18
with permissible torq	ue	T_{max}	Nm	179	179	204	290	357	294	357
	ure ∆p	Δp_{perm}	bar	400	400	400	400	400	330	400
Maximum axial force ²⁾	- . Th	+F _{ax max}	N	500	500	500	630	800	800	800
	F _{ax} ±	-F _{ax max}	N	0	0	0	0	0	0	0
Permissible axial force pressure	±F _{ax perm/bar}	N/bar	5.2	5.2	5.2	7.0	8.7	8.7	8.7	
Size		NG		63	80	80 ⁴⁾	80	90	107	107
Drive shaft		Ø	mm	35	35	35	40	40	40	45
Maximum radial force ¹⁾	Fq	F _{q max}	kN	9.1	11.6	11.1	11.4	11.4	13.6	14.1
at distance a (from shaft collar)	a	a	mm	18	20	20	20	20	20	20
with permissible torque		T _{max}	Nm	401	512	488	512	573	679	679
	ure ∆p	$\Delta p_{ m perm}$	bar	400	400	380	400	400	400	400
Maximum axial force ²⁾	- , filt	+F _{ax max}	N	800	1000	1000	1000	1000	1250	1250
	Fax±	-F _{ax max}	N	0	0	0	0	0	0	0
Permissible axial force pressure	per bar operating	±F _{ax perm/bar}	N/bar	8.7	10.6	10.6	10.6	10.6	12.9	12.9
Size		NG		125	160	160	180	250	355	
Drive shaft		Ø	mm	45	45	50	50	50	60	
Maximum radial force ¹⁾	Fq	F _{q max}	kN	14.1	18.1	18.3	18.3	1.25)	1.5 ⁵⁾	
at distance a (from shaft collar)	a	a	mm	20	25	25	25	41	52.5	
with permissible torq	ue	T _{max}	Nm	796	1021	1021	1146	3)	3)	
△ permissible pressi	ure Δp	Δp_{perm}	bar	400	400	400	400	3)	3)	
Maximum axial force ²⁾	<u> </u>	+F _{ax max}	N	1250	1600	1600	1600	2000	2500	
	rax±±	-F _{ax max}	N	0	0	0	0	0	0	
Permissible axial force pressure	±F _{ax perm/bar}	N/bar	12.9	16.7	16.7	16.7	3)	3)		

- 1) With intermittent operation
- 2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.
- 3) Please contact us.
- 4) Restricted technical data only for splined shaft
- 5) When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.

Note

Influence of the direction of the permissible axial force:


 $+F_{ax max}$ = Increase in service life of bearings

-F_{ax max} = Reduction in service life of bearings (avoid)

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

	Toothed gear drive	V-belt output
NG	Форт	φ _{opt}
28 to 180	± 70°	± 45°
250 and 355	± 45°	± 70°

Determining the operating characteristics

Input flow
$$q_v = \frac{V_g \cdot n}{1000 \cdot n_v}$$
 [L/min]

Speed
$$n = \frac{q_V \cdot 1000 \cdot \eta_V}{V_-}$$
 [min⁻¹]

Torque
$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}$$
 [Nm]

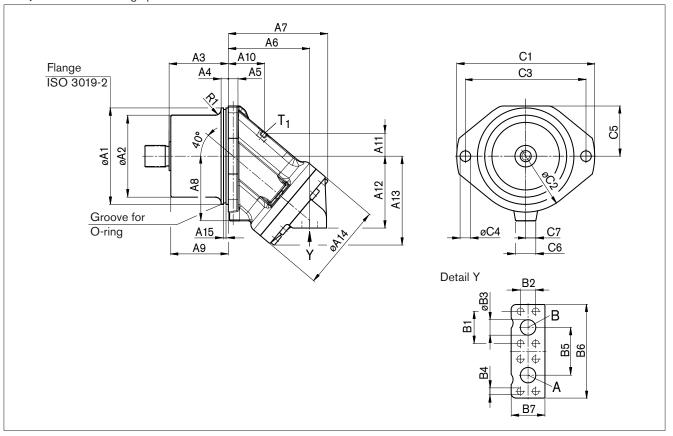
Power
$$P = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600} \text{ [kW]}$$

V_q = Displacement per revolution in cm³

Δp = Differential pressure in bar

Speed in rpm

η_ν = Volumetric efficiency


η_{mh} = Mechanical-hydraulic efficiency

 η_t = Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)

Dimensions sizes 28 to 180

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

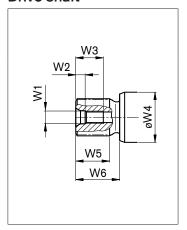
Port plate 10 - SAE flange ports at bottom

Size	øA1	øA2	A3 ¹⁾	A 4	A5	A6	A7	A8	Α9	A10	A11	A12	A13	øA14	A15
28, 32	135 _{-0.025}	94 _{-0.5}	88.8	15	16	94	114	95	87.1	45	27	91	106	106	5.2
45	160-0.025	117 ^{+1.5}	92.3	15	18	109	133	106	90	50	31.3	102	119	118	5.2
56, 63	160 _{-0.025}	121 _{-0.5}	92.3	15	18	122	146	109	90	59	34	107	130	128	5.2
80, 90	190-0.029	140.3-0.5	110	15	20	127	157	123	106	54	41	121	145	138	5.2
107, 125	200 _{-0.029}	152.3 _{-0.5}	122.8	15	20	143	178	135	119	58	41	136	157	150	5.2
160, 180	200 _{-0.029}	171.6 _{-0.5}	122.8	15	20	169	206	134	119.3	75	47	149	185	180	5.2

Size	B1	B2	øB3	B4, DIN 13 ²⁾	B5	B6	B7	C1	øC2	C3	øC4	C5	C6	C7
28, 32	40.5	18.2	13	M8 x 1.25; 15 deep	59	115	40	188	154	160	14	71	42	13
45	50.8	23.8	19	M10 x 1.5; 17 deep	75	147	49	235	190	200	18	82	47.5	15
56, 63	50.8	23.8	19	M10 x 1.5; 17 deep	75	147	48	235	190	200	18	82	36	0
80, 90	57.2	27.8	25	M12 x 1.75; 17 deep	84	166	60	260	220	224	22	98	40	0
107, 125	66.7	31.8	32	M14 x 2; 19 deep	99	194	70	286	232	250	22	103	40	0
160, 180	66.7	31.8	32	M14 x 2; 19 deep	99	194	70	286	232	250	22	104	42	0

Size	R1	O-ring ³⁾	Service line port A, B SAE J518	Drain port T ₁ DIN 3852 ²⁾
28, 32	10	126 x 4	1/2 in	M16 x 1.5; 12 deep
45	10	150 x 4	3/4 in	M18 x 1.5; 12 deep
56, 63	10	150 x 4	3/4 in	M18 x 1.5; 12 deep
80, 90	10	180 x 4	1 in	M18 x 1.5; 12 deep
107, 125	16	192 x 4	1 1/4 in	M18 x 1.5; 12 deep
160, 180	12	192 x 4	1 1/4 in	M22 x 1.5; 14 deep

- 1) To shaft collar
- 2) Observe the general instructions on page 24 for the maximum tightening torques.
- 3) Not included in the delivery contents

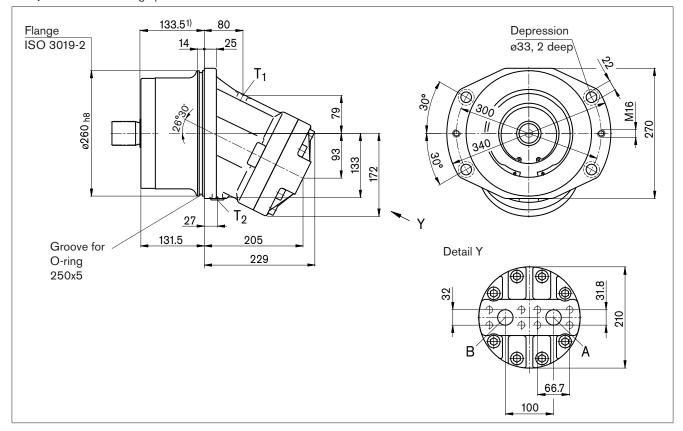

Note

Port plates 17, 18 and 19; see pages 17 and 20.

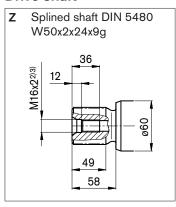
Dimensions sizes 28 to 180

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

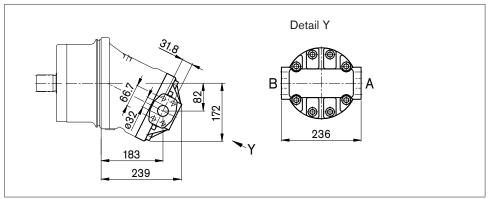
Drive shaft


Size	Splined shaft (DIN 5480)	W1 ¹⁾	W2	W3	øW4	W5	W6
28, 32	A W30 x 2 x 14 x 9g	M10 x 1.5	7.5	22	35	27	35
28	Z W25 x 1.25 x 18 x 9g	M8 x 1.25	6	19	35	28	43
45	Z W30 x 2 x 14 x 9g	M12 x 1.75	9.5	28	35	27	35
56, 63	A W35 x 2 x 16 x 9g	M12 x 1.75	9.5	28	40	32	40
56	Z W30 x 2 x 14 x 9g	M12 x 1.75	9.5	28	40	27	35
80, 90	A W40 x 2 x 18 x 9g	M16 x 2	12	36	45	37	45
80	Z W35 x 2 x 16 x 9g	M12 x 1.75	9.5	28	45	32	40
107, 125	A W45 x 2 x 21 x 9g	M16 x 2	12	36	50	42	50
107	Z W40 x 2 x 18 x 9g	M12 x 1.75	9.5	28	50	37	45
160, 180	A W50 x 2 x 24 x 9g	M16 x 2	12	36	60	44	55
160	Z W45 x 2 x 21 x 9g	M16 x 2	12	36	60	42	50

¹⁾ Center bore according to DIN 332 (thread according to DIN 13), observe the general instructions on page 24 for the maximum tightening torques.


Dimensions size 250

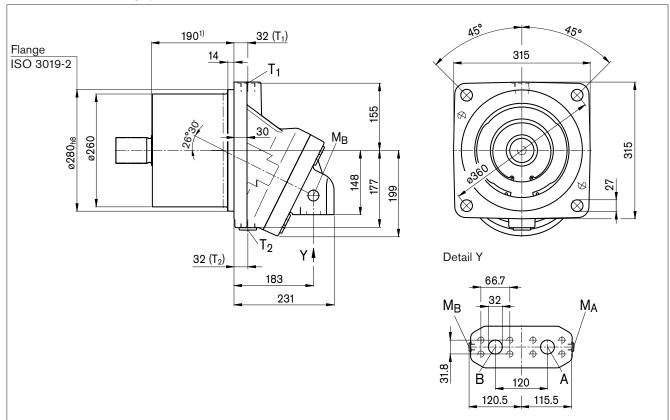
Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Port plate 01 - SAE flange ports at rear

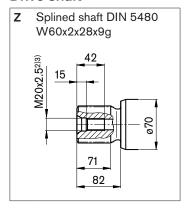
Drive shaft

Port plate 02 - SAE flange ports at side

Ports


Designation	Port for Standard Size ³⁾		Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line fastening thread A/B	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	400	0
T ₁	Drain line	DIN 3852 ⁷⁾	M22 x 1.5; 14 deep	3	O ⁵⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M22 x 1.5; 14 deep	3	X ⁵⁾

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 24 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 23).
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)


Dimensions size 355

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 10 - SAE flange ports at bottom

Drive shaft

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line fastening thread A/B	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 22 deep	400	0
T ₁	Drain line	DIN 38527)	M33 x 2; 18 deep	3	O ⁵⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M33 x 2; 18 deep	3	X ⁵⁾

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 24 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devcies and fittings.
- 5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 23).
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Flushing and boost pressure valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

With port plate 027 (sizes 45 to 180 and 250) and with port plate 107 (size 355), the valve is mounted directly on the fixed motor

Cracking pressure of pressure retaining valve

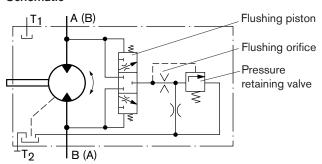
(observe when setting the primary valve)

Sizes 45 to 355, fixed setting 16 bar

Switching pressure of flushing piston $\Delta \textbf{p}$

Sizes 45 to 355 8±1 bar

Flushing flow q_v


Orifice (throttles with integrated valve) can be used to set the flushing flows as required.

Following parameters are based on:

 $\Delta p_{ND} = p_{ND} - p_G = 25$ bar and $\nu = 10 \text{ mm}^2/\text{s}$

 $(p_{ND} = low pressure, p_G = case pressure)$

Schematic

Standard flushing flows

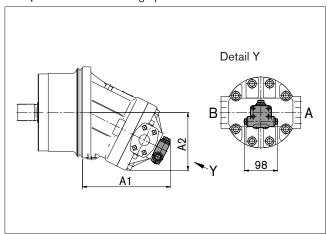
Flushing and boost pressure valve, mounted (code 7)

Size	Flushing flow q _v [L/min]	ø [mm]	Mat. No. of orifice
45	3.5	1.2	R909651766
107, 125	8	1.8	R909419696
160, 180	10	2.0	R909419697
250	10	2.0	R909419697
355	16	2.5	R910803019

With sizes 45 to 180, orifices can be supplied for flushing flows from 3.5 to 10 L/min. For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 12 to 14 L at low pressure $\Delta p_{ND} = 25$ bar.

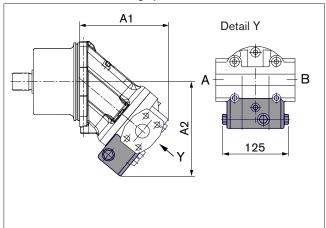
Flushing and boost pressure valve, integrated (code 9)

Size	Throttle ø [mm]	q _v [L/min]
56, 63,	1.5	6
80, 90	1.8	7.3


Flushing and boost pressure valve

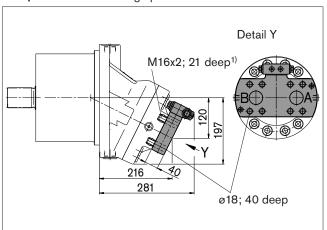
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

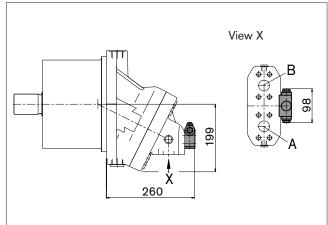
Dimensions


Sizes 107 to 250

Port plate 027 - SAE flange ports at side

Size	A1	A2
107, 125	211	192
160, 180	232	201
250	260.5	172


Sizes 56 to 90
Port plate 029 – SAE flange ports at side


Size	A1	A2
56, 63	165	176
80, 90	178	186.7

¹⁾ DIN 13, observe the general instructions on page 24 for the maximum tightening torques.

Size 355
Port plate 017 - SAE flange ports at rear

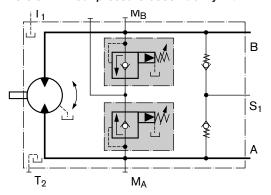
Port plate 107 - SAE flange ports at bottom

Pressure-relief valve

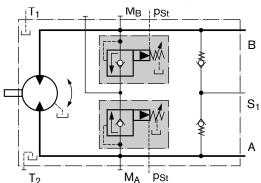
The MHDB pressure-relief valves (see RE 64642) protect the hydraulic motor from overload. As soon as the set cracking pressure is reached, the hydraulic fluid flows from the high-pressure side to the low-pressure side.

The pressure-relief valves are only available in combination with port plates 181, 191 or 192 (counterbalance valve for mounting to port plate 181: see next page).

Cracking pressure setting range ______ 50 to 420 bar


With the version "with pressure boost facility" (192), a higher pressure setting can be realized by applying an external pilot pressure of 25 to 30 bar to port P_{St} .

When ordering, please state in plain text:


- Cracking pressure of pressure-relief valve
- Cracking pressure with pilot pressure applied to P_{St} (only with version 192)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Version without pressure boost facility "191"


Version with pressure boost facility "192"

Pressure-relief valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

Size		D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13 ²⁾
28, 32	MHDB.16	145	122	25	68	110	102	87	36	66	50.8	23.8	ø19	M10; 17 deep
45	MHDB. 16	161	137	22	65	126	113	98	36	66	50.8	23.8	ø19	M10; 17 deep
56, 63	MHDB. 22	189	162	19	61	147	124	105	42	75	50.8	23.8	ø19	M10; 13 deep
80, 90	MHDB. 22	193	165	17.5	59	151	134	114	42	75	57.2	27.8	ø25	M12; 18 deep
107, 125	MHDB. 32	216	184	10	52	168	149.5	130	53	84	66.7	31.8	ø32	M14; 19 deep
160, 180	MHDB. 32	249	218	5	47	202	170	149	53	84	66.7	31.8	ø32	M14; 19 deep

Size	A, B	S ₁ ¹⁾	M_A , $M_B^{(1)}$	P _{St} ¹⁾
28, 32	3/4 in	M22 x 1.5; 14 deep	M20 x 1.5; 14 deep	G 1/4
45	3/4 in	M22 x 1.5; 14 deep	M20 x 1.5; 14 deep	G 1/4
56, 63	3/4 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
80, 90	1 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
107, 125	1 1/4 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
160, 180	1 1/4 in	M26 x 1.5; 16 deep	M30 x 1.5; 16 deep	G 1/4

Assembly instruction for port plate with pressure boost facility "192":

The lock nut must be counterheld when installing the hydraulic line at the pst port!

Ports

Designation	Port for	Standard	Size	Maximum pressure [bar] ²⁾	State 3)
A, B	Service line	SAE J518	See above	450	0
S ₁	Supply (only with port plate 191/192)	DIN 3852	See above	5	0
M _A , M _B	Measuring operating pressure	DIN 3852	See above	450	Χ
P _{St}	Pilot pressure (only with port plate 192)	DIN ISO 228	See above	30	0

- 1) Observe the general instructions on page 24 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings
- 3) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

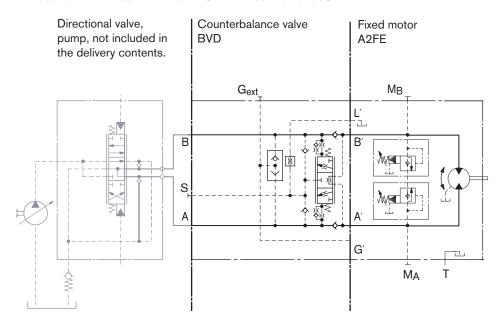
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note

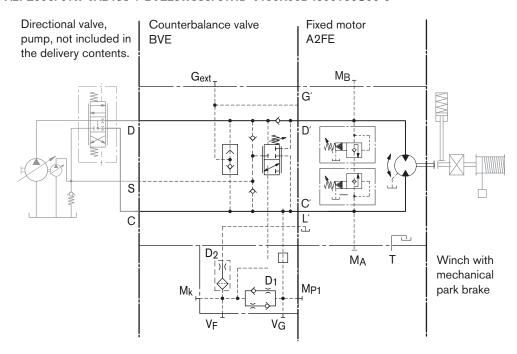

- BVD available for sizes 28 to 180 and BVE available for sizes 107 to 180.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A2FE90/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525!
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive on wheeled excavators A2FE090/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Winch counterbalance valve BVD...W and BVE

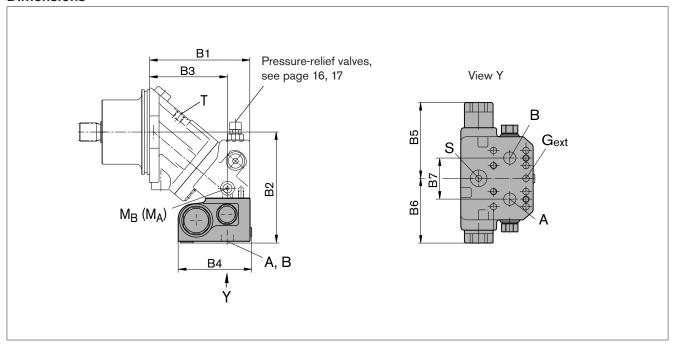
Application options

- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes A2FE090/61W-VAB188 + BVE25W385/51ND-V100K00D4599T30S00-0

Permissible input flow or pressure in operation with DBV and BVD/BVE

	Without valv	ve	Restricted v	alues in ope	ration with	DBV and	BVD/BVE			
Motor			DBV				BVD/BVE			
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code
28	400/450	176	16	350/420	100	181	20	350/420	100	188
32	201	201				191, 192	(BVD)			
45		255								
56		280	22		240				220	
63		315								
80		360								
90		405								
107		427				171	171			178
125		500				191, 192				
107		427	32		400	181	25		320	188
125		500				191, 192	(BVD/BVE)			
160		577								
180		648								


DBV _____ pressure-relief valve

BVD _____counterbalance valve, double-acting

BVE _____counterbalance valve, one-sided

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A2FE	Counterbalar	nce valve								
Size	Туре	Ports	Dimen	sions						
		A, B	B1	B2	В3	B4 (S)	B4 (L)	B5	В6	B7
28, 32	BVD 20 16	3/4 in	145	175	110	142	147	139	98	66
45	BVD 20 16	3/4 in	161	196	126	142	147	139	98	66
56, 63	BVD 20 17	3/4 in	189	197	147	142	147	139	98	75
80, 90	BVD 20 27	1 in	193	207	151	142	147	139	98	75
107, 125	BVD 20 28	1 in	216	238	168	142	147	139	98	84
107, 125	BVD 25 38	1 ¹ / ₄ in	216	239	168	158	163	175	120.5	84
160, 180	BVD 25 38	1 ¹ / ₄ in	249	260	202	158	163	175	120.5	84
107, 125	BVE 25 38	1 ¹ / ₄ in	216	240	168	167	172	214	137	84
160, 180	BVE 25 38	1 ¹ / ₄ in	249	260	202	167	172	214	137	84
250					On requ	iest				

Ports

Designation	Port for	Version	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
A, B	Service line		SAE J518	see table above	420	0
S	Infeed	BVD20	DIN 3852 ³⁾	M22 x 1.5; 14 deep	30	Χ
		BVD25, BVE25	DIN 3852 ³⁾	M27 x 2; 16 deep	30	Χ
Br	Brake release, reduced high pressure	L	DIN 3852 ³⁾	M12 x 1.5; 12.5 deep	30	0
G _{ext}	Brake release, high pressure	S	DIN 3852 ³⁾	M12 x 1.5; 12.5 deep	420	X
$M_{A,}M_{B}$	Measuring pressure A and B		ISO 61493 ⁾	M12 x 1.5; 12 deep	420	Х

 $_{\mbox{\scriptsize 1)}}$ Observe the general instructions on page 24 for the maximum tightening torques.

²⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

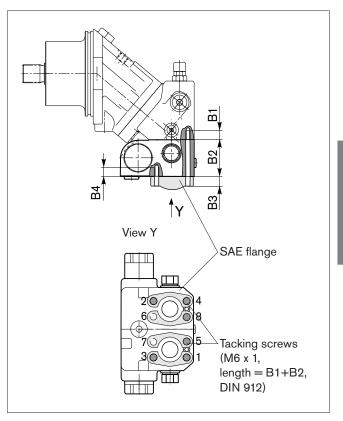
³⁾ The spot face can be deeper than specified in the appropriate standard.

⁴⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8) _____ length B1+B2+B3 2 screws (6, 7) ____ length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10	10.9	75
M12	10.9	130
M14	10.9	205

Size	28, 32, 45	56, 63	80, 90	107, 125, 160, 180	107, 125
Port plate	18				17
B1 ¹⁾	M10 x 1.5; 17 deep	M10 x 1.5; 17 deep	M12 x 1.75; 18 deep	M14 x 2; 19 deep	M12 x 1.75; 17 deep
B2	78 ²⁾	68	68	85	68
B3	customer-specific				
B4	M10 x 1.5; 15 deep	M10 x 1.5; 15 deep	M12 x 1.75; 16 deep	M14 x 2; 19 deep	M12 x 1.75; 16 deep

- 1) Minimum required thread reach 1 x ø-thread
- 2) Including sandwich plate

Speed sensors

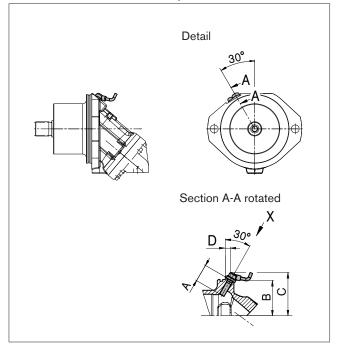
The versions A2FE...U and A2FE...F ("prepared for speed sensor", i.e. without sensor) is equipped with a toothed ring.

On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.

With the DSA or HDD speed sensor mounted a signal proportional to motor speed can be generated. The sensors measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet.

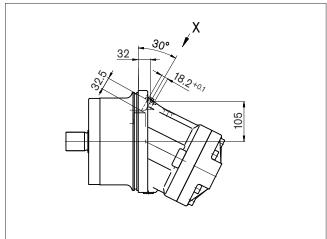
DSA	 RE 95133
HDD	RE 95135

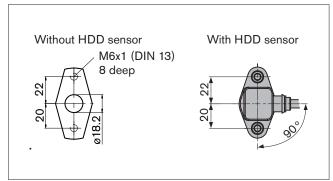

The sensor is mounted on the port provided for this purpose with a mounting bolt.

We recommend ordering the A2FE plug-in motor complete with sensor mounted.

Version "V"

Sizes 28 to 180 with DSA sensor


Size 250 with DSA sensor on request.


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Version "H"

Size 250 with HDD sensor

View X

Size			28, 32	45	56, 63	80, 90	107, 125	160, 180	250
Number of teeth		38	45	47	53	59	67	78	
DSA	Α	Insertion depth (tolerance \pm 0.1)	32	32	32	32	32	32	32
	В	Contact surface	66	On reques	t				
	С		On request						
	D		12.3	On reques	t				

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 5.

Further installation positions are possible upon request.

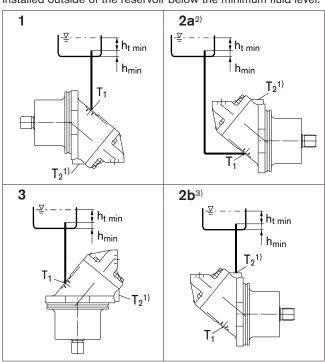
Recommended installation positions: 1 and 2.

Installation position	Air bleed	Filling
1	_	T ₁
2	_	T ₁ (sizes 28 to 180) T ₂ (sizes 250 and 355)
3	_	T ₁
4	(L ₁)	T ₁ , (L ₁)
5	(L ₁)	T ₂ , (L ₁)
6	(L ₁)	T ₁ , (L ₁)

L₁ Filling / air bleed

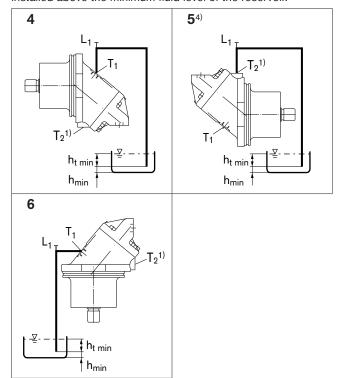
T₁, T₂ Drain port

h_{t min} Minimum required immersion depth (200 mm)


h_{min} Minimum required spacing to reservoir bot-

tom (100 mm)

- Standard for sizes 250 and 355, special version for sizes 28 to 180
- 2) Piping suggestion without port T₂ (standard for sizes 28 to 180).
- 3) Piping suggestion with port T₂ (standard for sizes 250 to 355, special version for sizes 28 to 180).
- 4) Installation position only permissible if port T₂ is fitted (standard for sizes 250 and 355, special version for sizes 28 to 180).


Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

General instructions

- The motor A2FE is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified person-
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instructions regarding tightening torques of the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13 or with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads in the axial piston unit: The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.
- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports		Maximum permissible	Required	WAF	
Standard	Size of thread	tightening torque of the female threads M _{G max}	tightening torque of the threaded plugs M _V ¹⁾	hexagon socket of the threaded plugs	
DIN 3852	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm	
	M16 x 1.5	100 Nm	50 Nm	8 mm	
	M18 x 1.5	140 Nm	60 Nm	8 mm	
	M20 x 1.5	170 Nm	80 Nm	10 mm	
	M22 x 1.5	210 Nm	80 Nm	10 mm	
	M26 x 1.5	230 Nm	120 Nm	12 mm	
	M27 x 2	330 Nm	135 Nm	12 mm	
	M30 x 2	420 Nm	215 Nm	17 mm	
	M33 x 2	540 Nm	225 Nm	17 mm	
DIN ISO 228	G 1/4	40 Nm	_	-	

¹⁾ The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.

2) In the "lightly oiled" state, the M_V is reduced to 17 Nm for M12 x 1.5.

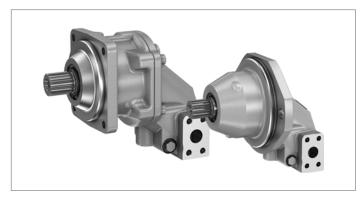
Bosch Rexroth AG Mobile Applications Glockeraustrasse 4 89275 Elchingen, Germany Tel.: +49-7308-82-0 Fax: +49-7308-72-74

An den Kelterwiesen 14 72160 Horb, Germany Tel.: +49-7451-92-0 Fax: +49-7451-82-21 info.brm@boschrexroth.de

www.boschrexroth.com/axial-piston-motors

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.


Subject to change.

Rexroth **Bosch Group**

Axial piston fixed motor A2FM Series 70 A2FF Series 70

RE 91071

Edition: 12.2015 **Replaces 03.2015**

► A2FMN, A2FEN (sizes 56 to 107): Nominal pressure 300 bar Maximum pressure 350 bar

- ► A2FMM, A2FEM (sizes 45 to 90): Nominal pressure 400 bar Maximum pressure 450 bar
- ► A2FMH, A2FEH (sizes 45 to 90): Nominal pressure 450 bar Maximum pressure 500 bar

Features

- Fixed motor with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in open and closed circuits
- For use in mobile and stationary applications
- Far-reaching integration of the plug-in version in mechanical gears due to recessed mounting flange located in the center of the case (extremely spacesaving construction)
- Easy to install, simply plug the plug-in version into the mechanical gearbox
- ▶ The output speed is dependent on the flow of the pump and the displacement of the motor.
- ▶ The output torque increases with the pressure differential between the high-pressure side and the low-pressure side.
- ▶ Finely graduated sizes permit far-reaching adaptation to the drive concerned
- ► High power density
- Small dimensions
- High total efficiency
- Good starting efficiency
- Integrated flushing valve option

уре	cod	е	
		CI	

Contents

Type code	2
Hydraulic fluids	4
Flow direction	5
Shaft seal	5
Working pressure range	6
Technical data	7
A2FM dimensions, SAE flange ports at bottom	10
A2FM dimensions, SAE flange ports at side	11
A2FM dimensions, SAE flange ports at bottom	12
A2FM dimensions, SAE flange ports at side	13
A2FM dimensions, SAE flange ports at bottom	15
A2FM dimensions, SAE flange ports at side	16
A2FM dimensions, SAE flange ports at bottom	17
A2FM dimensions, SAE flange ports at side	18
Flushing and boost-pressure valve, integrated	19
Speed sensors DSA and DSM	20
Installation instructions	21
Project planning notes	23
Safety instructions	23

Type code

	01	02	03	04		05	06	0	7	08	09	10	11	12	13	14		15
Α	2F				/	70	N	V	v	٧							_	
Δxial	pistor	ı unit						,										
01	-	t-axis des	sign, fixe	d displa	cement													A2F
Oners	ating r	node																
02		or, stand	ard versi	on														М
02	-	or, plug-i												,			·	E
Droce	ure ra											045	056	063	080	090	107	<u>!</u>
03			sure: 30	0 bar. m	aximum	n pressure	e: 350 b	ar				043	030	003	000	•	•	N
	-	•				pressure						0	0	0	•	•	0	М
		-				pressure						0	0	0	•	•	0	Н
Size (· ·										<u> </u>				1	1	<u>!</u>
04		metric di	splacem	ent. see	technic	al data o	n page	7				045	056	063	080	090	107	1
Series				.,			10.											J
05	1	es 7, Inde	ex ()														,	70
		-																10
Desig 06	Т	orts and				Europe, F	2014/)											N
				prome	u sear (Europe, F	(OVV)										,	IN
	1	f rotation																
07	View	ved on dr	rive shaft	, bidired	ctional													W
	ng mat																	
80	FKM	(fluoroe	lastomer	-)														V
Moun	ting fl	lange										045	056	063	080	090	107	
09	ISO	3019-2 n	netric		125	4 (only a	vailable	for A	2FM))		•	•	•	•1)	_	_	M4
						4 (only a)			-	-	•	•	•1)	N4
						4 (only a						•	•	•	•1)	-	-	P2
					190-	2 (only a	vailable	for A	2FE)			_	_	_	•	•	•1)	Y2
Drive	shaft											045	056	063	080	090	107	
10	Splii	ned shaft	t DIN 548	30	W30	x2x14x9	3					•	● ²⁾	-	-	_	-	Z6
					W35	x2x16x9	3						•	•	•	-	-	Z8
)x2x18x9	3						-	-	•3)	•	•	Z 9
		illel keyed t DIN 688			ø 30							•	•	-	-	-	-	P6
	Sildi	נ טווע טספ	55		ø 35							_	•	•	3)	-	-	P8
					ø 40								_	_	•3)	•	•	P9
		rking lin										045	056	063	080	090	107	
11	_	flange p										•	•	•	•	•	•	11
		flange p										•	•	•	•	•	•	02
	Thre	aded po	rts A and	I B at sic	le, opp	osite						0	0	0	_	-	_	05

o = On request

- = Not available

Bosch Rexroth AG, RE 91071/12.2015

= Available

¹⁾ Only available for A2FMN, A2FEN (pressure range 300 to 350 bar)

²⁾ not available for A2FMH, A2FEH (pressure range 450 to 500 bar)

³⁾ not available for A2FMN, A2FEN (pressure range 300 to 350 bar)

Ν

М

	01	02	03	04		05	06	07	80	09	10	11	12	13	14		15
Α	2F				/	70	N	W	V							ı	
Valve	:s										045	056	063	080	090	107	
12	Witho	out valves	S								•	•	•	•	•	•	0
	Integrated flushing and Flushing flow [I/min] /			2.6	/ 1.0			•	•	•	•	•	•	С			
		pressur ing flow		oritio	e ø [mm]	6.0	/ 1.5			•	•	•	•	•	•	Е
	$\Delta p = p_{ND} - p_{G} = 25 \text{ bar}$ and $v = 10 \text{ mm}^{2}/\text{s}$			7.4	/ 1.7			•	•	•	•	•	•	F			
	and v	= 10 11111	11-/5				8.5	/ 1.8			•	•	•	•	•	•	G
							11.4	/ 2.3			•	•	•	•	•	•	I
							12.5	/ 3			•	•	•	•	•	•	J
Spee	d sens	or									,						
13	Withc	out speed	d sensor														0
	Prepa	ared for [OSA sens	or													Α
	DSA s	speed se	nsor mou	ınted													В

Special version

14	Standard version	0	l
	Long-life bearing ⁴⁾	L	Ì
	Special version for slew drives	J	1

Standard / special version

15	Standard version	0
	Standard version with installation variants, e. g. T ports contrary to standard, open or closed	Y
	Special version	S

• = Available • = On request - = Not available

Prepared for DSM sensor (not available for A2FE)

Speed sensor DSM mounted (not available for A2FE)

Notes

▶ Note the project planning notes on page 23.

⁴⁾ Type code version "L" not available in combination with A2FMH/A2FEH since in the case of pressure range "H" the long-life bearing is already included in the standard version (type code designation "0").

4 A2FM/A2FE Series 70 | Axial piston fixed motor Hydraulic fluids

Hydraulic fluids

The fixed motor A2FM/A2FE is designed for operation with HLP mineral oil according to DIN 51524.

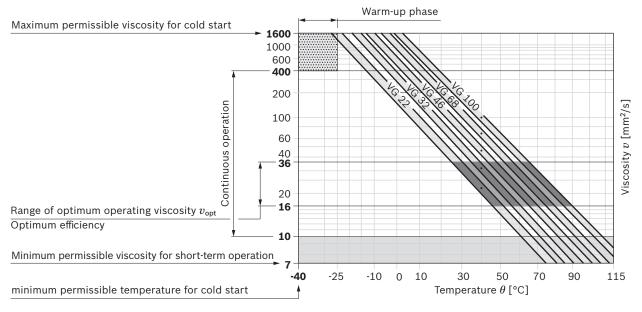
Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- ▶ 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids
- ▶ 90222: Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)
- ▶ 90223: Fire-resistant, water-containing hydraulic fluids (HFAE, HFAS, HFB, HFC)

Details regarding the selection of hydraulic fluid

The hydraulic fluid should be selected so that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt} , see selection diagram).

Note


At no point on the component may the temperature be higher than 115 °C. The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend the use of a flushing and boost pressure valve (see page 19).

Viscosity and temperature of hydraulic fluids

	Viscosity	Temperature	Comment
Cold start	$v_{\text{max}} \le 1600 \text{ mm}^2/\text{s}$	θ _{St} ≥ -40 °C	$t \le 3 \text{ min, } n \le 1000 \text{ rpm, without load } p \le 50 \text{ bar}$
Permissible temperature difference		<i>ΔT</i> ≤ 25 K	between axial piston unit and hydraulic fluid in the system
Warm-up phase	ν < 1600 to 400 mm ² /s	θ = -40 °C to -25 °C	at $p \le 0.7 \times p_{\text{nom}}$, $n \le 0.5 \times n_{\text{nom}}$ and $t \le 15$ min
Continuous operation	$v = 400 \text{ to } 10 \text{ mm}^2/\text{s}$		this corresponds, for VG 46 for example, to a temperature range of +5 $^{\circ}$ C to +85 $^{\circ}$ C (see selection diagram)
		θ = -25 °C to +103 °C	measured at port T note the permissible temperature range of the shaft seal (ΔT = approx. 12 K between bearing/shaft seal and port T)
	$v_{\rm opt}$ = 36 to 16 mm ² /s		range of optimum operating viscosity and efficiency
Short-term operation	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		$t < 3 \text{ min}, p < 0.3 \times p_{\text{nom}}$

▼ Selection diagram

Bosch Rexroth AG, RE 91071/12.2015

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit. A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.

At very high hydraulic fluid temperatures (90 °C to maximum 103 °C, measured at port T), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

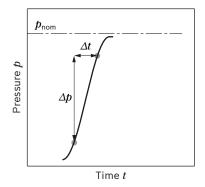
Flow direction

Direction of rotation, viewed on drive shaft								
clockwise	counter clockwise							
A to B	B to A							

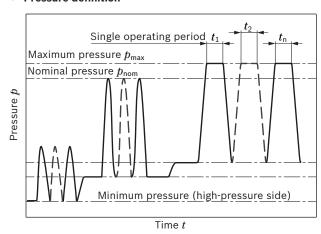
Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the leakage pressure in the housing (case pressure). The mean differential pressure of 2 bar between the housing and the ambient pressure may not be enduringly exceeded at normal operating temperature. Momentary pressure peaks (t < 0.1 s) up to 10 bar are allowed. The service life of the shaft seal decreases with increasing frequency of pressure spikes and increasing mean differential pressure.

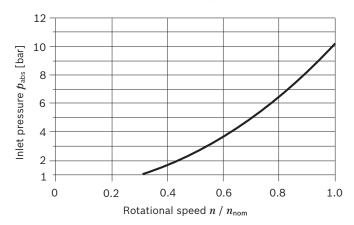

The case pressure must be equal to or higher than the ambient pressure.

The FKM shaft seal ring may be used for leakage temperatures from -25 °C to +115 °C. For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).


Working pressure range

Pressure at working po	rt A or B		Definition				
Nominal pressure p_{nom}	A2FMN, A2FEN	300 bar absolute	The nominal pressure corresponds to the maximum design pressure.				
	A2FMM, A2FEM	400 bar absolute	_				
	A2FMH, A2FEH	450 bar absolute	_				
Maximum pressure p_{max}	A2FMN, A2FEN	350 bar absolute	The maximum pressure corresponds to the maximum working pressure				
	A2FMM, A2FEM	450 bar absolute	within the single operating period. The sum of the single operating peri-				
	A2FMH, A2FEH	500 bar absolute	ods must not exceed the total operating period.				
Single operating perio	od	10 s	_				
Total operating period	ı	300 h	_				
Minimum pressure (high	-pressure side)	25 bar absolute	Minimum pressure at the high-pressure side (A or B) required to prevent damage to the axial piston unit.				
Minimum pressure – pump operating mode (inlet)		see characteristic	To prevent damage to the axial piston motor in pump mode (change of hi pressure side with unchanged direction of rotation, e.g. when braking), a minimum pressure must be guaranteed at the working port (inlet). The minimum pressure depends on the rotational speed and displaceme of the axial piston unit.				
Total pressure p_{Su} (press	sure A + pressure B)	700 bar absolute	The summation pressure is the sum of the pressures at both work ports $(\mathbf{A} \text{ and } \mathbf{B}).$				
Rate of pressure change	R _{A max}		Maximum permissible rate of pressure build-up and reduction during				
with built-in pressure	relief valve	9000 bar/s	a pressure change across the entire pressure range.				
without pressure relie	ef valve	16000 bar/s	_				

▼ Rate of pressure change $R_{A \text{ max}}$


▼ Pressure definition

Total operating period = $t_1 + t_2 + ... + t_n$

Bosch Rexroth AG, RE 91071/12.2015

▼ Minimum pressure – pump operating mode (inlet)

This diagram is only valid for the optimum viscosity range of ν_{opt} = 36 to 16 mm²/s.

Please contact us if these conditions cannot be satisfied.

Note

Working pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids – please contact us.

A2FMN, A2FEN

Size	NG		56	63	80	90	107
Displacement, geometric, per revolution	V_{g}	cm ³	56.6	63.0	81.7	90.5	108.8
Maximum rotational speed ¹⁾	n_{nom}	rpm	3750	3750	3375	3375	3000
	$n_{max}^{2)}$	rpm	4125	4125	3700	3700	3300
Inlet flow	q_{vmax}	l/min	210	236	370	270	321
Torque ³⁾ at Δp = 300 bar	T	Nm	270	301	390	432	519
Rotary stiffness	c_{min}	kNm/rad	6.83	8.09	7.94	9.84	10.9
Moment of inertia for rotary group	J_{TW}	kgm²	0.0032	0.0032	0.0034	0.0054	0.0061
Maximum angular acceleration	α	rad/s²	10000	12200	19800	4500	6000
Case volume	V	1	0.6	0.6	0.6	0.65	0.65
Weight approx.	m	kg	17	17	17	23	23

A2FMM, A2FEM

Size		NG		45	56	63	80	90
Displacement,	, geometric, per revolution	V_{g}	cm ³	44.9	56.6	63.0	79.8	90.5
Maximum rota	Maximum rotational speed ¹⁾			5000	5000	5000	4500	4500
		$n_{max}^{2)}$	rpm	5500	5500	5500	5000	5000
Inlet flow		$q_{ m v\; max}$	l/min	225	280	315	360	405
Torque ³⁾	at Δp = 400 bar	T	Nm	286	360	401	508	576
Rotary stiffnes	ss	c_{min}	kNm/rad	4.52	6.83	8.09	9.09	9.84
Moment of ine	ertia for rotary group	J_{TW}	kgm ²	0.0032	0.0032	0.0032	0.0058	0.0054
Maximum ang	ular acceleration	α	rad/s²	5400	9000	11100	4500	4500
Case volume		V	1	0.6	0.6	0.6	0.65	0.65
Weight approx	κ.	m	kg	17	17	17	23	23

A2FMH, A2FEH

Size	NG		45	56	63	80	90
Displacement, geometric, per revolution	V_{g}	cm ³	44.9	56.6	63.0	79.8	90.5
Maximum rotational speed ¹⁾	n_{nom}	rpm	5000	5000	5000	4500	4500
	$n_{max}^{2)}$	rpm	5500	5500	5500	5000	5000
Inlet flow	$q_{ m v\; max}$	l/min	225	280	315	360	405
Torque ³⁾ at Δp = 450 bar	T	Nm	322	405	451	571	648
Rotary stiffness	c_{min}	kNm/rad	4.52	6.83	8.09	9.09	9.84
Moment of inertia for rotary group	J_{TW}	kgm²	0.0032	0.0032	0.0032	0.0058	0.0054
Maximum angular acceleration	α	rad/s²	5000	8550	10500	4500	4500
Case volume	V	1	0.6	0.6	0.6	0.65	0.65
Weight approx.	m	kg	17	17	17	23	23

Speed range

No limit to minimum speed n_{\min} . If uniformity of motion is required, speed n_{\min} must not be less than 50 rpm.

- 1) The valid values (observing the maximum permissible flow):
 - to the optimum viscosity range from v_{opt} = 36 to 16 mm²/s
 - with hydraulic fluid based on mineral oil

- 2) Intermittent maximum speed: Overspeed for unload and overhauling processes, t < 5 s and $\Delta p < 150$ bar
- 3) Torque without radial force, with radial force see page 8

Permissible radial and axial forces of the drive shafts

A2FMN, A2FEN

Size	NG	NG		Z8/P8	Z8/P8	Z8/P8	Z9/P9	Z9/P9	
				56	56	63	80	90	107
Drive shaft	with splined shaft	Ø	mm	30	35	35	35	40	40
	with parallel keyed shaft	Ø	mm	30	35	35	35	40	40
Maximum radial force ¹⁾	IFq F	F _{q max}	kN	7.1	6.1	6.9	8.7	8.6	10.4
at distance a (from shaft collar)	a	a	mm	18	18	18	18	20	20
Maximum torque at I	q max	$T_{q\;max}$	Nm	267	267	301	382	430	519
Maximum differentia	pressure at $F_{ m q\ max}$	$\Delta p_{q max}$	bar	300	300	300	300	300	300
Maximum axial force	ф	+ F _{ax max}	N	0	0	0	0	0	0
at standstill or pressure-free operation	F _{ax} ±	- F _{ax max}	N	800	800	800	800	1000	1000
Permissible axial force p	per bar working pressure	+ F _{ax perm} /bar	N/bar	8.7	8.7	8.7	8.7	10.6	10.6

A2FMM, A2FEM

Size		NG		Z6/P6	Z6/P6	Z8/P8	Z8/P8	Z8/P8	Z9/P9	Z9/P9
				45	56	56	63	80	80	90
Drive shaft	with splined shaft	Ø	mm	30	30	35	35	35	40	40
	with parallel keyed shaft	Ø	mm	30	30	35	35	35	40	40
Maximum radial force ¹⁾	ıF _{q □}	F _{q max} kN 7	7.6	9.5	8.1	9.2	11.6	10.2	11.5	
at distance a (from shaft collar)	a	a	mm	18	18	18	18	20	20	20
Maximum torque at I	q max	$T_{q\;max}$	Nm	286	357	357	401	509	509	573
Maximum differential	pressure at $F_{\sf q max}$	$\Delta p_{q\;max}$	bar	400	400	400	400	400	400	400
Maximum axial force	_ ф	+ F _{ax max}	N	0	0	0	0	0	0	0
at standstill or pressure-free operation	Fax±==	- F _{ax max}	N	800	800	800	800	1000	1000	1000
Permissible axial force per bar working pressure		+ F _{ax perm} /bar	N/bar	8.7	8.7	8.7	8.7	10.6	10.6	10.6

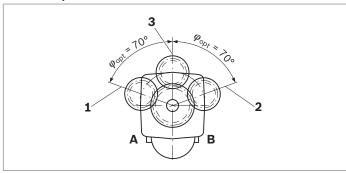
A2FMH, A2FEH

Size		NG		Z6/P6	P6	Z8/P8	Z8/P8	Z8/P8	Z9/P9	Z9/P9
				45	56	56	63	80	80	90
Drive shaft	with splined shaft	Ø	mm	30	-	35	35	35	40	40
	with parallel keyed shaft	Ø	mm	30	30	35	35	35	40	40
Maximum radial force ¹⁾	ıFq n	F _{q max}	kN	8.6	10.7	9.2	10.3	13.1	10.2	11.5
at distance a (from shaft collar)		a	mm	18	18	18	18	20	20	20
Maximum torque at I	q max	$T_{q\;max}$	Nm	322	401	401	451	573	573	645
Maximum differential	pressure at $F_{q max}$	$\Delta p_{q max}$	bar	450	450	450	450	450	450	450
Maximum axial force	πЪ	+ F _{ax max}	N	0	0	0	0	0	0	0
at standstill or pressure-free operation	Fax±==	- F _{ax max}	N	800	800	800	800	1000	1000	1000
Permissible axial force p	per bar working pressure	+ F _{ax perm} /bar	N/bar	8.7	8.7	8.7	8.7	10.6	10.6	10.6

Bosch Rexroth AG, RE 91071/12.2015

 $[\]scriptstyle 1)$ With intermittent operation

Calculation of characteristics								
Inlet flow		$V_{g} \times n$	$V_{g} imes n$					
mict now	q_{v}	$1000 imes \eta_{ m v}$		[l/min]				
Rotational	22	$q_{\rm v} \times 1000 \times \eta_{\rm v}$		[rpm]				
speed	n	$=$ V_{g}		[ibiii]				
Torquo	T	$V_{g} \times \Delta p \times \eta_{mh}$		[NIm]				
Torque	1	= 20 × π		[Nm]				
Power	P	$2 \pi \times T \times n$ $q_{v} \times \Delta p \times \eta_{t}$		- [kW]				
rowei	Р	60000	600	[KVV]				
Key								
V_{g}	=	Displacement per	revolution [cm³]]				
Δp	=	Differential pressu	re [bar]					
n	=	Rotational speed [rpm]						
η_{v}	=	Volumetric efficiency						
η_{mh}	=	Mechanical-hydraulic efficiency						
η_{t}	=	Total efficiency $(\eta_{t} = \eta_{v} \times \eta_{mh})$						


Notes

- ► Theoretical values, without efficiency and tolerances; values rounded.
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet 90261.
- ► The permissible axial force in direction $-F_{ax}$ is to be avoided as the lifetime of the bearing is reduced.
- Special requirements apply in the case of belt drives. Please contact us.

Effect of radial force F_q on the service life of bearings

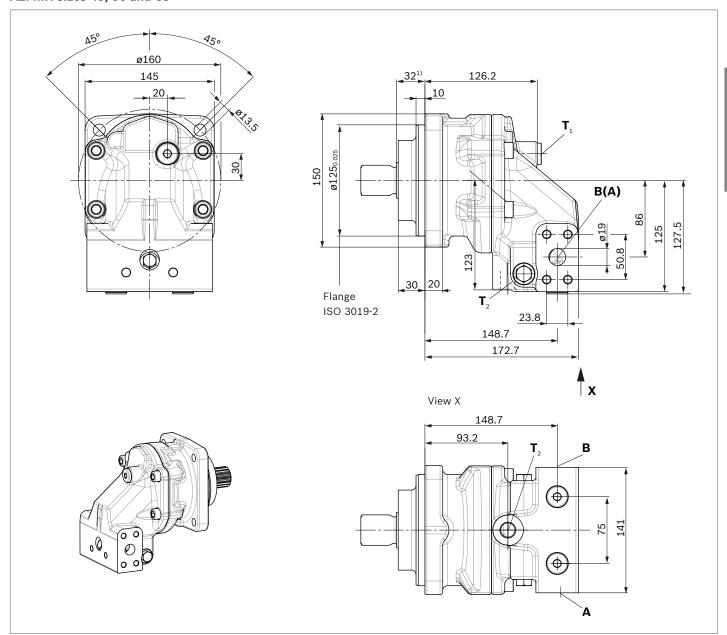
By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

▼ Gear output drive

- 1 "Counter-clockwise" rotationPressure at port B
- 2 "Clockwise" rotation Pressure at port A
- 3 "Alternating" direction of rotation

A2FM dimensions, SAE flange ports at bottom

A2FMN sizes 56, 63 and 80 A2FMM sizes 45, 56 and 63 A2FMH sizes 45, 56 and 63

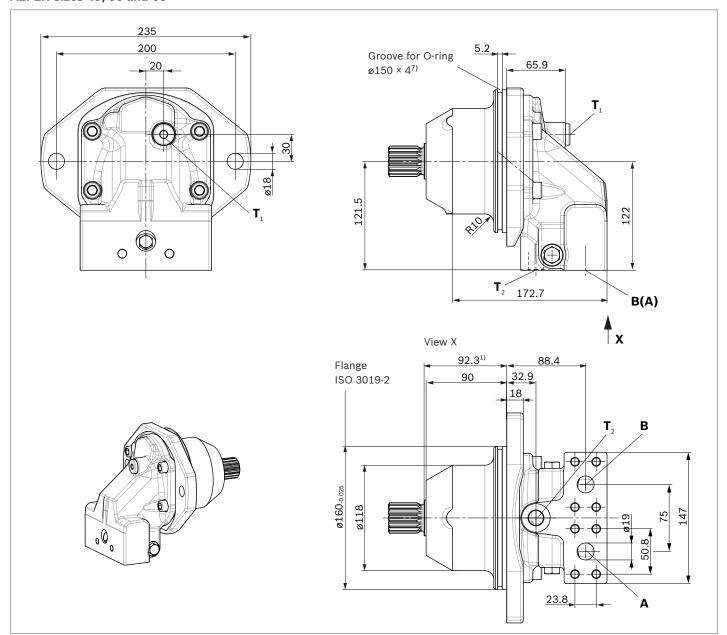

Ports		Standard	Size ²⁾	p _{max abs} [bar] ³⁾	Status ⁶⁾
A, B	Working port Fastening thread A/B	SAE J518 DIN 13	3/4 in M10 × 1.5; 17 deep	500	0
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- $_{\rm 2)}\,$ For notes on tightening torques, see instruction manual.
- 3) Depending on the application, momentary pressure peaks may occur. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 21).
- $_{\mbox{\scriptsize 5)}}$ The spot face can be deeper than as specified in the standard
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Bosch Rexroth AG, RE 91071/12.2015

A2FM dimensions, SAE flange ports at side

A2FMN sizes 56, 63 and 80 A2FMM sizes 45, 56 and 63 A2FMH sizes 45, 56 and 63

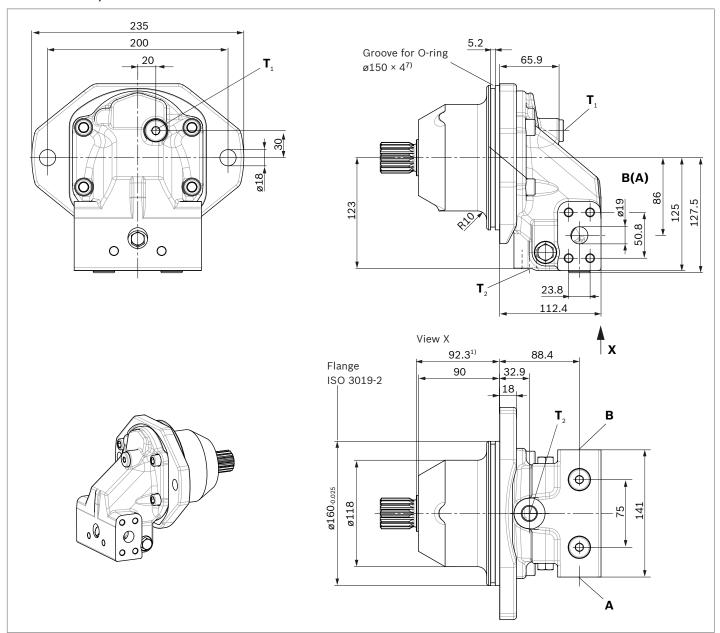

Ports		Standard	Size ²⁾	p _{max abs} [bar] ³⁾	Status ⁶⁾
A, B	Working port	SAE J518	3/4 in	500	0
	Fastening thread A/B	DIN 13	M10 × 1.5; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- $_{\rm 2)}\,$ For notes on tightening torques, see instruction manual.
- 3) Depending on the application, momentary pressure peaks may occur. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 21).
- $_{\mbox{\scriptsize 5)}}$ The spot face can be deeper than as specified in the standard
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

A2FE dimensions, SAE flange ports at bottom

A2FEM sizes 56, 63 and 80 A2FEM sizes 45, 56 and 63 A2FEH sizes 45, 56 and 63

12

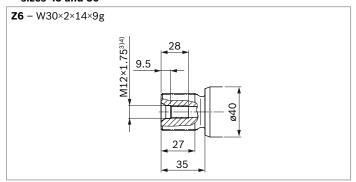

Ports		Standard	Size ²⁾	p _{max abs} [bar] ³⁾	Status ⁶⁾
A, B	Working port	SAE J518	3/4 in	500	0
	Fastening thread A/B	DIN 13	M10 × 1.5; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5: 12 deep	3	O ⁴⁾

- 1) To shaft collar
- 2) For notes on tightening torques, see instruction manual.
- Depending on the application, momentary pressure peaks may occur. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 21).
- 5) The spot face can be deeper than as specified in the standard
- 6) O = Must be connected (plugged on delivery) X = Plugged (in normal operation)
- 7) O-ring is not included in the scope of delivery. Bosch Rexroth material number R902601553.

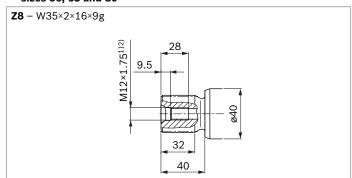
Bosch Rexroth AG, RE 91071/12.2015

A2FE dimensions, SAE flange ports at side

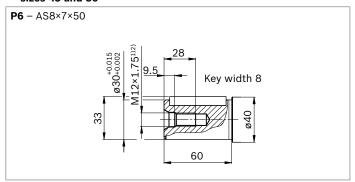
A2FEM sizes 56, 63 and 80 A2FEM sizes 45, 56 and 63 A2FEH sizes 45, 56 and 63

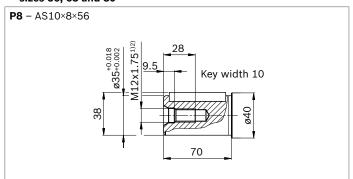


Ports		Standard	Size ²⁾	p _{max abs} [bar] ³⁾	Status ⁶⁾
A, B	Working port	SAE J518	3/4 in	500	0
	Fastening thread A/B	DIN 13	M10 × 1.5; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾


- 1) To shaft collar
- 2) For notes on tightening torques, see instruction manual.
- 3) Depending on the application, momentary pressure peaks may occur. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 21).
- 5) The spot face can be deeper than as specified in the standard
- 6) O = Must be connected (plugged on delivery) X = Plugged (in normal operation)
- O-ring is not included in the scope of delivery.
 Bosch Rexroth material number R902601553.

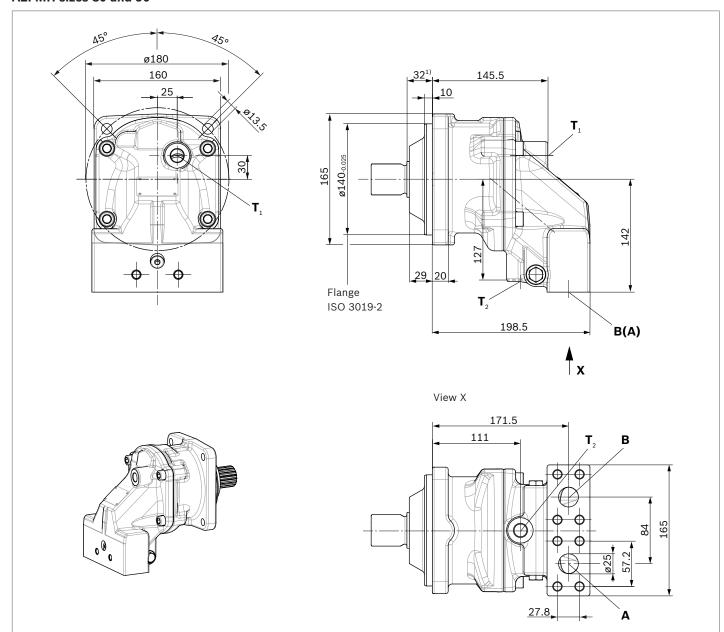
RE 91071/12.2015, Bosch Rexroth AG


▼ Splined shaft DIN 5480, sizes 45 and 56


▼ Splined shaft DIN 5480, sizes 56, 63 and 80

▼ Parallel keyed shaft, DIN 6885, sizes 45 and 56

▼ Parallel keyed shaft, DIN 6885, sizes 56, 63 and 80

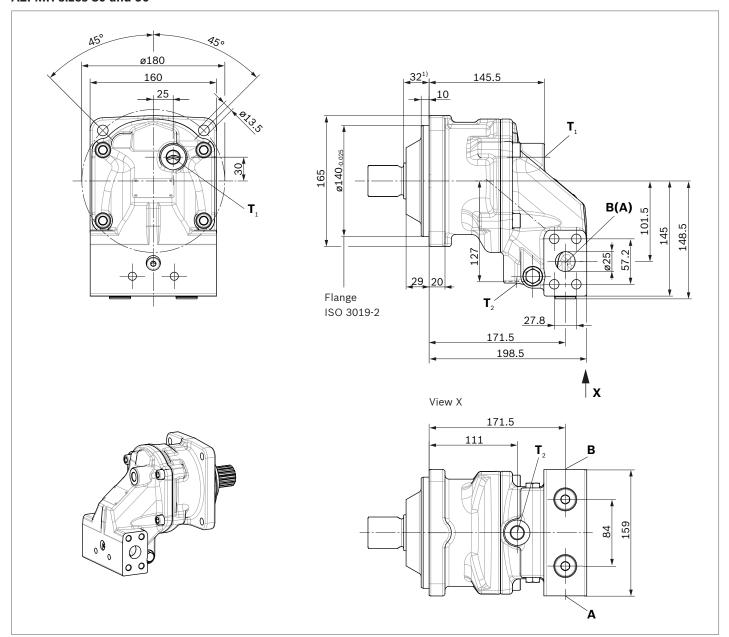


¹⁾ Center bore according to DIN 332 (thread according to DIN 13)

²⁾ For notes on tightening torques, see instruction manual.

A2FM dimensions, SAE flange ports at bottom

A2FMN sizes 90 and 107 A2FMM sizes 80 and 90 A2FMH sizes 80 and 90

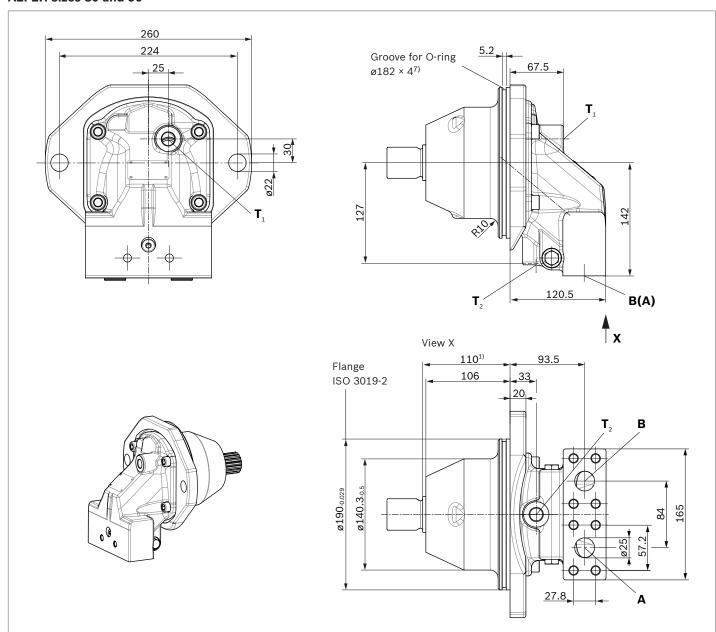


Ports		Standard	Size ²⁾	p _{max abs} [bar] ³⁾	Status ⁶⁾
A, B	Working port	SAE J518	1 in	500	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T_1	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- 2) For notes on tightening torques, see instruction manual.
- 3) Depending on the application, momentary pressure peaks may occur. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 21).
- $_{\mbox{\scriptsize 5)}}$ The spot face can be deeper than as specified in the standard
- $_{6)}$ O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

A2FM dimensions, SAE flange ports at side

A2FMN sizes 90 and 107 A2FMM sizes 80 and 90 A2FMH sizes 80 and 90

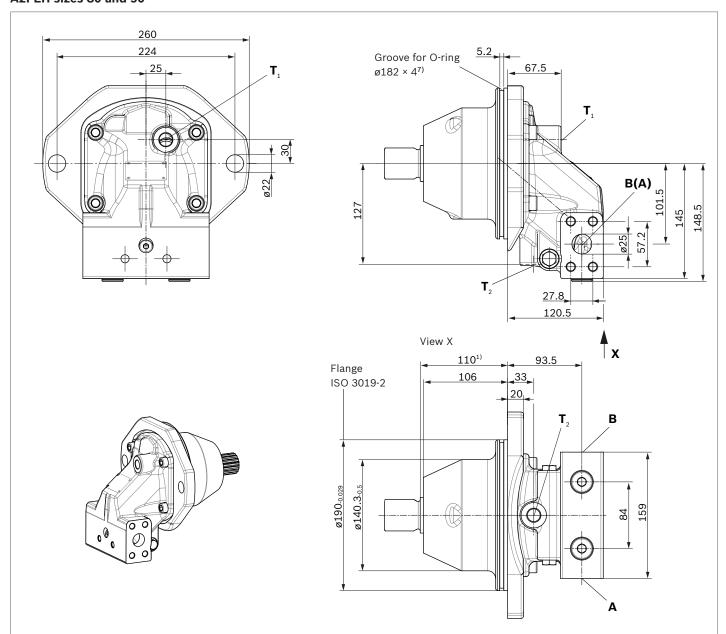

Ports		Standard	Size ²⁾	p _{max abs} [bar] ³⁾	Status ⁶⁾
A, B	Working port	SAE J518	1 in	500	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- $_{\rm 2)}\,$ For notes on tightening torques, see instruction manual.
- 3) Depending on the application, momentary pressure peaks may occur. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 21).
- $_{5)}$ The spot face can be deeper than as specified in the standard
- 6) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Bosch Rexroth AG, RE 91071/12.2015

A2FE dimensions, SAE flange ports at bottom

A2FEN sizes 90 and 107 A2FEM sizes 80 and 90 A2FEH sizes 80 and 90

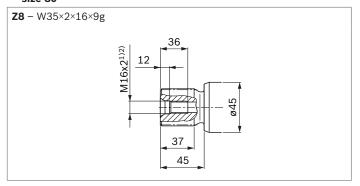

Ports		Standard	Size ²⁾	p _{max abs} [bar] ³⁾	Status ⁶⁾
A, B	Working port	SAE J518	1 in	500	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- 2) For notes on tightening torques, see instruction manual.
- 3) Depending on the application, momentary pressure peaks may occur. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 21).
- 5) The spot face can be deeper than as specified in the standard
- 6) O = Must be connected (plugged on delivery) X = Plugged (in normal operation)
- 7) O-ring is not included in the scope of delivery. Bosch Rexroth material number R902601554.

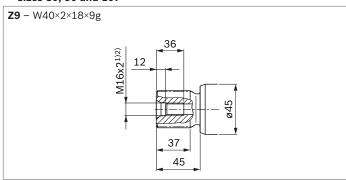
RE 91071/12.2015, Bosch Rexroth AG

A2FE dimensions, SAE flange ports at side

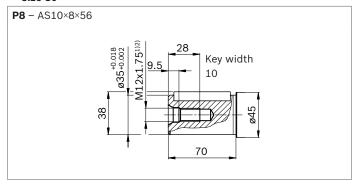
A2FEN sizes 90 and 107 A2FEM sizes 80 and 90 A2FEH sizes 80 and 90

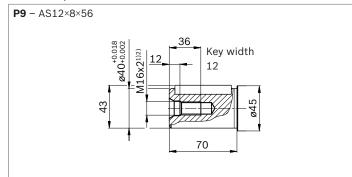


Ports		Standard	Size ²⁾	p _{max abs} [bar] ³⁾	Status ⁶⁾
A, B	Working port	SAE J518	1 in	500	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾


- 1) To shaft collar
- 2) For notes on tightening torques, see instruction manual.
- 3) Depending on the application, momentary pressure peaks may occur. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 21).
- $_{5)}$ The spot face can be deeper than as specified in the standard.
- 6) O = Must be connected (plugged on delivery) X = Plugged (in normal operation)
- 7) O-ring is not included in the scope of delivery. Bosch Rexroth material number R902601554.

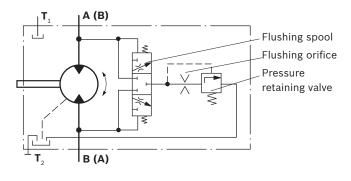
Bosch Rexroth AG, RE 91071/12.2015


▼ Splined shaft DIN 5480, size 80


▼ Splined shaft DIN 5480, sizes 80, 90 and 107

▼ Parallel keyed shaft, DIN 6885, size 80

▼ Parallel keyed shaft, DIN 6885, sizes 80, 90 and 107


Flushing and boost-pressure valve, integrated

The flushing and boost-pressure valve is used to remove heat from the hydraulic circuit.

In a closed circuit, it is used for case flushing and safeguarding the minimum boost pressure.

Hydraulic fluid is directed from the respective low pressure side into the motor case. This is then fed into the reservoir, together with the leakage. The hydraulic fluid removed from the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

Circuit diagram

1) Center bore according to DIN 332 (thread according to DIN 13)

2) For notes on tightening torques, see instruction manual.

Cracking pressure of pressure retaining valve

(observe when setting the primary valve)

► Sizes 45 to 107(N), fixed setting 16 bar

Switching pressure of flushing spool

Sizes 45 to 107(N) ∆p = 8±1 bar

Flushing flow

Orifices can be used to adjust the flushing flows as required. The following information is based on:

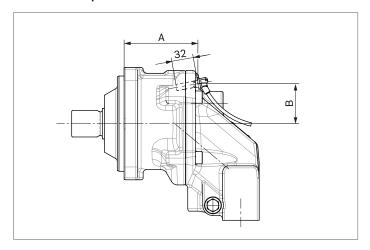
 $\Delta p_{\text{ND}} = p_{\text{ND}} - p_{\text{G}} = 25 \text{ bar and } v = 10 \text{ mm}^2/\text{s}$ ($p_{\text{ND}} = \text{low pressure}, p_{\text{G}} = \text{case pressure}$)

Size	Throttle ø [mm]	Flushing flow $q_{ m v}$ [I/min]
45, 56, 63, 80, 90,	1.0	2.6
107(N)	1.5	6
	1.7	7.4
	1.8	8.5
	2.3	11.4
	3	12.5

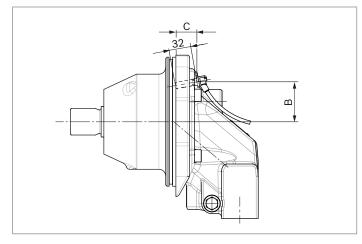
Speed sensors DSA and DSM

The versions A2F...A and A2F...N ("prepared for speed sensor", i.e. without sensor) is equipped with splines on the rotary group.

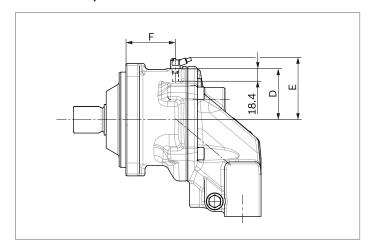
A signal proportional to motor speed can be generated with the fitted DSA/DSM speed sensor. The DSA/DSM sensor registers the speed and direction of rotation.


Type code, technical data, dimensions and details on the connector, plus safety instructions about the sensor can be found in the relevant data sheet 95133 – DSA and 95132 – DSM.

The sensor is mounted on the port provided for this purpose with a mounting bolt. On deliveries without sensor, the port is plugged with a pressure-resistant cover. We recommend ordering the A2F fixed motor complete with mounted sensor.


Size	A2FM/H	45, 65, 63	80, 90		
	A2FN	56, 63, 80	90, 107		
Number of teeth		47	53		
Dimensions	Α	96.6	108.4		
	В	54.6	58.8		
	С	36.3	30.4		
	D	70.3	75		
	E	86.9	91.6		
	F	61.2	72.6		

Dimensions


▼ Version "B" A2FM with speed sensor DSA mounted

▼ Version "B" A2FE with speed sensor DSA mounted

▼ Version "M" A2FM with speed sensor DSM mounted

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may empty via the hydraulic lines.

Particularly in the installation position "drive shaft upwards", filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The leakage in the housing area must be directed to the reservoir via the highest drain port (T_1, T_2) .

If a shared drain line is used for several units, make sure that the respective case pressure is not exceeded. The shared drain line must be dimensioned to ensure that the maximum permissible case pressure of all connected units is not exceeded in any operational circumstances, particularly at cold start. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

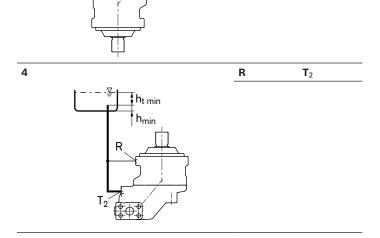
In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Note

- ► For A2FM with installation position "shaft upwards" an air bleed port ${\bf R}$ is required (specify in plain text when ordering, special version).
- ► For A2FE the "shaft upwards" installation position is not permissible.

Key	
F	Filling / air bleeding
	Note: F is part of the external piping
R	Air bleed port (special version)
T ₁ , T ₂	Drain port
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required distance to reservoir base (100 mm)

Installation position

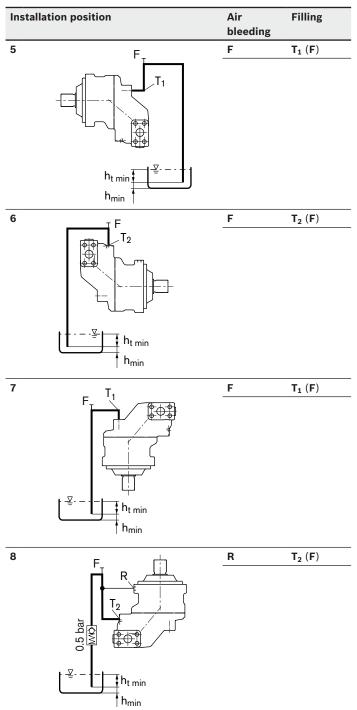

See the following examples 1 to 8.

Additional installation positions are possible upon request. Recommended installation position: 1 and 2

Below-reservoir installation (standard)

Below-reservoir installation is when the axial piston unit is

-	T ₁
_	T ₂
	_
_	T ₁



RE 91071/12.2015, Bosch Rexroth AG

22

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. Recommendation for installation position **8** (drive shaft upward): A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the housing area.

Note

Port **F** is part of the external piping and must be provided by the customer to make filling and air bleeding easier.

Bosch Rexroth AG, RE 91071/12.2015

Project planning notes

- ► The motor A2FM/A2FE is designed to be used in open and closed circuits.
- ► The project planning, installation and commissioning of the axial piston unit require the involvement of qualified skilled personnel.
- ▶ Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, request it from Bosch Rexroth.
- ► Before finalizing your design, please request a binding installation drawing.
- ▶ The specified data and notes must be observed.
- Depending on the operating state of the axial piston unit (working pressure, fluid temperature), the characteristic may shift.
- ▶ Not all variants of the product are approved for use in safety functions according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- Working ports:
 - The ports and fixing threads are designed for the specified peak pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, volume flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The working ports and function ports can only be used to accommodate hydraulic lines.
- ▶ Preservation: Our axial piston units are supplied as standard with protection to preserve them for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the instruction manual.

Safety instructions

▶ During and shortly after operation, there is a risk of burns on the axial piston unit. Take appropriate safety measures (e.g. by wearing protective clothing).

Bosch Rexroth AG

Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 info.ma@boschrexroth.de www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 91071/12.2015

Fixed Displacement Motor A4FM

RE 91 120/04.00 replaces: 03.95 and RE 91 100

for open and closed circuits

Sizes 22...500 Series 1, Series 3 Nominal pressure up to 400 bar Peak pressure up to 450 bar

Index

Features

Ordering Code

Technical Data

Installation and Commissioning Guidelines

Flow and Output Torque

Unit Dimensions, Sizes 22, 28

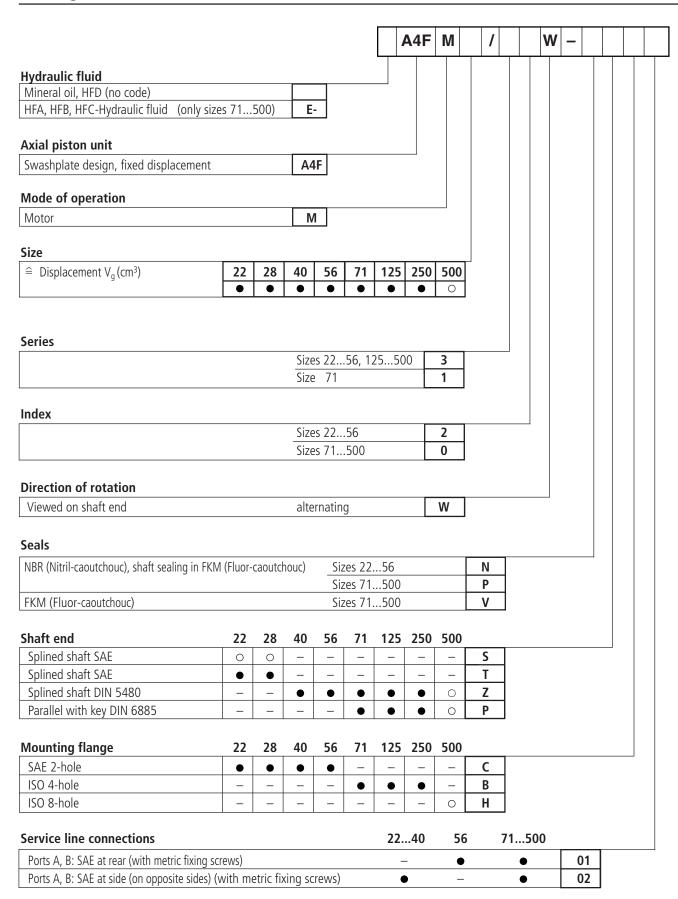
Unit Dimensions, Size 40

Unit Dimensions, Size 56

Unit Dimensions, Size 71

Unit Dimensions, Size 125

Unit Dimensions, Size 250


Features

- Axial Piston Fixed Displacement Motor A4FM of swashplate design is used in open and closed loop circuits for hydrostatic drives
- 3...5 drives.
 Output speed is proportional to input flow and inversely proportional to motor displacement.
 - 6 Output torque increases with the pressure drop across the motor between the high and low pressure sides.
 - 8 Long service life, optimum efficiencies
 - 9 Compact design for special applications where A2FM cannot be applied
 - 11 Proven rotary group in swashplate-technology

12

2

Ordering Code

• = available

 \circ = available on enquiry

- = not available

Fluid

We request that before starting a project detailed information about the choice of pressure fluids and application conditions are taken from our catalogue sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (fire resistance fluids, HF).

When using HF- or environmentally acceptable hydraulic fluids possible limitations for the technical data have to be taken into consideration. If necessary please consult our technical department (please indicate type of the hydraulic fluid used for your application on the order sheet).

The sizes 22..56 are not suitable for operation with HFA, HFB and HFC.

Operation viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected from within the range:

$$v_{opt}$$
 = operating viscosity 16...36 mm²/s

referred to the loop temperature (closed circuit) or tank temperature (open circuit).

Viscosity limits

The limiting values for viscosity are as follows:

Size 22...56

 $v_{min} = 5 \text{ mm}^2/\text{s}$, short term at a max. permissible temp. of $t_{max} = 115^{\circ}\text{C}$ $v_{max} = 1600 \text{ mm}^2/\text{s}$, short term on cold start ($t_{min} = -40^{\circ}\text{C}$)

Size 71...500

 $\nu_{\text{min}} = ~10~\text{mm}^2\text{/s}$, short term at a max. permissible drain temp. $t_{\text{max}} = 90^{\circ}\text{C}$

 $v_{max} = 1000 \text{ mm}^2/\text{s}$, short term on cold start ($t_{min} = -25^{\circ}\text{C}$)

Please note that the max. fluid temperature is also not exceeded in certain areas (for instance bearing area).

At temperature of -25°C up to -40°C special measures may be required for certain installation positions, please contact us.

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the loop (closed circuit) or the tank temperature (open circuit) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the operating viscosity lies within the optimum range (ν_{opt}) (see shaded section of the selection diagram). We recommend that the highest possible viscosity range should be chosen in each case.

Example: At an ambient temperature of X°C the operating temperature is 60°C. Within the operating viscosity range (v_{opt} ; shaded area), this corresponds to viscosity ranges VG 46 or VG 68. VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and motor speed and is always higher than the circuit temperature. However, at no point in the circuit may the temperature exceed 115°C for sizes 22...56 or 90°C for sizes 71...500.

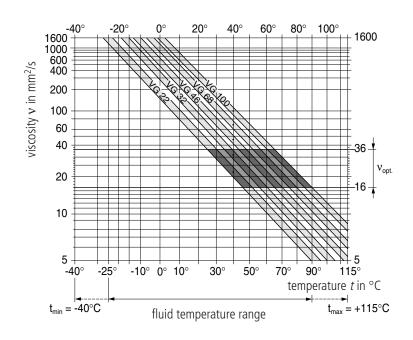
If it is not possible to comply with the above condition because of extreme operating parameters or high ambient temperatures we recommend housing flushing. Please consult us.

Filtration

The finer the filtration the better the achieved purity grade of the pressure fluid and the longer the life of the axial piston unit. To ensure the functioning of the axial piston unit a minimum purity grade of:

9 to NAS 1638

18/15 to ISO/DIS 4406 is necessary.


At very high temperatures of the hydraulic fluid (90°C to max. 115°C, not permissible for sizes 71...500) at least cleanless class

8 to NAS 1638

17/14 to ISO/DIS 4406 is necessary.

If above mentioned grades cannot be maintained please consult supplier.

Selection diagram

valid for operation with mineral oils

Flushing of the bearings (Sizes 125...500)

operating conditions, flushing quantities and notes on bearing flushing see RE 92 050 (A4VSO).

Operating pressure range

Maximum pressure at port A or B (Pressure data to DIN 24312)

Size		2256	71500	
Nominal pressure p _N	bar	400 ¹)	350	
Peak pressure p _{max}	bar	450 ¹)	400	

¹⁾ Size 28 with S-shaft: 315/350 bar

The summ of the pressures at ports A and B may not exceed 700 bar.

Direction of flow

clockwise rotation	anti-clockwise rotation
A to B	B to A

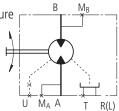
Symbol

Size 22...56

A, B Service line ports T_1, T_2 Case drain

(1 port plugged)

Size 71...500

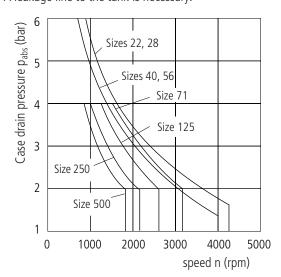

A, B Service line ports

M_A,M_B Pressure gauge, working pressure

T, R(L) Case drain, Air bleed

(1port plugged)

U Flushing port (Sizes71...500)


Case drain pressure

The max. permissible leakage pressure (housing pressure) is dependent on speed (see diagram). The pressure in the housing must be equal to or greater than the external pressure on the shaft sealing ring.

Max. leakage pressure (housing pressure)

P_{abs. max.} _______ 6 bar (sizes 22...56) 4 bar(sizes71...500)

A leakage line to the tank is necessary.

Installation and Commissioning Guidelines

General

At start-up and during operation the motor housing has imperatively to be filled up with hydraulic fluid (filling of the case chamber). Start-up has to be carried out at low speed and without load till the system is completely bleeded.

At a longer standstill the case may discharge via operating line. At new start-up a sufficient filling of the housing has to be granted.

The leakage oil in the housing has to be discharged to the tank via highest positioned case drain port.

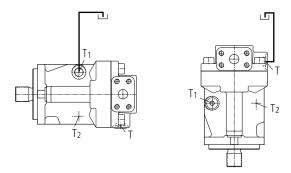
Installation position

- Sizes 22...56: Shaft horizontal or shaft down

- Sizes 71 (series1): Shaft horizontal, vertical installation position

as to agreement

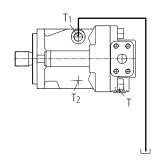
- Sizes 125...500: Optional, at vertical installation position

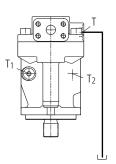

bearing flushing is recommended at port U

(as to RD 9205)

Installation below tank level

Motor below min. oil level in the tank (standard)


- → Fill up axial piston motor before start-up via highest positioned case drain port
- → Operate motor at low speed till motor system is completely filled up
- → Minimum immerson depth of the drain line in the tank: 200mm (relative to the min. oil level in the tank).



Installation on top of tank level

Motor on top of min. oil level in the tank

- → Actions as installation below tank level
- → Note: installation position "drive shaft up" for sizes 22...56 not permissible

valid for operation with mineral oil

Table of values (theoretical values, without considering η_{mh} and η_{v} values rounded)

Size			22	28	40	56	71	125	250	500
Displacement	V_g	cm ³	22	28	40	56	71	125	250	500
Max. speed	n _{max continue}	_{ous} rpm	4250	4250	4000	3600	3200	2600	2200	1800
	n _{max interm.} 1) rpm	5000	5000	5000	4500	_	-	-	_
Max. flow (at n _{max})	$q_{V max}$	L/min	93	119	160	202	227	325	550	900
Torque constants	T_K	Nm/bar	0,35	0,445	0,64	0,89	1,13	1,99	3,97	7,95
Torque (at $\Delta p = 400$ bar)	T_{max}	Nm	140	178	255	356	395 ²)	696 ²)	1391 ²)	2783 ²)
Filling volume		L	0,3	0,3	0,4	0,5	2,0	3,0	7,0	11,0
Moment of inertia about drive axis	J	kgm ²	0,0015	0,0015	0,0043	0,0085	0,0121	0,0300	0,0959	0,3325
Actual starting torque at n = 0 rpm (Δp = 350 bar)		Nm (app	rox.)				320	564	1127	
Weight (approx.)	т	kg	11	11	15	21	34	61	120	

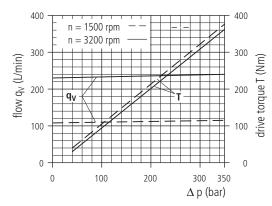
¹) Intermittent max. speed at overspeed: $\Delta p = 70...150$ bar

Calculation of size

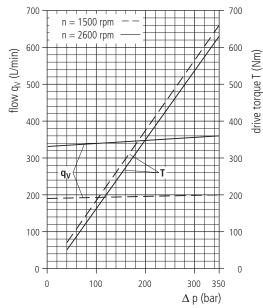
Flow	$q_v = \frac{V_g \bullet n}{1000 \bullet \eta_v}$	in L/min	V_g = geometric displacement per rev. in cm ³ Δp = pressure differential in bar
Output speed	$n = \frac{q_V \bullet 1000 \bullet \eta_V}{V_g}$		n = speed in rpm $\eta_v = \text{volumetric efficiency}$
Output torque	$T = \frac{V_g \bullet \Delta p \bullet \eta_{mh}}{20 \bullet \pi}$	in Nm	$\eta_{\text{mh}} = \text{mechhyd. efficiency}$ $\eta_t = \text{overall efficiency}$
	$= T_K \bullet \Delta p \bullet \eta_{mh}$		
Output power	$P = \frac{T \bullet n}{9549} = \frac{2 \pi \bullet T \bullet n}{60000}$	in kW	
	$=\frac{q_{v}\bullet\Deltap\bullet\eta_{t}}{600}$		

Output drive

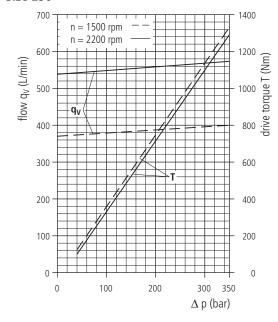
permissible axial and radial loading on drive shaft

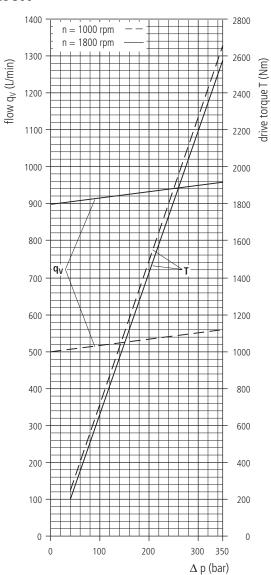

Size					22	28	40	56
Distance of F _q	Fal	}	a	mm	17,5	17,5	17,5	17,5
(from shaft shoulder)		-	b	mm	30	30	30	30
	a, b,	 C	С	mm	42,5	42,5	42,5	42,5
Max. permissible radial force at d	istance a	Э	$F_{q max}$	N	2500	2050	3600	5000
	ŀ)	$F_{q max}$	N	1400	1150	2890	4046
	(2	$F_{q max}$	N	1000	830	2416	3398
Max. permissible axial load	→爪	7	- F _{ax max}	N	1557	1557	2120	2910
	Fax⊕ +]	+ F _{ax max}	N	417	417	880	1490

Size				71	125	250	500
Max. axial force at housing pressure p_{max} 1 bar abs.	↓ ^F q ⊢	\pm F _{ax max}	N	1400	1900	3000	4000
Max. axial force at housing pressure p_{max} 4 bar abs.	± F _{ax}	+ F _{ax max}	N	810	1050	1850	2500
	X/2 X/2	- F _{ax max}	N	1990	2750	4150	5500
Max. radial force	Х	$F_{q max}$	Ν	1700	2500	4000	5000

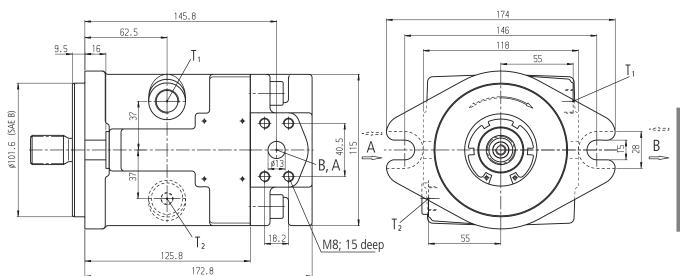

²) $\Delta p = 350 \text{ bar}$

Flow and Drive Torque


Size 71


Size 125

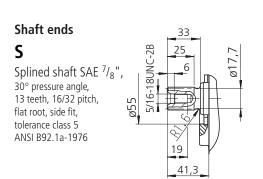
Size 250

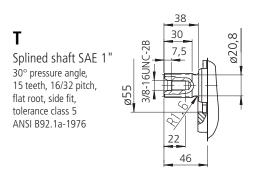


Size 500

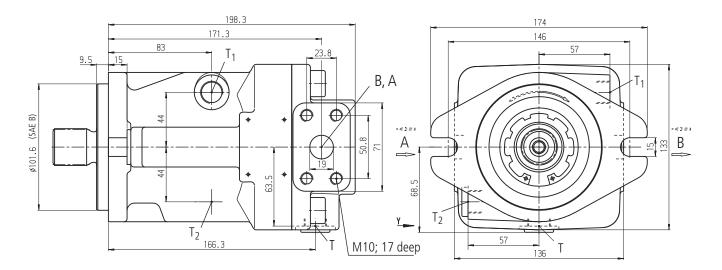
(Fluid: Hydraulic oil ISO VG 46 DIN 51519, t = 50°C)

Before finalising your design, please request a certified drawing.


Connections


A, B Service line ports

SAE 1/2" 420 bar (6000 psi) high pressure series

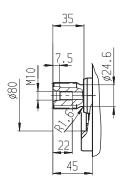

T₁, T₂ Leakage port / oil filling port

M18x1,5; 12 deep

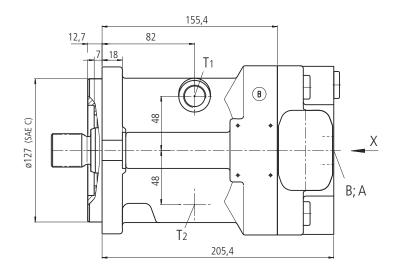
Before finalising your design, please request a certified drawing.

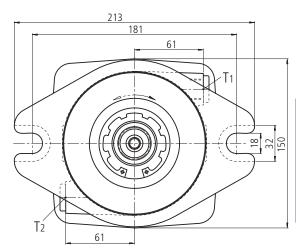
Connections

A, B Service line ports


SAE ³/₄" 420 bar (6000 psi) high pressure serie

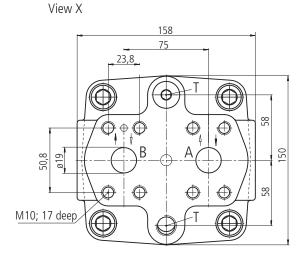
T, T₁, T₂ Leakage port / oil filling port


M18x1,5; 15 deep

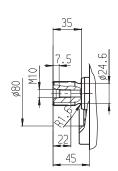


Splined shaft W 30x2x30x14x9g DIN 5480

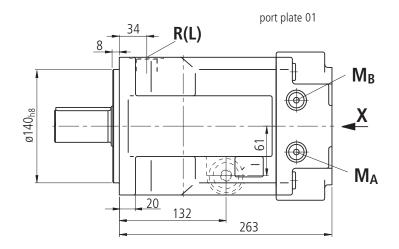
Before finalising your design, please request a certified drawing.

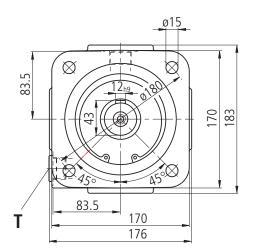


Connections

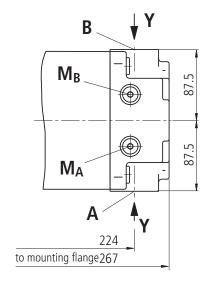

A, B Service line ports

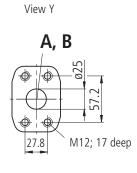
T, T₁, T₂ Leakage port / oil filling port

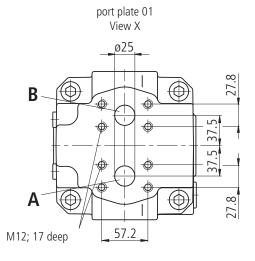

SAE 3I_4 " 420 bar (6000 psi) high pressure serie M 18x1,5; 12 deep



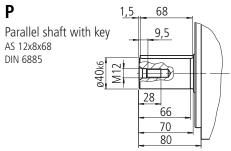
Shaft ends Z Splined shaft W 30x2x30x14x9g DIN 5480

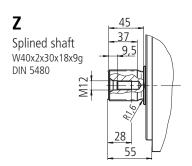



Before finalising your design, please request a certified drawing.

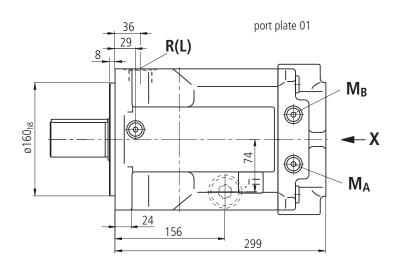


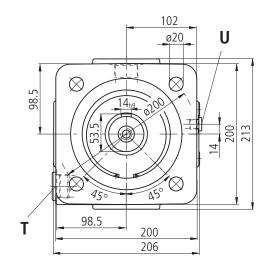
port plate 02

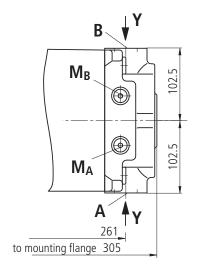


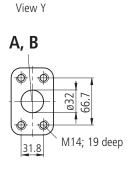


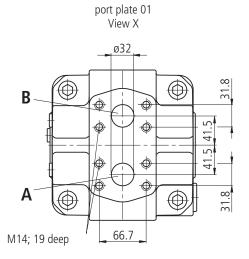
Connections


A, B	service line ports	SAE 1"
		(high pressure series)
R (L)	oil filling and bleed	M27x2
T	oil drain (plugged)	M27x2
M_A , M_B	measuring port for pressure (plugged)	M14x1,5

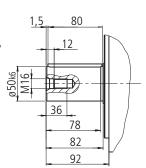

Shaft end

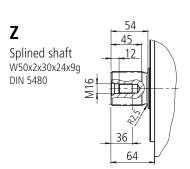



Before finalising your design, please request a certified drawing.



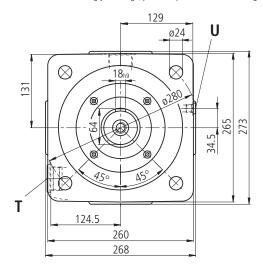
port plate 02

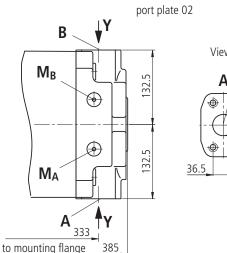


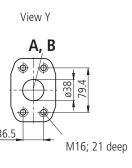

Connections

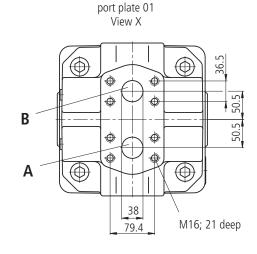
А, В	service line ports	SAE 1 ¹ / ₄ " (high pressure series)
R (L)	oil filling and bleed	M33x2
T	oil drain (plugged)	M33x2
M_A , M_B	measuring port for pressure (plugged)	M14x1,5
U	Flushing port, flushing of the bearings (plugged)	M14x1,5


Shaft end


Parallel shaft with key 14x9x80 DIN 6885



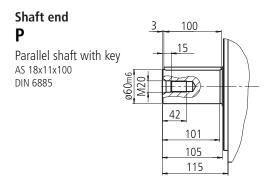


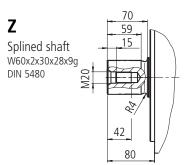

Before finalising your design, please request a certified drawing.

Connections

A, B service line ports

R (L) oil filling and bleed T oil drain (plugged)


 $\rm M_A,\,M_B$ measuring port for pressure (plugged)


J Flushing port, flushing of the bearings (plugged) SAE 1 ¹/₂" (high pressure series)

M42x2 M42x2

M14x1,5

M14x1,5

Bosch Rexroth AG
Mobile Hydraulics
Product Segment Axial Piston Units
Elchingen Plant
Glockeraustrasse 2
89275 Elchingen, Germany
Telephone+49 (0) 73 08 82-0
Facsimile +49 (0) 73 08 72 74
info.brm-ak@boschrexroth.de
www.boschrexroth.com/brm
202

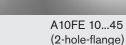
Horb Plant
An den Kelterwiesen 14
72160 Horb, Germany
Telephone +49 (0) 74 51 92-0
Facsimile +49 (0) 74 51 82 21

© 2003 by Bosch Rexroth AG, Mobile Hydraulics, 89275 Elchingen All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorization of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Fixed displacement motor Axial piston design A10FM / A10FE

RE 91172/02.12 Replaces: 11.10


1/28

Data sheet

Series 52 Sizes 10 to 63 Nominal pressure 280 bar Maximum pressure 350 bar Open and closed circuit

A10FM 23...63

A10FE 11...18 (8-hole-flange)

Contents

Type code for standard program	2	- Fixe
Technical data	4	for h
Dimensions A10FM sizes 23 to 63	8	- The
Dimensions A10FE sizes 10 to 63	14	betv – For
Flushing and boost pressure valve	24	– Lon
Anti cavitation valve	24	– High
Speed sensor	25	- Wel
Installation instructions	26	– High
General instructions	28	- Plug
		- Low
		- Med stan

Features

- d displacement motor in axial piston swashplate design hydrostatic drives in open and closed circuit operation
 - output speed is proportional to the inlet flow
- output torque increases with the pressure differential ween the high and low pressure sides
- use in mobile and industrial applications
- g service life
- n permissible output speeds
- I proven A10-rotary group technology
 - n power to weight ratio compact design
 - g-in version for space saving installation
 - noise level
 - chanical and hydraulic connections also acc. to SAE
 - Speed sensor optional
 - Integrated anti cavitation valve optional, i.e. for fan drives

018 023 028 037 045 058 063

Δ10F

Ordering code for standard program

52

AIUF	IVI		/	52		_	V			, I					
01	02	03		04	05		06	07	08	В	09)	10		11
Axial	piston uni	t													
01 Swas	hplate des	sign, fixed	displacem	ent, nomii	nal pressu	ire 280 ba	r, maximun	n pressure	350	bar					A10F
Opera	ating mod	е													
02 Moto	r, open and	d closed c	ircuit												M
Size (NG)														
	retical disp	lacement	see page	6				018	023	028	037	045	058	063	
			- 1 0						1						
Serie															50
04 Serie	s 5, Index	2													52
	ion of rot														
Viewe	ed on drive	shaft				clockwise									R ¹⁾
05						counter c							-		L ¹⁾
						bidirectio	nal								W
Seals															
06 FKM	(Fluoro-rul	ober)													٧
Drive	shaft							018	023	028	037	045	058	063	
Splin	ed shaft to	ISO 3019	9-1 (SAE J	1744)				0	•	•	•	•	•	•	R
07 Splin	ed shaft to	ISO 3019	9-1 (SAE J	1744)				-	0	0	•	•	•	•	W
Taper	ed with w	oodruff ke	y and threa	aded end				0	•	•	•	•	•	•	С
Mount	ing flange							018	023	028	037	045	058	063	
	2-hole	·						0.0	•	•	•	•	•	•	С
		line.						010	000	000	007	045	050	000	
	for service		l on sido s	samo sido	Mounting	bolts met	rio	018	023	028	037	045	058	063	10N00
ng 	ded ports					DOILS ITIEL	iic	0							16N00
		, , and D,		olao, saine	Judo				_	_		_			. 0.100
Ventil									023	028	037	045	058	063	_
	out valves	fl la !	alı.a					0	•	•	•	•	•	•	0
	integrated							-	•	•	•	•	•	•	7
vvith	integrated	anti cavita	ation vaive					0							2

Prepared for speed sensor (for inductive speed sensor ID)

Speed sensor

Without speed sensor

ullet = available O = on request - = not available

¹⁾ Only necessary in conjunction with valve configuration "2" (integrated anti cavitation valve)

Ordering code for standard program

01 02 03 04 05 06 07 08 09 10 1	A10F	Ε		/	52		_	٧					
01 02 00 07 00 09 10 1	01		03		04	05		06	07	08	09	10	11

	A *-1 -*-1 11													
01	Axial piston unit Swashplate design, fixed displacement, nomina	al pressure 2	80 ba	ar, ma	ximur	n pre	ssure	350	bar					A10F
	Operating mode													
02	Motor, open and closed circuit													Е
	Size (NG)													
03	Theoretical displacement see page 6		010	011	014	016	018	023	028	037	045	058	063	
	Series													
04	Series 5, Index 2													52
	Direction of rotation													
	Viewed on drive shaft	clockwise												R ¹⁾
05		counter cloc	kwise	9										L ¹⁾
		bidirectional												W
	Seals													
06	FKM (Fluoro-rubber)													V
	<u> </u>													
	Drive shaft Splined shaft to ISO 3019-1 (SAE J744)		1	011	I _	016	T _	T _	028	037	045	058	063	
07	Splined shaft to ISO 3019-1 (SAE J744)		О	_	_		_	0	•				•	R W
07	Tapered with woodruff key and threaded end		-	_	-	-	-							C
	Mounting flange		010	011	014	016	018	023	028	037	T	058		-0)
	SAE 2-hole		•	•	•	•	•	-	-	-	-	-	-	C ²⁾
80			-	-	-	-	-	•		•	•	•	•	F
	Special 8-hole		_					_	_	_	_	_	_	Н
	Ports for service lines		010	011	014	016	018	023	028	037	045	058	063	
09	SAE-flange ports A and B, on side, same side mounting bolts metric		_	_	_	-	-	•	•	•	•	•	•	10N00
	Threaded ports A and B, metric, on side, same	side	•	•	•	•	•	•	•	•	•	•	•	16N00
	Valves		010	011	014	016	018	023	028	037	045	058	063	
	Without valves		О	•	О	•	•	•	•	•	•	•	•	0
10	With integrated flushing valve	,	-	-	-	-	-	•	•	•	•	•	•	7
	With integrated anti cavitation valve		•	•	•	•	•	•	•	•	•	•	•	2
	Speed sensor		010	011	014	016	018	023	028	037	045	058	063	
	Without speed sensor		•	•	•	•	•	•	•	•	•	•	•	
						•	•	•		•		•	•	

- ullet = available O = on request = not available
- 1) Only necessary in conjunction with valve configuration "2" (integrated anti cavitation valve)
- 2) R-shaft with C-flange on sizes 10 to 18 in preparation

Prepared for speed sensor (for inductive speed sensor ID)

Fluids

Prior to project design, please see our technical data sheets RE 90220 (mineral oil) and RE 90221 (environmentally acceptable fluis) for detailed information on fluids and operating conditions.

For operation on environmentally acceptable fluids please consult us (when ordering, please state in clear text the fluid to be used).

Operating viscosity range

To achieve optimum values for efficiency and service life we recommend an operation viscosity (at operating temperature) within the range,

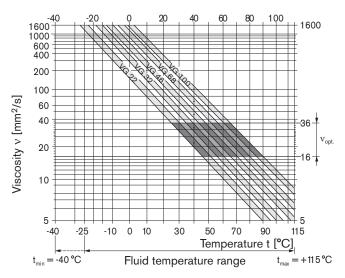
 v_{opt} = opt. operating viscosity 16 ... 36 mm²/s

referred to the tank temperature (open circuit).

Limit of viscosity range

For critical operation conditions the following values apply:

 v_{min} = 5 mm²/s (closed circuit) 10 mm²/s (open circuit) for short periods (t \leq 1 min) at a max. perm. temperature of 115 °C.


Please note that the max. leakage fluid temperature of 115 °C is also not exceeded in certain areas (for instance bearing area). The fluid temperature in the bearing area is approx. 5 K higher than the average leakage fluid temperature

 v_{max} = 1600 mm²/s for short periods (t \leq 1 min) on cold start (t_{min} = p \leq 30 bar, n \leq 1000 min⁻¹, -25 °C).

At temperatures between -40 °C and -25 °C special measures are required, please consult us for further information.

For detailed information on operation with low temperatures see data sheet RE 90300-03-B.

Selection diagram

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuit) in relation to the ambient temperature.

The fluid should be selected so that witin the operating temperature range, the viscosity lies within the optimum range (v_{opt}), see shaded section of the selection diagram. We recommend to select the higher viscosity grade in each case.

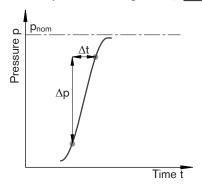
Example: at an ambient temperature of X °C the operating temperature in the tank is 60 °C. In the optimum viscosity range (v_{opt}; shaded area) this corresponds to viscosity grades VG 46 resp. VG 68; VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and input speed and is always higher than the tank temperature. However, at no point of the component may the temperature exceed 115 °C.

If it is not possible to comply with the above conditions because of extreme operating parameters please consult us.

Filtration of the hydraulic fluid

Filtration improves the cleanliness level of the hydraulic fluid, which, in turn, increases the service life of the axial piston unit.


To ensure the functional reliability of the axial piston unit, a gravimetric evaluation is necessary for the hydraulic fluid to determine the amount of contamination by solid matter and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 to ISO 4406 is to be maintained.

If above requirements cannot be maintained please consult us.

Operating pressure range

Pressure at service line port (pressure port) A or B

Rate of pressure change R_{A max} _____ 16000 bar/s

Outlet pressure

at n_{max} Minimum pressure at low pressure side $p_{abs\,max}$ ______18 ba

Case drain pressure

Maximum permissible case drain pressure (at port L, L_1):

P _{max abs} motor operation in open circuit	4 bar _{abs}
P _{max abs} motor operation in closed circuit	4 bar _{abs}
P _{max abs} pump/motor operation in open circuit	2 bar _{abs}

Direction of flow

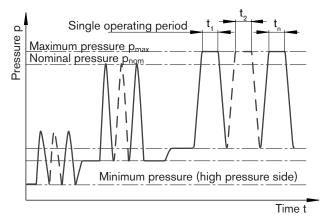
viewed on drive shaft	
clockwise rotation	counter clockwise rotation
A to B	B to A

Definitions

Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}


The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)

Minimum pressure at the high pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Rate of pressure change RA

Maximum permissible rate of pressure rise and pressure reduction during a pressure change, over the entire pressure range.

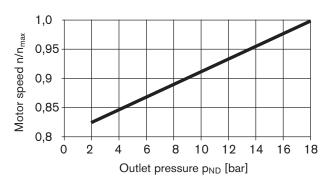
Total operating period = $t_1 + t_2 + ... + t_n$

¹⁾ Other values on request

²⁾ Lower pressures time dependent, please consult us.

Table of values (theoretical values, without efficiency and tolerances: valuea rounded)

Size		NG		010	011	014	016	018	023
Displacement		$V_{g\;max}$	cm ³	10.6	11.5	14.1	16.1	18	23.5
Speed 1)									
at $V_{g max}$		n_{nom}	rpm	5000	4200	4200	4200	4200	4900
Input flow							-		
at n _{nom}		q _{v max}	L/min	53	48	59	68	76	115
Power									
at n_{nom} , $\Delta p = 280$ bar		P_{max}	kW	24.7	22.5	27.6	31.6	35.3	53.6
Actual starting torque							-		
at n= 0 rpm, $\Delta p = 280$	bar		Nm	37.5	30	45	53	67.5	75
Torque									
at V _{g max}	$\Delta p = 280 \text{ bar}$	T_{max}	Nm	47	51	63	72	80	105
Torsional stiffness	R	С	Nm/rad	_	-	_	_	14835	28478
Drive shaft	W	С	Nm/rad	_	-	_	_	_	_
	С	С	Nm/rad	15084	18662	18662	18662	18662	30017
Moment of inertia rotary g	roup	J_{TW}	kgm ²	0.0006	0.00093	0.00093	0.00093	0.00093	0.0017
Maximum angular accelera	ation	α	rad/s ²	8000	6800	6800	6800	6800	5500
Case volume		V	L	0.1	0.15	0.15	0.15	0.15	0.6
Weight approx.		m	kg	5	6.5	6.5	6.5	6.5	12


Size		NG		028	037	045	058	063
Displacement		$V_{g max}$	cm ³	28.5	36.7	44.5	58	63.1
Speed 1)								
at V _{g max}		n _{nom}	rpm	4700	4200	4000	3600	3400
Input flow								
at n _{nom}		q _{v max}	L/min	134	154	178	209	215
Power								
at n_{nom} , $\Delta p = 280$	bar	P_{max}	kW	62.5	71.8	83.1	97.4	100.1
Actual starting torqu	е							
at n= 0 min ⁻¹ , $\Delta p = 1$	280 bar		Nm	105	125	170	205	230
Torque								
at $V_{g max}$	$\Delta p = 280 \text{ bar}$	T_{max}	Nm	127	163	198	258	281
Torsional stiffness	R	С	Nm/rad	28478	46859	46859	80590	80590
Drive shaft	W	С	Nm/rad	-	38489	38489	60907	60907
	С	С	Nm/rad	30017	46546	46546	87667	87667
Moment of inertia rotar	ry group	J _{TW}	kgm ²	0.0017	0.0033	0.0033	0.0056	0.0056
Maximum angular acce	eleration	α	rad/s ²	5500	4000	4000	3300	3300
Case volume		V	L	0.6	0.7	0.7	0.8	0.8
Weight approx.		m	kg	12	17	17	22	22

¹⁾ for maximum speed an outlet pressure (in low pressure side) of 18 bar is required (see diagram on page 7)

Note

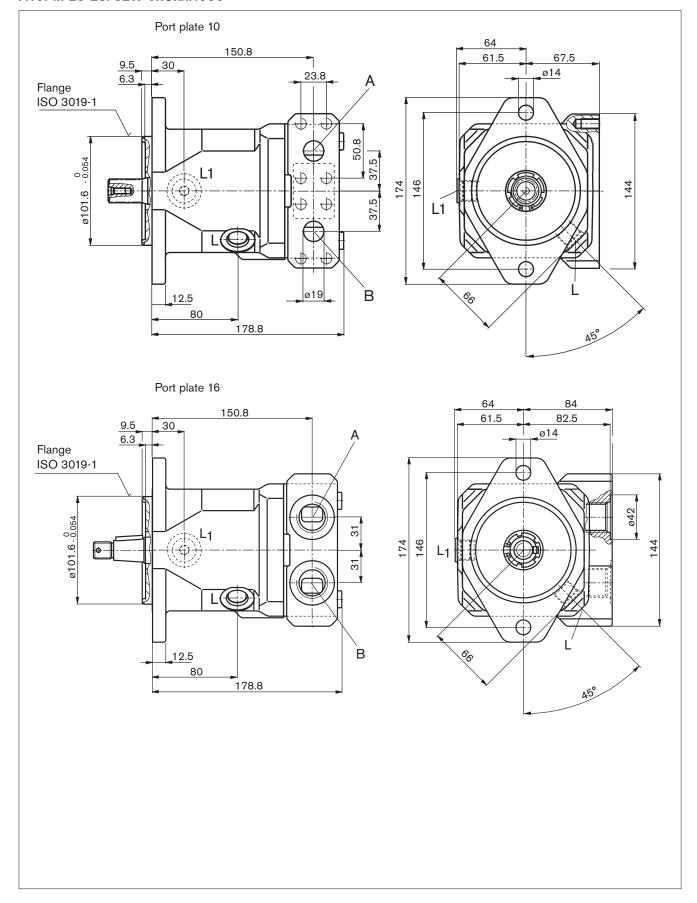
Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loads by means of experiment or calculation / simulation and comparison with the permissible values.

Permissible motor speed in relation to outlet pressure

Determination of motor size (NG)

Input flow [L/min] = Displacement per revolution in cm³ 1000 • η_ν = Differential pressure in bar Δp Torque $T \; = \; 1{,}59 \bullet V_g \bullet \Delta p \bullet \eta_{mh}$ = Speed in rpm n [Nm] 100 = Volumetric efficiency η_v $T_k \bullet \Delta p \bullet \eta_{mh}$ = Mechanical-hydraulic efficiency η_{mh} 2 π • T • n Power = Overall efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$) η_t = Torque constant T_k Output $q_v \cdot 1000 \cdot \eta_v$ [rpm] speed

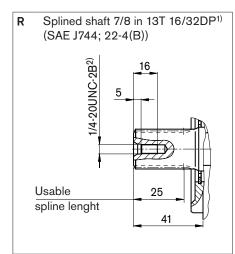
Permissible radial and axial forces on the drive shaft

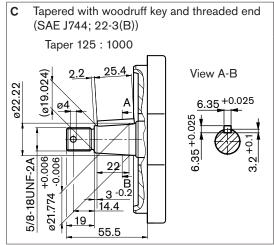

Size			NG		10	11	14	16	18	23
Max. radial force at X/2	Drive shaft R; W	Drive shaft C	F _{q max}	N	250	350	350	350	350	1200
Maximum axial force	e Fax ◀ ■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		± F _{ax max}	N	400	700	700	700	700	1000

Size			NG		28	37	45	58	63
Max. radial force at X/2	Drive shaft R; W	Drive shafte C	F _{q max}	N	1200	1500	1500	1700	1700
Maximum axial force	e Fax ∢		± F _{ax max}	N	1000	1500	1500	2000	2000

Dimensions A10FM size 23 - 28

Before finalising your design request a certified installation drawing. Dimensions in mm.


A10FM 23-28/52W-VxCxxN000



Dimensions A10FM size 23 - 28

Before finalising your design request a certified installation drawing. Maße in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Max. pressure [bar] ³⁾	State
A, B	Service line (high pressure series)	SAE J518	3/4 in	350	Ο
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17 deep		
A, B Port plate 16	Service line	DIN 3852	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	3/4-16 UNF-2B; 11 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	3/4-16 UNF-2B; 11 deep	4	X ⁴⁾

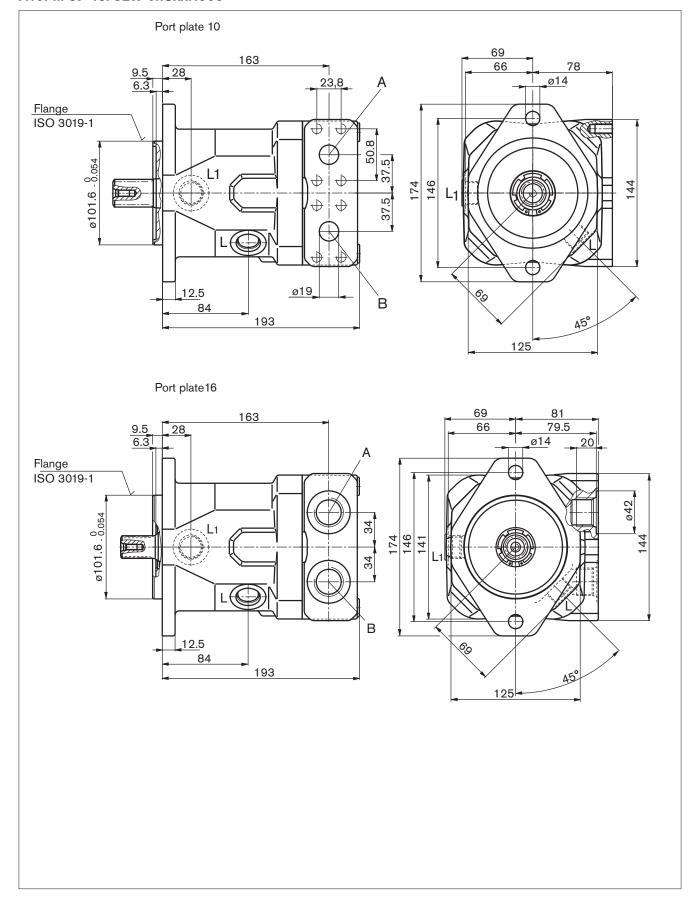
¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

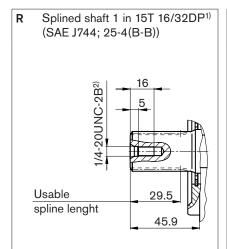
⁵⁾ The counterbore can be deeper than stipulated in the standard.

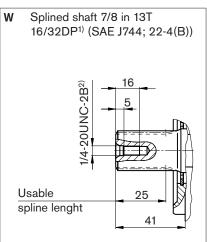

O = Must be connected (plugged on delivery)

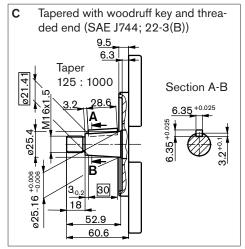
X = Plugged (in normal operation)

Dimensions A10FM size 37 - 45

Before finalising your design request a certified installation drawing. Dimensions in mm.


A10FM 37-45/52W-VxCxxN000




Dimensions A10FM size 37 - 45

Before finalising your design request a certified installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Max. pressure [bar] ³⁾	State
A, B	Service line (high pressure series)	SAE J518	3/4 in	350	0
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17 deep		
A, B Port plate 16	Service line	DIN 3852-1	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	X ⁴⁾

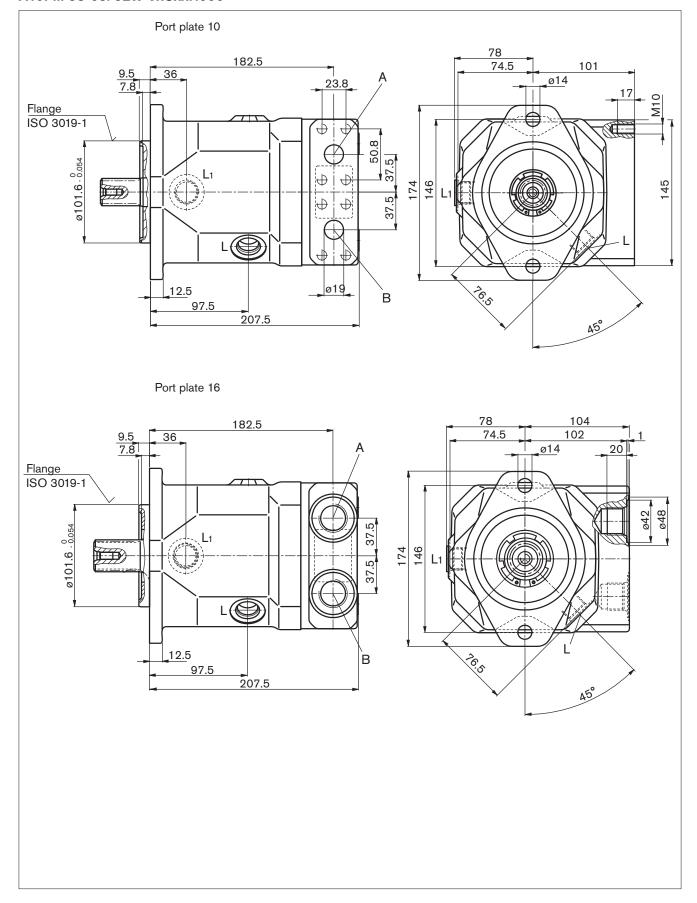
¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

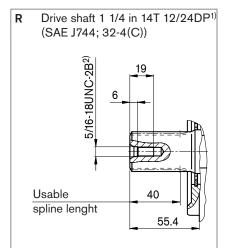
⁵⁾ The counterbore can be deeper than stipulated in the standard.

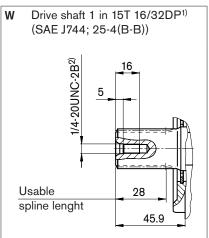

O = Must be connected (plugged on delivery)

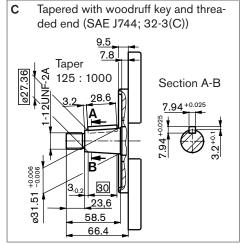
X = Plugged (in normal operation)

Dimensions A10FM size 58 - 63

Before finalising your design request a certified installation drawing. Dimensions in mm.


A10FM 58-63/52W-VxCxxN000




Dimensions A10FM size 58 - 63

Before finalising your design request a certified installation drawing. Dimensions in mm

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Service line (high pressure series)	SAE J518	3/4 in	350	0
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17deep		
A, B Port plate 16	Service line	DIN 3852-1	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	X ⁴⁾

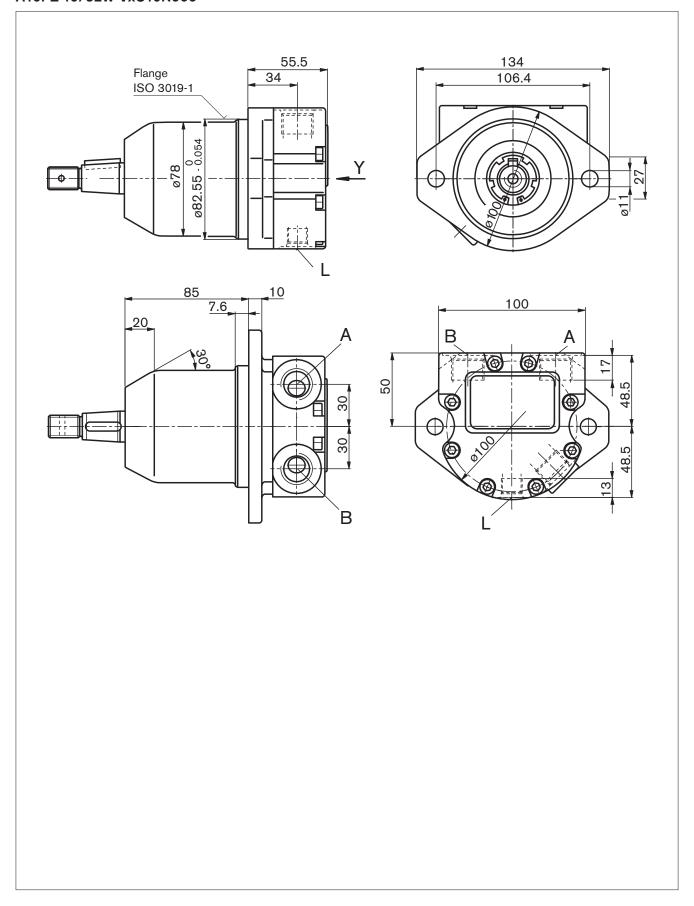
¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

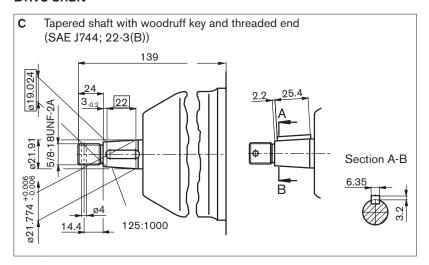
⁵⁾ The counterbore can be deeper than stipulated in the standard.


O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions A10FE size 10

Before finalising your design request a certified installation drawing. Dimensions in mm


A10FE 10/52W-VxC16N000

Dimensions A10FE size 10

Before finalising your design request a certified installation drawing. Dimensions in mm.

Drive shaft

Ports

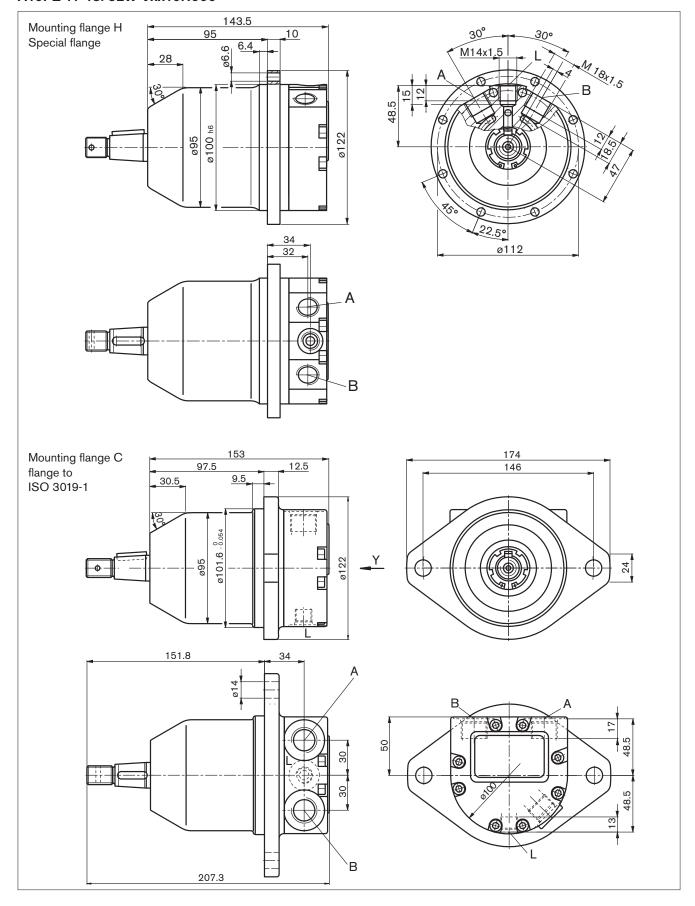
Designation	Port for	Standard	Size ²⁾	Max. pressu- re [bar] ³⁾	State
A, B	Service line	DIN 3852-1	M18 x 1.5; 17 deep	350	0
L	Case drain	DIN 3852-1	M14 x 1.5; 13 deep	4	O ⁴⁾

¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

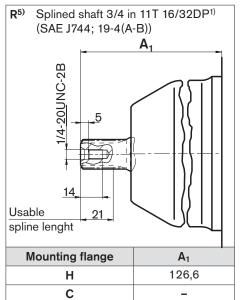
⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

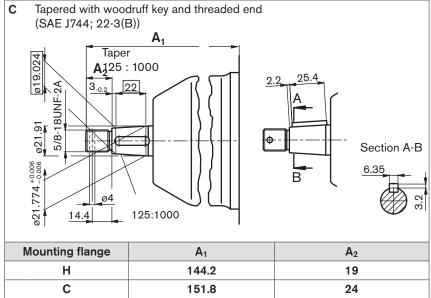

O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions A10FE size 11 - 18

Before finalising your design request a certified installation drawing. Dimensions in mm.


A10FE 11-18/52W-Vxx16N000



Dimensions A10FE size 11 - 18

Before finalising your design request a certified installation drawing. Dimensions in mm

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Max. pressu- re [bar] ³⁾	State
A, B	Service line	DIN 3852-1	M18 x 1.5; 12 deep	350	0
L	Case drain	DIN 3852-1	M14 x 1.5; 12 deep	4	O ⁴⁾
L ₁	Case drain	DIN 3852-1	M14 x 1.5; 12 deep	4	X ⁴⁾

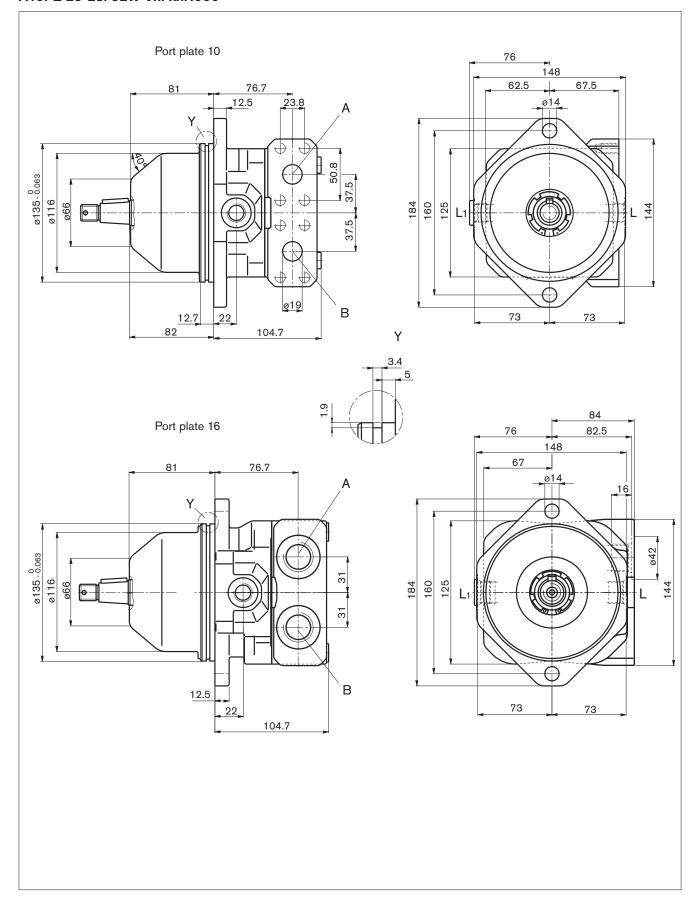
¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

 $^{^{4)}}$ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

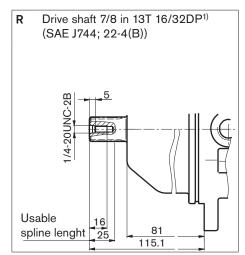
⁵⁾ R-shaft with C-flange for size 10 resp. 11 to 18 in preparation.

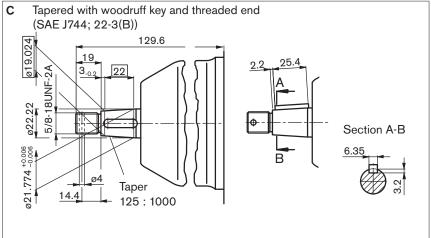

O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions A10FE size 23 - 28

Before finalising your design request a certified installation drawing. Dimensions in mm


A10FE 23-28/52W-VxFxxN000



Dimensions A10FE size 23 - 28

Before finalising your design request a certified installation drawing. Dimensions in mm

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Max. pressure [bar] ³⁾	State
A, B	Service line (high pressure series)	SAE J518	3/4 in	350	О
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17 deep		
A, B Port plate 16	Service line	DIN 3852-1	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	3/4-16 UNF-2B; 11 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	3/4-16 UNF-2B; 11 deep	4	X ⁴⁾

¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

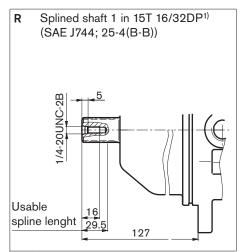
⁵⁾ The counterbore can be deeper than stipulated in the standard.

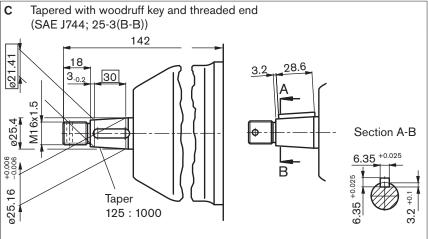
O = Must be connected (plugged on delivery)

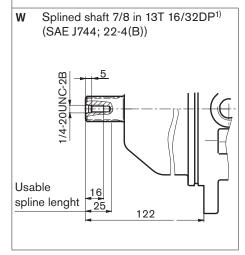
X = Plugged (in normal operation)

Dimensions A10FE size 37 - 45

Before finalising your design request a certified installation drawing. Dimensions in mm


A10FE 37-45/52W-VxFxxN000




Dimensions A10FE size 37 - 45

Before finalising your design request a certified installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Max. pressure [bar] ³⁾	State
A, B	Service line (high pressure range)	SAE J518	3/4 in	350	0
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17 deep		
A, B Port plate 16	Service line	DIN 3852-1	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	X ⁴⁾

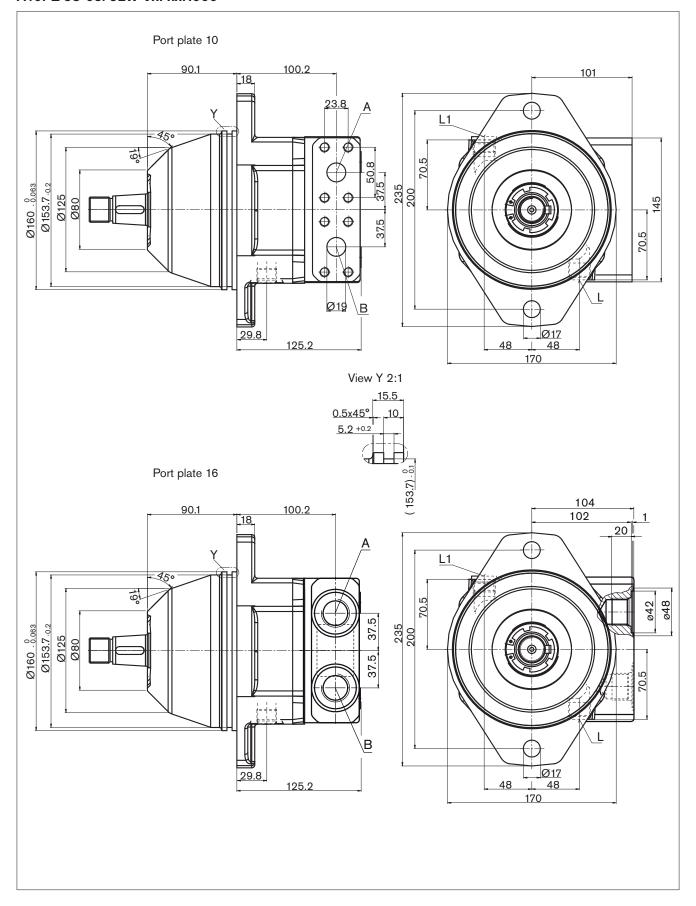
¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

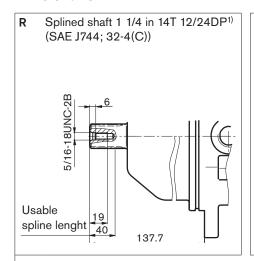
⁵⁾ The counterbore can be deeper than stipulated in the standard.

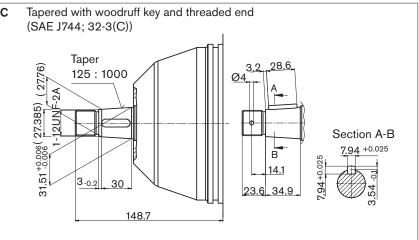

O = Must be connected (plugged on delivery)

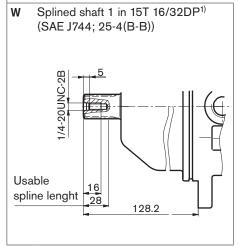
X = Plugged (in normal operation)

Dimensions A10FE size 58 - 63

Before finalising your design request a certified installation drawing. Dimensions in mm.


A10FE 58-63/52W-VxFxxN000




Dimensions A10FE size 58 - 63

Before finalising your design request a certified installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Max. pressure [bar] ³⁾	State
A, B	Service line (high pressure range)	SAE J518	3/4 in	350	0
Port plate 10	Mounting bolts	DIN 13	M10 x 1.5; 17 deep		
A, B Port plate 16	Service line	DIN 3852-1	M27 x 2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14 UNF-2B; 13 deep	4	X ⁴⁾

¹⁾ ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Observe the general instructions on page 28 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

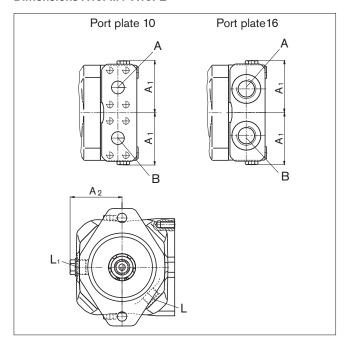
⁴⁾ Depending on the installation position, L or L₁ must be connected (see also page 26 - 27).

⁵⁾ The counterbore can be deeper than stipulated in the standard.

O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Flushing and boost pressure valve

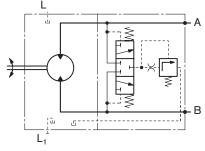

Before finalising your design request a certified installation drawing. Dimensions in mm.

Ordering Option N007

This valve assembly is used to flush an unacceptable heat load out of the closed loop circuit, and to maintain the necessary minimum boost pressure (16 bar, fixed setting). The valve is integrated into the port plate.

A built-in fixed orifice determines the flushing flow, which is taken out of the low pressure side of the loop and directed into the motor housing. It leaves the housing together with the case drain flow. This combined flow is replenished with fresh oil by means of the boost pump.

Dimensions A10FM / A10FE


Standard flushing flow

With low press. side $p_{ND}=20$ bar and an orifice dia. 1,6 mm: 5,5 L/min (sizes 23 - 63). Other orifice diameters are available, please state in clear text.

Further flushing flows for sizes 23 - 63 see table:

Flushing flow [L/min]	Orifice ø [mm]
3.5	1.2
5.5	1.6
9	2

Schematic

	Port for
A; B	Service line
L, L ₁	Case drain (L ₁ plugged)

Size (NG)	A ₁	A_2
23/28	72	72
37/45	77	77
58/63	77	82

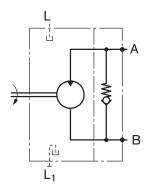
Anti cavitation valve

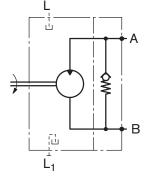
Ordering option N002

When stopping a system with a relatively large mass (i.e. fan drive) the anti-cavitation valve provides fluid to the motor inlet during the coasting time.

The valve assembly is integrated inside the port plate.

Important


It is necessary to specify a direction of rotation (clockwise or counter clockwise) looking at the shaft end of the motor.


The outside dimensions are identical to the standard units except the A10FE 11 - 18 with the 8-hole mounting flange, for the difference in lenght see unit dimensions.

Schematic

Clockwise rotation

Counter clockwise rotation

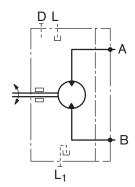
	Port for
A; B	Service line
L, L ₁	Case drain (L ₁ plugged)

Speed sensor

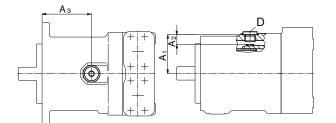
Ordering option D

The version A10FM...D comprises gearing around the rotary unit (prepared for speed pickup).

In this case, the rotating cylinder barrel can provide a speed dependent signal, which can be picked up by a suitable sensor and processed for further evaluation. Sensor port (D) will be closed for delivery.

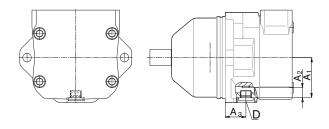

A motor, prepared for speed sensing will be delivered without the necessary accessory parts which must be ordered separately.

Inductive speed sensor ID R 18/20-L250 (see RE 95130) and mounting parts (spacer and 2 seals per kit) can be ordered separately with the following part numbers:


Size (NG)	Ordering Nr.	Nr. of teeth
23/28	R902428802	48
37/45	R902433368	48
58/63	in preparation	9

Dimensions

Schematic



	Port for
A; B	Service line
L, L ₁	Case drain (L ₁ plugged)

A10FM....D

Size (NG)	A1	A2	A3	Port "D" (plugged)
23/28	61	15.5	101.8	M18 x 1.5
37/45	66	17	84.2	M18 x 1.5
58/63	69	14.8	128.5	M18 x 1.5

A10FE.....D

Size (NG)	A1	A2	A3	Port "D" (plugged)
23/28	61	15.5	27.7	M18 x 1.5
37/45	66	17	33.9	M18 x 1.5
58/63	69	14.8	46.1	M18 x 1.5

Installation instructions

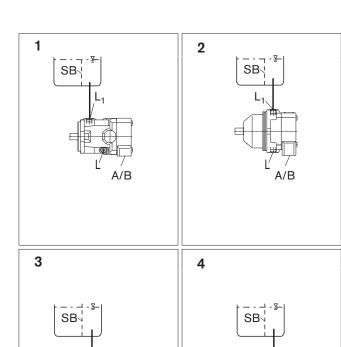
General

At all times, the axial piston unit must be filled with fluid and air bled during commissioning and operation. This must also be observed after a prolonged period of standstill as the system may drain back to the reservoir via the hydraulic lines.

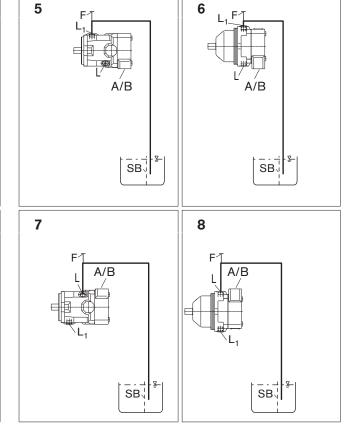
The case drain fluid in the motor housing must be directed to tank via the highest available tank port and must drain the fluid below the minimum fluid level in the reservoir.

Installation position

See following examples 1 to 8.


Recommended installation positions: 1 and 3 resp. 2 and 4. Additional installation positions are available on request.

Below reservoir installation (standard)


Below reservoir installation means, that the motor is mounted below the minimum fluid level.

Above reservoir installation

Above reservoir installation means, that the motor is mounted above the minimum fluid level. A check valve in the case drain line is only permissible under certain conditions; please consult US

Install. position	Air bleed	Filling
1, 2	_	L ₁
3, 4	_	L

Install. position	Air bleed	Filling
5, 6	F	L ₁ (F)
7, 8	F	L (F)

 $L/L_1 = Case drain port$, F = Air bleed resp. filling port, , SB = Baffle.

Notes

General instructions

- The motor A10FM and A10FE has been designed to be used in open and closed circuits.
- Project planning, assembly and commissioning of the axial piston unit require the involvement of qualified personnel.
- Before operating the axial piston unit read the relevant operating manual thoroughly and completely. If needed request this
 information from Rexroth
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
 - Pressure ports:

The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.

- The service line ports and function ports are only designed to accommodate hydraulic lines.
- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to DIN 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instructions regarding the tightening torques of the fittings used.

Mounting bolts:

For fixing screws with metric ISO thread according to DIN 13 or thread according to ASME B1.1, we recommend checking the tightening torque individually according to VDI 2230.

- Mounting bolts threads and threaded ports in the axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded.
 For values, see the following table.
- Threaded plugs:

For the threaded plugs, supplied with the axial piston unit, the required tightening torques M_V apply. For values, see the following table.

Ports Standard		Maximum permissible tightening torque for the female threads M _{G max}	Required tightening torque for the threaded plugs M _V	WAF hexagon socket of the threaded plugs
DIN 3852	M14 x 1.5	80 Nm	35 Nm ¹⁾	6 mm
	M18 x 1.5	140 Nm	60 Nm ¹⁾	8 mm
	M27 x 2	330 Nm	135 Nm ¹⁾	12 mm
ISO 11926	3/4-16 UNF-2B	160 Nm	62 Nm	5/16 in
	7/8-14 UNF-2B	240 Nm	110 Nm	3/8 in

1) The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.

Bosch Rexroth AG
Axial Piston Units
An den Kelterwiesen 14
72160 Horb a.N., Germany
Telephone +49 (0) 74 51 92-0
Fax +49 (0) 74 51 82 21
info.brm-ak@boschrexroth.de
www.boschrexroth.com/axial-piston-motor

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Axial piston motors Variable motors

Designation	Туре	Size	Series	Data sheet	Page
Variable motor	A6VM	281000	63	91604	233
Variable motor	A6VM	55200	65	91607	289
Variable motor	A6VM	60215	71	91610	365
Variable motor	A6VM	280	71	91611	441
Variable plug-in motor	A6VE	28250	63	91606	467
Variable plug-in motor	A6VE	55200	65	91615	507
Variable plug-in motor	A6VE	60215	71	91616	549
Variable motor	A10VM/E	2885	52	91703	591
Reversible axial piston variable motor for hydrostatic fan drives	A10VER	3045	52	91706	619

Product Catalog Mobile Hydraulics | Part 2: Motors, Gears

Rexroth Bosch Group

Axial piston variable motor A6VM Series 63

Europe

RE-E 91604

Edition: 05.2016 Replaces: 06.2012

- ► All-purpose high pressure motor
- ► Sizes 28: Nominal pressure 400 bar Maximum pressure 450 bar
- ► Sizes 250 to 1000: Nominal pressure 350 bar Maximum pressure 400 bar
- Open and closed circuits

Contents

Features

- Robust motor with long service life
- Approved for very high rotational speeds
- ► High control range (can be swiveled to zero)
- ► High torque
- ▶ Variety of controls
- Optionally with flushing and boost-pressure valve mounted
- Optionally with integrated or mounted counterbalance valve
- ► Bent-axis design

Type code	2
Hydraulic fluids	5
Bearing	6
Shaft seal	6
Working pressure range	7
Technical data	8
HD - Proportional control, hydraulic	10
EP - Proportional control, electric	14
HZ – Two-point control, hydraulic	18
EZ – Two-point control, electric	20
HA – Automatic high-pressure related control	22
DA – Automatic control, speed related	28
Electric travel direction valve (for DA, HA.R)	30
Dimensions, sizes 28	31
Dimensions, sizes 250 to 1000	35
Connector for solenoids	47
Flushing and boost-pressure valve	48
Swivel angle indicator	50
Speed sensor	51
Installation instructions	52
Project planning notes	54
Safety instructions	55

Type code

2

01	02	03	04 0	5 06	07	08		09	9	10	11		12	13	14	15	16	17	18	19	20
	A6V		М				/	6	3	W		-	V							-	
vdr	aulic fluid																				
01	Mineral oi	l and HF	D. HFD	for size	s 250	to 100	0 on	y in c	onju	unctio	on wit	:h long	g-life b	earing	s "L" (withou	ut cod	e)			
	HFB, HFC					Sizes 2															
					- :	Sizes 2	250 to	1000	0 (0	nly ir	conj	unctio	n with	long-l	ife bea	arings	"L")				E
xial	piston uni	t	·																		
02	Bent-axis		ariable																		A6V
	1															250	251	-	F00	1000	
03	Standard		(witho	ut codo	`											250 •	35)	500	1000	
03	Long-life k		(WILIIO	ut code)											•			•	-	L
	1																				
	ating mode																				
04	Motor (plu	ug-in mot	tor A6V	L, see d	ata sh	eet 91	606)														M
ize	(NG)																				,
05	Geometric	c displac	ement,	see pag	e 8									28		250	35	5	500	1000	J
ont	rol device ¹)																			
06	Proportion	nal contr	ol, hyd	raulic							Δp_{St}	= 10 b	ar	•		•	•		•	•	HD1
											Δp_{St} :	= 25 b	ar	•		•	•		•	•	HD2
											Δp_{St} :	= 35 b	ar	-		•	•		•	•	HD3
	Proportion	nal contr	ol, elec	tric							<i>U</i> = 1	.2 V		•		•	•		•	•	EP1
											<i>U</i> = 2	4 V		•		•	•		•	•	EP2
	Two-point	control,	hydrau	ılic										-		•	•		•	•	HZ
														•		-	-		-	-	HZ1
														-		-	_		-	-	HZ3
	Two-point	control,	electri	С							U = 1	.2 V		•		•	•		•	•	EZ1
											<i>U</i> = 2	!4 V		•		•	•		•	•	EZ2
											U = 1	.2 V		-		-	_		-	-	EZ3
											<i>U</i> = 2	!4 V		-		-	_		-	-	EZ4
	Automatic	,				With m				re inc	rease			•		•	•		•	•	HA1
	high-press	ure relat	ea		_	$\Delta p \leq ap$. 44	100	L									
					,	With p	essur	e incr	ease	e Δp =	: 100 1	oar		•		•	•		•	•	HA2
	Automatic	control,	speed	related												_			_		DA
	$p_{\mathrm{St}}/p_{\mathrm{HD}}$:	= 3/100	Нус	Iraulic tr	avel d	lirectio	n val	ve						_		•	•			0	DA
	$p_{\mathrm{St}}/p_{\mathrm{HD}}$:	= 5/100	Нус	Iraulic tr	avel d	lirectio	n val	ve						•		-	_		-	-	DA1
				ctric tra		ection	valve	+ ele	ectri	С	<i>U</i> = 1	.2 V		•		-	_		-	-	DA2
			V _{g n}	_{nax} circu	ııt						<i>U</i> = 2	24 V		•		-	-		-	-	DA3
	$p_{\mathrm{St}}/p_{\mathrm{HD}}$:	= 8/100		lraulic tr										•		-	-		-	-	DA4
				ctric tra		ection	valve	+ ele	ectri	c .	<i>U</i> = 1			•		-	-	_	-	-	DA5
	L		V _{g n}	_{nax} circu	IIL						<i>U</i> = 2	!4 V		•		-	_			_	DA6
res	sure contro	l/overri	de (onl	y for HD	, EP)									28		250	35	5	500	1000	
07	Without p	ressure (control	override/	е									•		•	•		•	•	
	Pressure o	control	fixe	d settin	g									•		•	•		•	•	D
			Нус	Iraulic o	verrid	e, two	-poin	t						•		2)	2)		2)	2)	E
			Нус	Iraulic re	emote	contr	ol, pr	oport	iona	al				-		•	•	T	•	•	G

^{• =} Available • = On request - = Not available

Bosch Rexroth AG, RE-E 91604/05.2016 | Europe

¹⁾ Specify response time damping when ordering (size 28)

 $_{\rm 2)}\,$ 2nd pressure setting fitted as standard with version D (sizes 250 to 1000)

01	02	03 	04	05 	$\frac{C}{\Gamma}$)6 	07	80 	Τ,	09	10 w	11 		12 V	13 :	L4 15 	16 	17 18 	19 	20
	A6V		M		_				/	63	VV		_	V						
Over	rides for th	e HA1	and H	HA2 co	ont	rols									28	250	355	500	1000	
80	Without o	verride	(with	out co	ode	;)									•	•	•	•	•	
	Hydraulic	overrio	de, rer	note c	ont	trol, p	orop	ortio	nal						•	•	•	•	•	Т
	Remote co	ntrol e	lectric	overri	ide,	, two-	point	t				<i>U</i> = 1	2 V		•	-	-	-	-	U1
												<i>U</i> = 2	4 V		•	-	-	-	-	U2
	Electric ov	erride										<i>U</i> = 1	2 V		•	-	-	_	_	R1
	+ travel di	rectior	n valve	, elect	iric							<i>U</i> = 2	4 V		•	-	_	_	_	R2
Serie	es																			
09	Series 6, i	ndex 3	3																	63
Direc	tion of rot	ation																		
10	Viewed on	drive	shaft,	bidire	ecti	onal						_								W
Setti	ng ranges f	or dis	placer	nent ³⁾	ı										28	250	355	500	1000	
11	$V_{\rm g min}$ = 0 1	o 0.7	$V_{\sf g\; max}$							-	-				•	_	-	-	_	
	$V_{\rm g min}$ = 0 1	o 0.4	$V_{g\;max}$				1	$V_{\rm g\; max}$	= V _g	_{max} to 0).8 V _{g n}	nax			-	•	•	•	•	1
	$V_{\text{g min}} > 0.4$			B V_{gma}	ax					_{max} to 0					-	•	•	•	•	2
Seali	ng materia	l																		
12			omer))																V
Drive	shaft														28	250	355	500	1000	
13	Splined sh	aft DI	N 548	0											•	_	-	_	-	Α
															•	•	•	•	•	Z
	Parallel ke	yed sh	aft DI	N 688	5										-	•	•	•	•	Р
Moui	nting flange	•													28			•		
14	ISO 3019-														20	250	355	500	1000	
							-					4-hol	е		•	250	355	500	1000	В
												4-hol				T	1		1	В
Port	plate for w	orking	(line ⁴⁾)											•	•	-	-	-	
Port 15	plate for w				at r	ear								0	-	-	-	-	-	
					at r	ear						8-hol		0 7	• - 28	250	- • 355	500	1000	Н
		ng por	ts A a	ınd B a			oppo	site				8-hol			- 28	250	355	500 •	1000	H 010
	SAE worki	ng por	ts A a	ınd B a			pppo	site				8-hol		7	- 28 •	250 •	355	500	1000	010 017
	SAE worki	ng por	rts A a	and B a	late	eral, o			+ rear			8-hol		7	- 28 •	250 •	355	500 •	1000	010 017 020
	SAE worki SAE worki SAE worki	ng por ng por ng por with 1	rts A a	and B and B I	late	eral, o			+ rear			8-hol		7 0 7	- 28 - • • • •	250	355	500 • • • • • •	1000	H 010 017 020 027
	SAE worki SAE worki SAE worki Port plate pressure r	ng por ng por ng por with 1 elief va	rts A a	and B I	late	eral, o			+ rear			8-hol		7 0 7 0	28 • • • • • • • • • • • • • • • • • • •	250 • • • • • • • •	355	500 • • • • • • •	1000	H 010 017 020 027 150
15	SAE worki SAE worki SAE worki Port plate pressure r a countert	ng por ng por with 1 elief va	rts A a rts A a rts A a rts A a	and B I	late	eral, o			+ rear			8-hol		7 0 7 0	28 • • • • • • • • • • • • • • • • • • •	250 • • • • • • • • • • • • • • • • • • •	355	500 • • • • • • • • • • • • • • • • • • •	1000	H 010 017 020 027 150 380
15	SAE worki SAE worki SAE worki Port plate pressure r a counterl	ng por ng por with 1 elief va palance page 4	rts A a rts A a rts A a rts A a	and B I	late	eral, o			+ rear			8-hol		7 0 7 0 0 8	28 • • • • • • • • • • • • • • • • • • •	250 • • • • • • • • • • • • • • • • • • •	355	500 • • • • • • • • • • • • • • • • • • •	1000	H 010 017 020 027 150 380
15	SAE worki SAE worki SAE worki Port plate pressure r a countert	ng por ng por with 1 elief va palance page 4	rts A a rts A a rts A a -stage alves fe valve 48)	and B I and B	late	eral, o	pppo	site +	+ rear			8-hol		7 0 7 0 0	28 • • • • • • • • • • • • • • • • • • •	250 • • • • • • • • • • • • • • • • • • •	355	500 • • • • • • • • • • • • • • • • • • •	1000	H 010 017 020 027 150 380

• = Available • = On request - = Not available

³⁾ Please specify exact settings for $V_{\rm g\ min}$ and $V_{\rm g\ max}$ in plain text when ordering: $V_{\rm g\ min}$ = ... cm³, $V_{\rm g\ max}$ = ... cm³

⁴⁾ Fastening thread, metric

⁵⁾ Only possible in combination with HD, EP and HA control.

⁶⁾ Counterbalance valve MHB32, please contact us.

4 **A6VM Series 63** | Axial piston variable motor Type code

01	02	03	04	05	06	07	80		09	10	11		12	13	14	15	16	17	18	19		20
	A6V		М					1	63	w		-	٧								- [
Spee	d sensor (see pag	ge 51)											28		250	355	5	500	1000	3)	
16	Without	speed s	ensor	(with	out co	de)								•		•	•		•	•		0
	Prepared	for HD	D spe	ed ser	sor									A		•	•		•	-		F
	HDD spe	ed sens	or mo	unted	9)									A		•	•		•	-		Н
	Prepared	for DS	M/DS	A spee	d sen	sor								•		-	_		-	-		U
	DSM/DS/	A speed	sens	or mou	ınted ⁹)								•		-	_		-	-		V
Swiv	el angle se	ensor (s	ее ра	ge 50))									28		250	355	5	500	1000)	
17	Without	wivel a	ngle s	ensor										•		•	•		•	-		
	Optical s	wivel ar	ngle se	ensor										-		•	•		•	•		٧
	Electric s	wivel a	ngle s	ensor										-		•	•		•	•		E
Conn	ector for	solenoi	ds (se	e pag	e 47)									28			25	0 to 1	.000			
18	Without	connect	or (w	ithout	solen	oid, w	ith hyd	drauli	conti	rol onl	y)			•				-				0
	(sizes 25	0 to 100	00)											-				•				
	DEUTSC	l molde	d con	necto	r, 2-pir	n – wi	thout	suppr	essor	diode				•				-				Р
	HIRSCHN	1ANN co	onnec	tor – v	vithou	t supp	resso	r diod	le					-				•				
Begir	ning of co	ontrol												28		250	355	5	500	1000)	
19	At V_{gmin}	standa	rd for	HA)										•		•	•		•	•		Α
	At V_{gmax}	(standa	rd for	HD, F	IZ, EP,	EZ, D	A)							•		•	•		•	•		В
Stand	dard / spe	cial ver	sion																			
20	Standard	version	1																			
	Standard	version	with	instal	lation	variar	ts, e.g	g. T pc	rts op	en and	d close	d con	trary t	o stan	dard							-Y

-S

• = Available • = On request **▲** = Not for new projects **-** = Not available

Notice

Special version

- ▶ Note the project planning notes on page 54.
- ► In addition to the type code, please specify the relevant technical data when placing your order.

Bosch Rexroth AG, RE-E 91604/05.2016 | Europe

⁷⁾ Please contact us.

⁸⁾ Specify type code separately for sensor in accordance with data sheet 95132 – DSM or 95133 – DSA, 95135 – HDD and observe the requirements for the electronics.

Hydraulic fluids

The A6VM variable motor is designed for operation with HLP mineral oil according to DIN 51524. Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids
- 90222: Fire-resistant, water-free hydraulic fluids (HFDR/ HFDU)
- ▶ 990223: Fire-resistant, water-containing hydraulic fluids (HFC, HFB)
- 90225: Axial piston units for operation with water-free and water-containing fire-resistant hydraulic fluids (HFDR, HFDU, HFB, HFC).

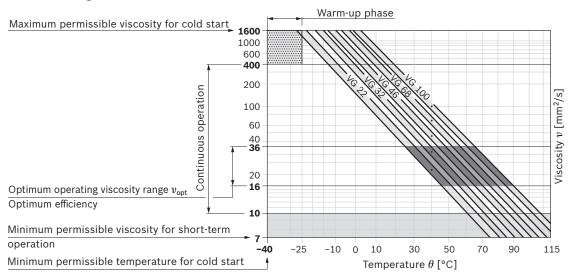
The variable motor A6VM is not suitable for operation with HFA fluids. If operating with HFB-, HFC- and HFD or environmentally acceptable hydraulic fluids, the limitations regarding technical data or other seals must be observed.

Notes on selection of hydraulic fluid

The hydraulic fluid should be selected such that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt} see selection diagram).

Notice

At no point of the component may the temperature be higher than 115 °C. The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.


If the above conditions cannot be maintained due to extreme operating parameters, we recommend the use of a flushing and boost-pressure valve (see page 48).

Viscosity and temperature of hydraulic fluids

	Viscosity	Temperature	Comment
Cold start ¹⁾	$v_{\text{max}} \le 1600 \text{ mm}^2/\text{s}$	θ _{St} ≥ -40 °C	$t \le 3 \text{ min, } n \le 1000 \text{ rpm, without load } p \le 50 \text{ bar}$
Permissible temper	rature difference	ΔT ≤ 25 K	between axial piston unit and hydraulic fluid in the system
Warm-up phase	$v = 1600 \text{ to } 400 \text{ mm}^2/\text{s}$	θ = -40 °C to -25 °C	at $p \le 0.7 \times p_{\text{nom}}$, $n \le 0.5 \times n_{\text{nom}}$ and $t \le 15$ min
Continuous operation	$v = 400 \text{ to } 10 \text{ mm}^2/\text{s}$		This corresponds, for example on the VG 46, to a temperature range of +5 °C to +85 °C (see selection diagram)
		θ = -25 °C to +103 °C	Note the permissible temperature range of the shaft seal measured at port T (ΔT = approx. 12 K between the bearing/shaft seal and port T)
	$v_{\rm opt} = 36 \text{ to } 16 \text{ mm}^2/\text{s}$		Range of optimum operating viscosity and efficiency
Short-term operation	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		$t < 3 \text{ min}, p < 0.3 \times p_{\text{nom}}$

¹⁾ For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range -40 °C to +90 °C).

▼ Selection diagram

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit. A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.

At very high hydraulic fluid temperatures (90 °C to maximum 103 °C, measured at port **T**), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

Effect of case pressure on beginning of control

An increase in case pressure affects the beginning of control of the variable motor when using the following control options:

- ► HD, HA.T3: increase
- ► HD, EP, HA, HA.T (Sizes 250 to 1000): increase
- ▶ DA: decrease

With the following settings, an increase in case pressure will have no effect on the beginning of control:

HA.R and HA.U, EP, HA

The factory settings for the beginning of control are made at $p_{\rm abs}$ = 2 bar (size 28) and $p_{\rm abs}$ = 1 bar (sizes 250 to 1000) case pressure.

Flow direction

Direction of rotation, viewed	d on drive shaft
clockwise	counter-clockwise
A to B	B to A

Bearing

Long-life bearing, NG250-1000

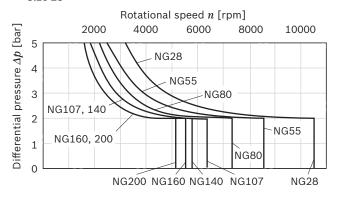
For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible.

Flushing flow (recommended)

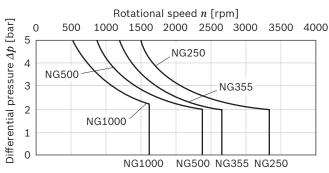
Size	250	355	500	1000
$q_{ m v flush}$ [l/min]	10	16	16	16

To reduce the leakage temperature, external case flushing is possible via port **U** or internally via a flushing valve.

Shaft seal


Permissible pressure loading

The service life of the shaft seal is influenced by the rotational speed of the axial piston unit and the leakage pressure in the housing (case pressure). Momentary ($t < 0.1 \, \mathrm{s}$) pressure peaks of up to 10 bar are allowed. Case pressures of a continuous 2 bar maximum are permitted to be able to utilize the entire speed range. Higher case pressures are permissible at lower rotational speeds (see diagram).

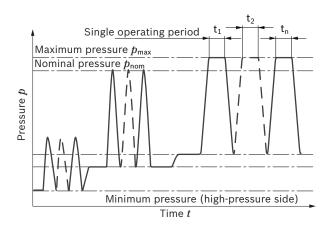

The service life of the shaft seal decreases with increasing frequency of pressure peaks and increasing mean differential pressure.

The case pressure must be equal to or higher than the ambient pressure.

▼ Size 28

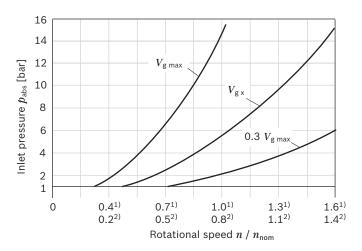
▼ Sizes 250 to 1000

The FKM shaft seal ring may be used for leakage temperatures from -25 °C to +115 °C. For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).


Working pressure range

Pressure at working port A or B			Definition			
Nominal pressure p_{nom} NG28		400 bar	The nominal pressure corresponds to the maximum design pressure.			
	NG250 to 1000	350 bar				
Maximum pressure p_{max}	NG28	450 bar	The maximum pressure corresponds to the maximum working pressure			
	NG250 to 1000	400 bar	within the single operating period. The sum of the single operating			
Single operating period		10 s	— periods must not exceed the total operating period.			
Total operating period	Total operating period		_			
Minimum pressure (high-pressure side)		25 bar	Minimum pressure at the high-pressure side (A or B) required to prevent damage to the axial piston unit.			
Minimum pressure – operation as a pump (inlet)		See diagram below	To avoid damage to the axial piston motor during operation as a pump (change of the high-pressure side at constant direction of rotation, e.g. during braking processes) a minimum pressure has to be ensured at the working port (inlet). The minimum required pressure is dependent on the rotational speed and displacement of the axial piston unit (see characteristic curve).			
Summation pressure $p_{ extsf{Su}}$ (pressure A + pressure B)		700 bar	The summation pressure is the sum of the pressures at the ports for the working lines $({\bf A} \ {\bf and} \ {\bf B})$			
Rate of pressure change $R_{\rm Amax}$ with built-in pressure relief valve			Maximum permissible rate of pressure build-up and reduction during a			
		9000 bar/s	pressure change across the entire pressure range.			
without pressure relief val	ve	16000 bar/s				

▼ Rate of pressure change $R_{A \text{ max}}$



▼ Pressure definition

Total operating period = $t_1 + t_2 + ... + t_n$

▼ Minimum pressure – operation as a pump (inlet)

This diagram is only valid for the optimum viscosity range of v_{opt} = 36 to 16 mm²/s.

If the above mentioned conditions cannot be ensured please contact us.

Notice

Working pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids, please contact us.

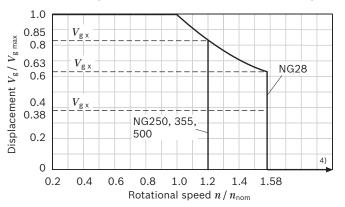
Europe | RE-E 91604/05.2016, Bosch Rexroth AG

¹⁾ For size 28

²⁾ For sizes 250 to 1000

Technical data

Size		NG		28	250	355	500	1000
Geometric displacement, per revolution ¹⁾		V_{gmax}	cm ³	28.1	250	355	500	1000
		V_{gmin}	cm ³	0	0	0	0	0
			cm ³	18	205	300	417	1000
Maximum rotational	at V_{gmax}	n_{nom}	rpm	5550	2700	2240	2000	1600
speed ²⁾ (while adhering to the maximum permissible	at $V_{\rm g} < V_{\rm g}_{\rm x}$ (see diagram on page 8)	n_{max}	rpm	8750	3300	2650	2400	1600
inlet flow)	where $V_{\mathrm{g}0}$	n_{max}	rpm	10450	3300	2650	2400	1600
Inlet flow ³⁾	at n_{nom} and V_{gmax}	q_{vmax}	l/min	156	675	795	1000	1600
Torque	at $V_{\rm gmax}$ and Δp = 400 bar	T	Nm	179	-	-	-	-
	at $V_{\rm gmax}$ and Δp = 350 bar	T	Nm	157	1391	1978	2785	5571
Rotary stiffness	$V_{ m g\ max}$ to $V_{ m g}/2$	c_{min}	kNm/rad	6	60	75	115	281
	$V_{\rm g}/2$ to 0 (interpolated)	c_{min}	kNm/rad	18	181	262	391	820
Moment of inertia for rotary group		$J_{\sf TW}$	kgm²	0.0014	0.061	0.102	0.178	0.55
Maximum angular acceleration		α	rad/s²	47000	10000	8300	5500	4000
Case volume		V	1	0.5	3.00	5.0	7.0	16.0
Weight approx.		m	kg	16	100	170	210	430


Speed range

The minimum rotational speed n_{\min} is not restricted. Please consult us regarding applications requiring uniformity of the rotatory motion at low speeds.

Notice

- ► Theoretical values, without efficiency and tolerances; values rounded
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet 90261.

Permissible displacement in relation to rotational speed

Determining the operating characteristics							
Inlet flow	$q_{\sf v}$	=	$\frac{V_{\rm g} \times n}{1000 \times \eta_{\rm v}}$	[I/min]			
Rotational speed	n	=	$\frac{q_{v} \times 1000 \times \eta_{v}}{V_{g}}$	[rpm]			
Torque	T	=	$\frac{V_{g} \times \Delta p \times \eta_{hm}}{20 \times \pi}$	[Nm]			
Power	P	=	$\frac{2 \pi \times T \times n}{60000} = \frac{q_{v} \times \Delta p \times n}{600}$	η _t [kW]			

1) The minimum and maximum displacement can be steplessly adjusted, see type code on page 3. (standard setting for sizes 250 to 1000 if ordering code is missing:

$$V_{\mathrm{g\;min}}$$
 = 0.2 × $V_{\mathrm{g\;max}}$, $V_{\mathrm{g\;max}}$ = $V_{\mathrm{g\;max}}$).

- 2) The values are applicable:
 - for the optimum viscosity range from $v_{\rm opt}$ = 36 to 16 mm²/s
 - with hydraulic fluid based on mineral oils
- 3) Torque without radial force, with radial force, see page 9.
- 4) Values in this range on request

Bosch Rexroth AG, RE-E 91604/05.2016 | Europe

Key

 $V_{\rm g}$ Displacement per revolution [cm³]

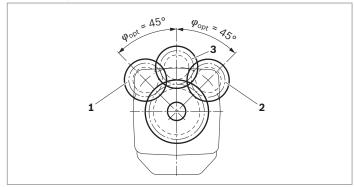
 Δp Differential pressure [bar]

n Rotational speed [rpm]

 $\eta_{
m v}$ Volumetric efficiency

 $\eta_{
m hm}$ Hydraulic-mechanical efficiency

 $\eta_{\rm t}$ Total efficiency ($\eta_{\rm t}$ = $\eta_{\rm v} \times \eta_{\rm hm}$)


Permissible radial and axial forces of the drive shafts

Size		NG		28	28	250	250	355	355	500	500	1000	1000
Drive shaft		Code		Α	Z	Z	Р	Z	Р	Z	Р	Z	Р
	Splined shaft			W30	W25	W50	-	W60	-	W70	-	W90	_
	Keyed shaft	Ø	mm	-	-	-	50	-	60	-	70	-	90
Maximum radial force	lF _q _	$F_{q\;max}$	N	4838	6436	1200 ¹⁾	1200 ¹⁾	1500 ¹⁾	1500 ¹⁾	1900 ¹⁾	1900 ¹⁾	2600 ¹⁾	2600 ¹⁾
at distance a (from shaft collar)	a	a	mm	17.5	14.0	41.0	41.0	52.5	52.5	52.5	52.5	67.5	67.5
Maximum torq	ue at $F_{\sf q \; max}$	$T_{q\;max}$	Nm	179	179	2)	2)	2)	2)	2)	2)	2)	2)
Maximum differential and F ₀	•	$\Delta p_{q\;max}$	bar	400	400	2)	2)	2)	2)	2)	2)	2)	2)
Maximum axial force	щ	+ F _{ax max}	N	0	0	0	0	0	0	0	0	0	0
at standstill or depres- surized operation	Fax±==	- F _{ax max}	N	315	315	1200	1200	1500	1500	1900	1900	2600	2600
Permissible axial force pressure	per bar working	+ F _{ax perm/bar}	N/bar	4.6	4.6	2)	2)	2)	2)	2)	2)	2)	2)

Effect of radial force F_{q} on the service life of bearings

By selecting a suitable direction of radial force $F_{\rm q}$, the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

▼ Toothed gear output drive

- 1 "Counter-clockwise" rotation. Pressure at port B
- 2 "Clockwise" rotation, pressure at port A
- 3 Bidirectional direction of rotation

Notice

- ► The values given are maximum values and do not apply to continuous operation.
- ► The permissible axial force in direction $-F_{ax}$ is to be avoided as the lifetime of the bearing is reduced.
- Special requirements apply in the case of belt drives.Please contact us.

¹⁾ When at standstill or when axial piston unit working in depressurized conditions. Higher forces are permissible under pressure, please contact us.

²⁾ Please contact us.

HD - Proportional control, hydraulic

The proportional hydraulic control provides infinite adjustment of the displacement. The control is proportional to the pilot pressure at port \mathbf{X} .

HD1, HD2, HD3

- ▶ Beginning of control at $V_{g max}$ (maximum torque, minimum rotational speed at minimum pilot pressure).
- ▶ End of control at $V_{g min}$ (minimum torque, maximum permissible rotational speed, at maximum pilot pressure).

Notice

- ► Maximum permissible pilot pressure: p_{St} = 100 bar
- ► The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, a working pressure of at least 30 bar is necessary in A (B). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G using an external check valve. For lower pressures, please contact us. Please note that at port G up to 450 bar (size 28) or 400 bar (sizes 250 to 1000) can occur.</p>
- ► Specify the desired beginning of control in plain text when ordering, e.g.: beginning of control at 10 bar.
- ► The beginning of control and the HD-characteristic curve are influenced by case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 7) and thus a parallel displacement of the characteristic curve.
- ► A leakage flow of maximum 0.3 I/min can occur at port X due to internal leakage (working pressure > pilot pressure). The control is to be suitably configured to avoid an independent build-up of pilot pressure.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for size 28

HD1, HD2 without damping.

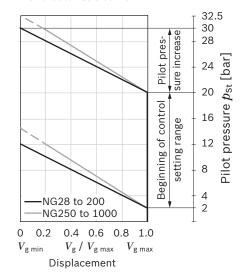
HD.D, HD.E with throttle pin on both sides, symmetrical (see table)

Option for size 28

HD1, HD2, with throttle pin on both sides, symmetrical (see table)

▼ Throttle pin overview

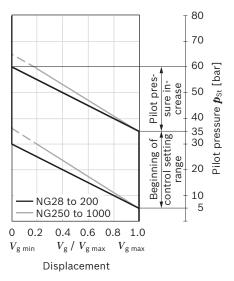
Size	28	55	80	107	140	160	200
Groove size [mm]	0.3	0.45	0.45	0.55	0.55	0.55	0.65


Standard for sizes 250 to 1000

HD1, HD2 and HD3 with orifice (ø1.2 mm) HD.D, HD.E, HP.G with adjustable response time limiting valve with orifice (ø1.2 mm)

HD1, pilot pressure increase $\Delta p_{\rm St}$ = 10 bar

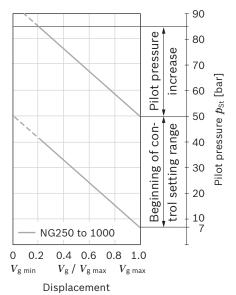
A pilot pressure increase of 10 bar at port **X** will cause a reduction in displacement from $V_{\rm g\,max}$ to 0 cm³ (size 28) or from $V_{\rm g\,max}$ to 0.2 $V_{\rm g\,max}$ (sizes 250 to 1000). Beginning of control, setting range 2 to 20 bar Standard setting: beginning of control at 3 bar (end of control at 13 bar)


▼ Characteristic curve

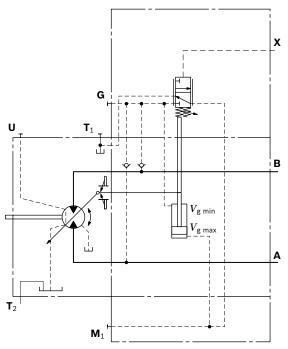
HD2, pilot pressure increase $\Delta p_{\rm St}$ = 25 bar

A pilot pressure increase of 25 bar at port **X** results in a reduction in displacement from $V_{\rm g\,max}$ to 0 cm³ (size 28) or from $V_{\rm g\,max}$ to 0.2 $V_{\rm g\,max}$ (sizes 250 to 1000). Beginning of control, setting range 5 to 35 bar Standard setting: beginning of control at 10 bar (end of control at 35 bar)

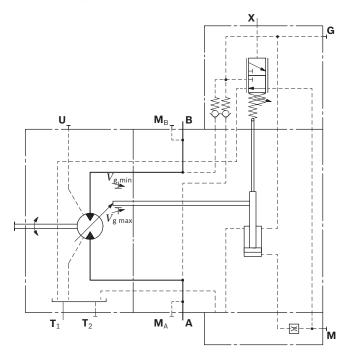
▼ Characteristic curve



HD3, pilot pressure increase Δp_{St} = 35 bar


(sizes 250 to 1000)

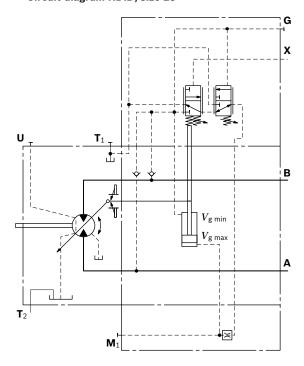
A pilot pressure increase of 35 bar at port **X** results in a reduction in displacement from $V_{g\,max}$ to 0.2 $V_{g\,max}$. Beginning of control, setting range 7 to 50 bar Standard setting: beginning of control at 10 bar (end of control at 45 bar)


▼ Characteristic curve

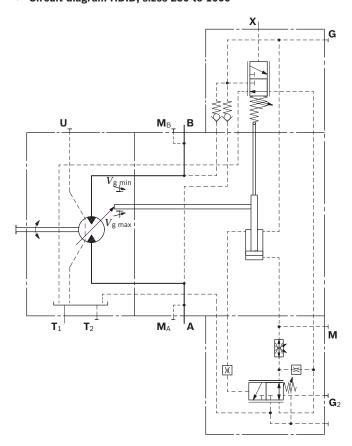
▼ Circuit diagram HD1, HD2, size 28

▼ Circuit diagramHD1, HD2, HD3, sizes 250 to 1000

HD.D Pressure control, fixed setting


The pressure control overrides the HD control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger angle. The increase in displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Size 28.

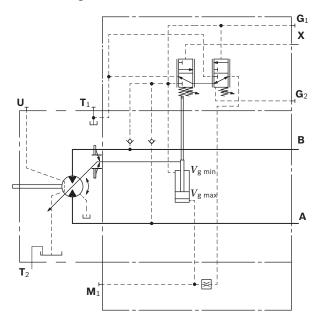

Setting range of the pressure control valve 80 to 400 bar Sizes 250 to 1000:

Setting range of the pressure control valve 80 to 350 bar

▼ Circuit diagram HD.D, size 28

▼ Circuit diagram HD.D, sizes 250 to 1000

HD.E pressure control, hydraulic override, two-point, size 28


The pressure control setting can be overridden by applying an external pilot pressure at port G_2 , realizing a 2nd pressure setting.

Necessary pilot pressure at port G_2 :

 p_{St} = 20 to 50 bar

When ordering, please specify the 2nd pressure setting in plain text.

▼ Circuit diagram HD.E

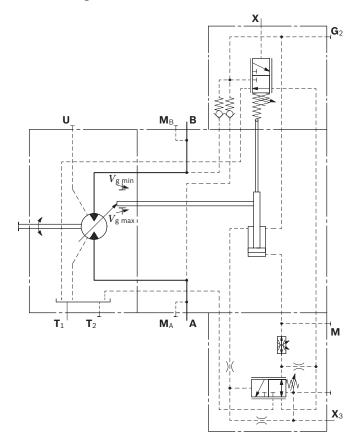
Sizes 250 to 1000 (HD.D)

Pressure control with 2nd pressure setting for HD.D provided as standard (see page 12).

The pressure control setting can be overridden by applying an external pilot pressure at port \mathbf{G}_2 , realizing a 2nd pressure setting.

Necessary pilot pressure at port G₂:

*p*_{St} ≥ 130 bar

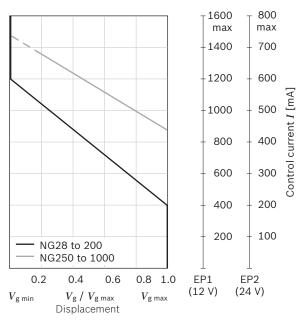

When ordering, please specify the 2nd pressure setting in plain text.

HD.G pressure control, remote controlled, sizes 250 to 1000

When the pressure command value is reached, the remote controlled pressure control continually regulates the motor to maximum displacement $V_{\rm g\,max}$. A pressure relief valve (not included in the scope of delivery), which is located separately from the motor and which is connected to port ${\bf X}_3$, assumes the task of controlling the internal pressure cut-off valve. So long as the pressure command value has not been reached, pressure is evenly applied to the valve from both sides in addition to the spring force, and the valve remains closed. The pressure command value is between 80 bar and 350 bar. When the pressure command value is reached at the separate pressure-relief valve, this will open, reliving the pressure on the spring side to the reservoir. The internal control valve switches and the motor swivels to maximum displacement $V_{\rm g\,max}$.

The differential pressure at the DRG control valve is set as standard to 25 bar. As a separate pressure relief valve, we recommend: DBD 6 (hydraulic) as per data sheet 25402; maximum line length should not exceed 2 m.

▼ Circuit diagram HD.G



EP - Proportional control, electric

The electric control with proportional solenoid (size 28) or proportional valve (sizes 250 to 1000) enable the displacement to be steplessly adjusted. Control is proportional to the electric control current applied to the solenoid. Sizes 250 to 1000 require an external pilot oil supply at port **P** with a pressure of p_{min} = 30 bar (p_{max} = 100 bar).

- \blacktriangleright Beginning of control at $V_{\rm g max}$ (maximum torque, minimum rotational speed at minimum control current)
- ightharpoonup End of control at $V_{\rm g\,min}$ (minimum torque, maximum permissible rotational speed at maximum control current)

▼ Characteristic curve

Notice

- The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, a working pressure of at least 30 bar is necessary in A (B). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G using an external check valve. For lower pressures at port G, please contact us. Please note that at port **G** up to 450 bar (size 28) or 400 bar (sizes 250 to 1000) can occur.
- The following only needs to be noted for sizes 250 to 1000:
 - The beginning of control and the **EP** characteristic curve are influenced by the case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 6) and thus a parallel displacement of the characteristic curve.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for size 28

EP1, EP2 without damping.

EP.D, EP.E with throttle pin on both sides, symmetrical (see table)

Option for size 28

EP1, EP2, with throttle pin on both sides, symmetrical (see table)

▼ Throttle pin overview

Size	28		
Groove size [mm]	0.3		

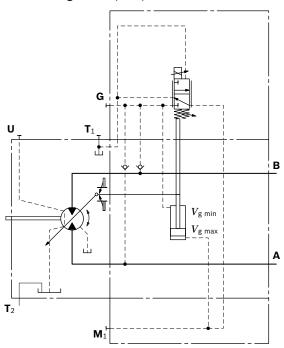
Standard for sizes 250 to 1000

EP1, EP2 with orifice (ø1.2 mm)

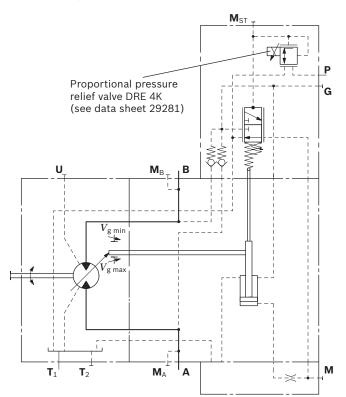
EP.D, EP.E, EP.G with adjustable response time limiting valve

Technical data, solenoid, size 28	EP1	EP2				
Voltage	12 V (±20%)	24 V (±20%)				
Control current						
Beginning of control	400 mA	200 mA				
End of control	1200 mA	600 mA				
Current limit	1.54 A	0.77 A				
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω				
Dither						
Frequency	100 Hz	100 Hz				
minimum oscillation range ¹⁾	240 mA	120 mA				
Duty cycle 100% 100%						
Type of protection: see connector version page 47						

Various BODAS controllers with application software and amplifiers are available for controlling the proportional


Further information can also be found on the internet at www.boschrexroth.de/mobilelektronik.

Technical data, proportional valve, sizes 250 to 1000	EP1	EP2				
Voltage	12 V (±20%)	24 V (±20%)				
Control current Start of control at V_{gmax}	900 mA ¹⁾	450 mA ¹⁾				
End of control at $V_{\rm g\;min}$	approx. 1360 mA	approx. 680 mA				
Current limit	2.2 A	1.0 A				
Nominal resistance (at 20 °C)	2.4 Ω	12 Ω				
Duty cycle	100%	100%				
Type of protection: see connector version page 47						


See also proportional pressure reducing valve DRE 4K (data sheet 29281 - proportional pressure reducing valve)

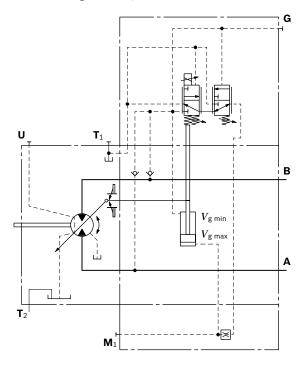
¹⁾ Setting

▼ Circuit diagram EP1, EP2, size 28

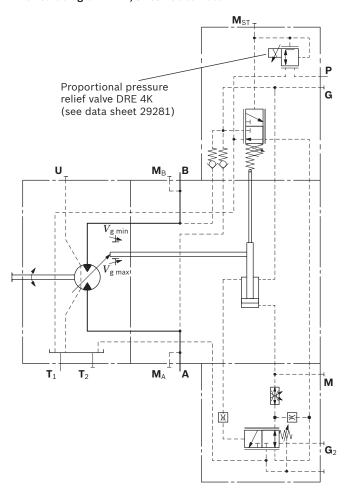
▼ Circuit diagram EP1, EP2, sizes 250 to 1000

EP.D pressure control, fixed setting

The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger angle.


The increase in displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

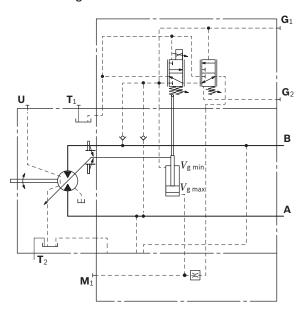
size 28:


Setting range of the pressure control valve 80 to 400 bar sizes 250 to 1000:

Setting range of the pressure control valve 80 to 350 bar

▼ Circuit diagram EP.D, size 28

▼ Circuit diagram EP.D, sizes 250 to 1000



EP.E pressure control, hydraulic override, two-point, size 28

The pressure control setting can be overridden by applying an external pilot pressure at port \mathbf{G}_2 , realizing a 2nd pressure setting realized. Necessary pilot pressure at port \mathbf{G}_2 : $p_{\text{St}} = 20$ to 50 bar

When ordering, please specify the 2nd pressure setting in plain text.

▼ Circuit diagram EP.E

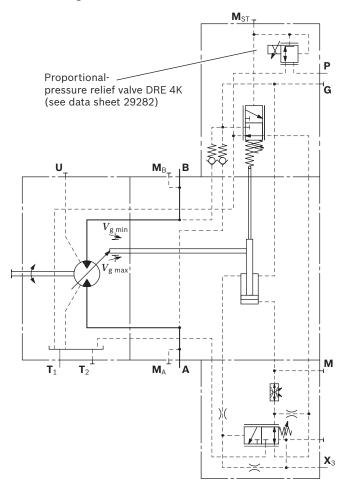
Sizes 250 to 1000 (EP.D)

Pressure control with 2nd pressure setting for EP.D provided as standard (see page 16).

The pressure control setting can be overridden by applying an external pilot pressure at port \mathbf{G}_2 , realizing a 2nd pressure setting.

Necessary pilot pressure at port \mathbf{G}_2 :

p_{St} ≥ 100 bar

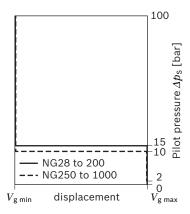

When ordering, please specify the 2nd pressure setting in plain text.

EP.G pressure control, remote controlled, sizes 250 to 1000

When the pressure command value is reached, the remote controlled pressure control continually regulates the motor to maximum displacement $V_{\rm g\,max}$. A pressure relief valve (not included in the scope of delivery), which is located separately from the motor and which is connected to port \mathbf{X}_3 , assumes the task of controlling the internal pressure cut-off valve. So long as the pressure command value has not been reached, pressure is evenly applied to the valve from both sides in addition to the spring force, and the valve remains closed. The pressure command value is between 80 bar and 350 bar. When the pressure command value is reached at the separate pressure-relief valve, this will open, reliving the pressure on the spring side to the reservoir. The internal control valve switches and the motor swivels to maximum displacement $V_{\rm g\,max}$.

The differential pressure at the DRG control valve is set as standard to 25 bar. As a separate pressure relief valve, we recommend: DBD 6 (hydraulic) as per data sheet 25402; maximum line length should not exceed 2 m.

▼ Circuit diagram EP.G



HZ - Two-point control, hydraulic

The two-point hydraulic control allows the displacement to be set to either $V_{\rm g\,min}$ or $V_{\rm g\,max}$ by switching the pilot pressure at port **X** on or off.

- Position at $V_{\rm g\,max}$ (without pilot pressure, maximum torque, minimum rotational speed)
- Position at $V_{\rm g\,min}$ (with pilot pressure > 15 bar for size 28 and 10 bar for sizes 250 to 1000 switched on, minimum torque, maximum permissible rotational speed)

▼ Characteristic curve

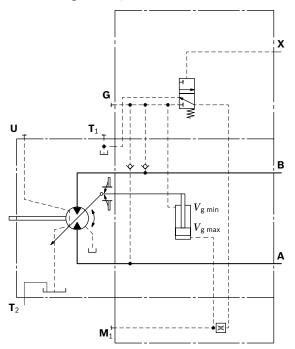
Notice

- ▶ Maximum permissible pilot pressure: 100 bar
- ► The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, a working pressure of at least 30 bar is necessary in A (B). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G using an external check valve. For lower pressures, please contact us. Please note that at port G up to 450 bar (size 28) or 400 bar (sizes 250 to 1000) can occur.</p>
- ► A leakage flow of maximum 0.3 l/min can occur at port X due to internal leakage (working pressure > pilot pressure). The control is to be suitably configured to avoid an independent build-up of pilot pressure.

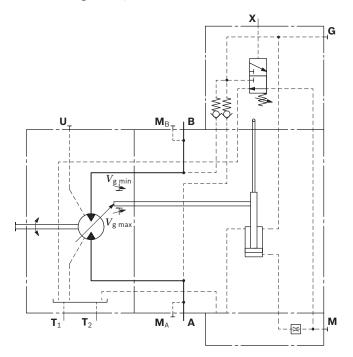
Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for sizes 28, 140 to 200


HZ1 with throttle pin on both sides, symmetrical (see table)

▼ Throttle pin overview


Size	28		
Groove size [mm]	0.30		

Standard for sizes 250 to 1000 with orifice (ø1.2 mm)

▼ Circuit diagram HZ1, size 28

▼ Circuit diagram HZ, sizes 250 to 1000

EZ - Two-point control, electric

The two-point electric control allows the displacement to be set to either $V_{\rm g\,min}$ or $V_{\rm g\,max}$ by switching the electric current on or off to a switching solenoid (size 28) or to an on/off valve (sizes 250 to 1000).

Notice

The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is necessary in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us.

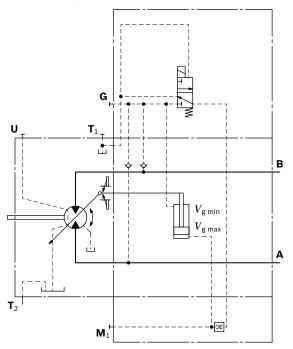
Please note that at port $\bf G$ up to 450 bar (size 28) or 400 bar (sizes 250 to 1000) can occur.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

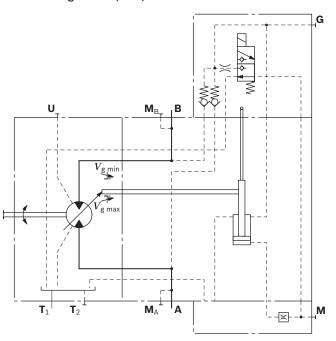
Standard for sizes 28

EZ1, EZ2 with throttle pin on both sides, symmetrical (see table)


▼ Throttle pin overview

Size	28	55	80	107	140	160	200
Groove size [mm]	0.30	0.30	0.30	0.30	0.55	0.55	0.65

Standard for sizes 250 to 1000 with orifice (\emptyset 1.2 mm)


Technical data, solenoid with ø37, sizes 28	EZ1	EZ2				
Voltage	12 V (±20%)	24 V (±20%)				
Position $V_{\sf g\;max}$	de-energized	de-energized				
Position V_{gmin}	energized	energized				
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω				
Nominal power	26.2 W	26.5 W				
Minimum active current required	1.32 A	0.67 A				
Duty cycle	100%	100%				
Type of protection: see connector version page 47						

▼ Circuit diagram EZ1, EZ2, size 28

Technical data, on/off valve, sizes 250 to 1000	EZ1	EZ2
Voltage	12 V (±20%)	24 V (±20%)
Position $V_{g\;max}$	de-energized	de-energized
Position $V_{g\;min}$	energized	energized
Nominal resistance (at 20 °C)	6 Ω	23 Ω
Nominal power	26 W	26 W
Minimum active current required	2 A	1.04 A
Duty cycle	100%	100%
Type of protection: see connector v	ersion page 47	

▼ Circuit diagram EZ1, EZ2, sizes 250 to 1000

HA - Automatic high-pressure related control

The automatic high-pressure related control adjusts the displacement automatically depending on the working pressure.

The displacement of the A6VM motor with HA control is $V_{\rm g\,min}$ (maximum rotational speed and minimum torque). The control device measures internally the working pressure at $\bf A$ or $\bf B$ (no control line required) and upon reaching the set beginning of control, the controller swivels the motor with increasing pressure from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. The displacement is modulated between $V_{\rm g\,min}$ and $V_{\rm g\,max}$ depending on the load.

HA1, HA2

- ▶ Beginning of control at $V_{\rm g\,min}$ (minimum torque, maximum rotational speed)
- End of control at V_{g max} (maximum torque, minimum rotational speed)

Notice

- For safety reasons, winch drives are not permissible with beginning of control at $V_{\rm g \ min}$ (standard for HA).
- The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is necessary in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us. Please note that at port **G** up to Please note that at port **G** up to 450 bar (size 28) or 400 bar (sizes 250 to 1000) can occur.
- ▶ The beginning of control and the HA characteristic curve are influenced by the case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 6) and thus a parallel displacement of the characteristic curve. Only for HA1T (size 28) and for HA1, HA2 and HA.T (sizes 250 to 1000).
- A leakage flow of maximum 0.3 l/min occurs at port X (working pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure must to be relieved from port X to the reservoir. Only for HA.T control.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

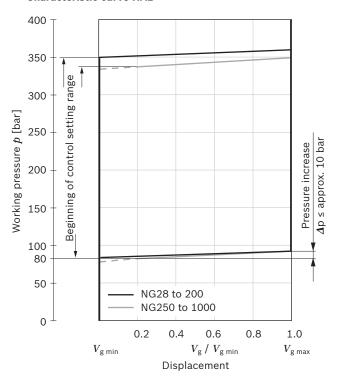
Standard for size 28

HA with throttle pin on one side, throttle from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. (see table)

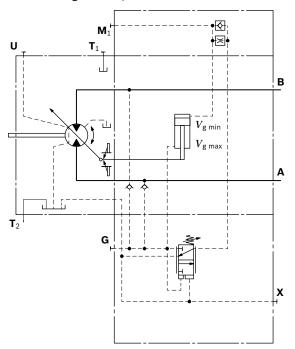
▼ Throttle pin overview

Size	28		
Groove size [mm]	0.3		

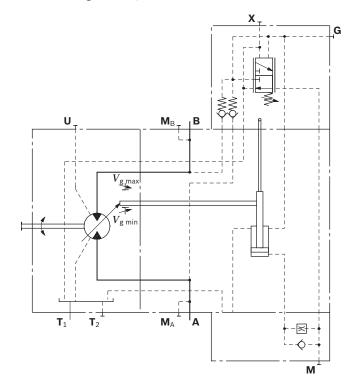
Standard for sizes 250 to 1000 with orifice (ø1.2 mm)


HA1 with minimum pressure increase, positive control

A working pressure increase of $\Delta p \leq$ approx. 10 bar results in an increase in displacement from $V_{\rm g\;min}$ to $V_{\rm g\;max}.$ Size 28:

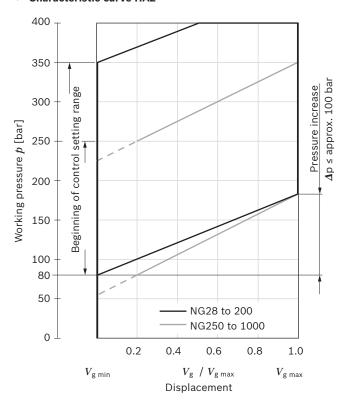

Setting range of the pressure control valve 80 to 350 bar Sizes 250 to 1000:

Setting range of the pressure control valve 80 to 340 bar Please state the desired beginning of control in plain text when ordering, e.g.: beginning of control at 300 bar.

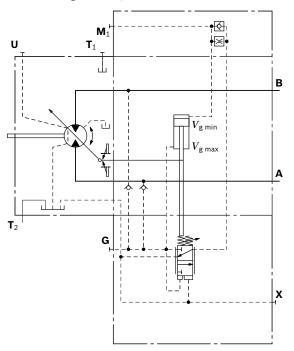

▼ Characteristic curve HA1

▼ Circuit diagram HA1, size 28

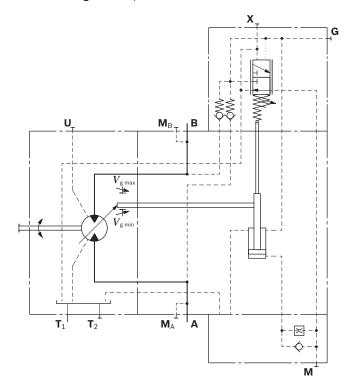
▼ Circuit diagram HA1, sizes 250 to 1000


HA2 with pressure increase, positive control

A working pressure increase of $\Delta p \leq$ approx. 100 bar results in an increase in displacement from $V_{\rm g\,min}$ to $V_{\rm g\,max}.$ Size 28:


Setting range of the pressure control valve 80 to 350 bar Sizes 250 to 1000:

Setting range of the pressure control valve 80 to 250 bar Please state the desired beginning of control in plain text when ordering, e.g.: beginning of control at 200 bar.

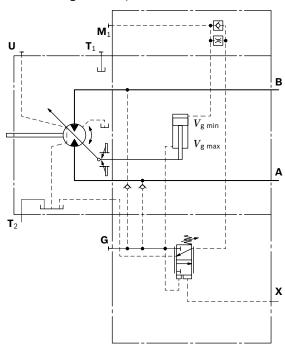

▼ Characteristic curve HA2

▼ Circuit diagram HA2, size 28

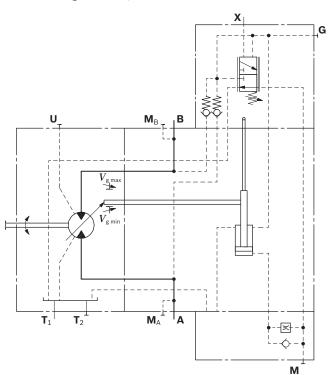
▼ Circuit diagram HA2, sizes 250 to 1000

HA.T Hydraulic override, remote control, proportional

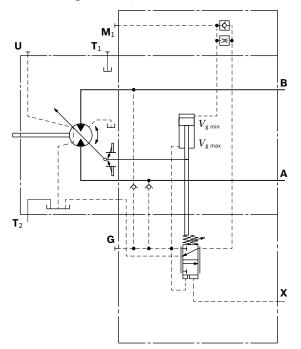
With the HA.T3 control, the beginning of control can be influenced by applying a pilot pressure to port **X**. For every 1 bar of pilot pressure, the beginning of control is reduced by 17 bar (size 28) or 9 bar (sizes 250 to 1000).


Example (size 28):

Settings for the beginning of control	300 bar	300 bar
Pilot pressure at port X	0 bar	10 bar
Beginning of control at	300 bar	130 bar

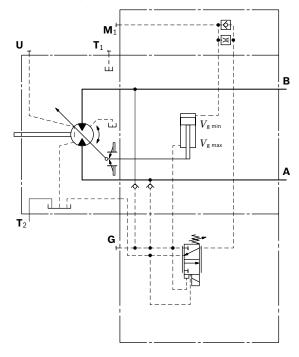

Notice

Maximum permissible pilot pressure 100 bar.

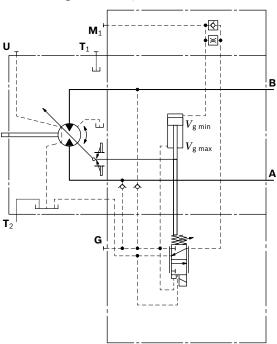

▼ Circuit diagram HA1T, size 28

▼ Circuit diagram HA1T, sizes 250 to 1000

▼ Circuit diagram HA2T, size 28


HA.U1, HA.U2 electric override, two-point, size 28

With the HA.U1 or HA.U2 control, the beginning of control can be overridden by an electric signal to a switching solenoid. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position.


The beginning of control can be set between 80 and 300 bar (specify required setting in plain text when ordering).

Technical data, solenoid with Ø45	U1	U2			
Voltage	12 V (±20%)	24 V (±20%)			
No override	de-energized	de-energized			
Position V_{gmax}	energized	energized			
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω			
Nominal power	30 W	30 W			
Minimum active current required	1.5 A	0.75 A			
Duty cycle	100%	100%			
Type of protection: see connector version page 47					

▼ Circuit diagram HA1.U1, HA1.U2

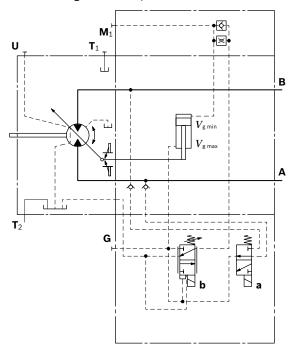
▼ Circuit diagram HA2.U1, HA2.U2

HA.R1, HA.R2 electric override, travel direction valve electric, size 28

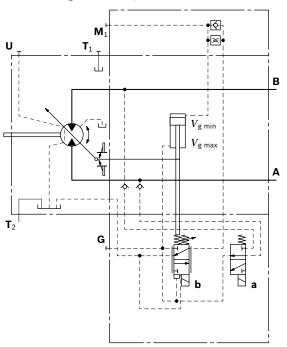
With the HA.R1 or HA.R2 control, the beginning of control can be overridden by an electric signal to switching solenoid **b**. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position.

The travel direction valve ensures that the preselected pressure side of the hydraulic motor (**A** or **B**) is always connected to the HA control, and thus determines the swivel angle, even if the high-pressure side changes (e.g. -travel drive during a downhill operation). This thereby prevents undesired swiveling of the variable motor to a larger displacement (jerky deceleration and/or braking characteristics).

Depending on the direction of rotation (direction of travel), the travel direction valve is actuated through the compression spring or the switching solenoid **a** (see page 30).


Electric override

Technical data, solenoid b with ø45	R1	R2		
Voltage	12 V (±20%)	24 V (±20%)		
No override	de-energized	de-energized		
Position $V_{g\;max}$	energized	energized		
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω		
Nominal power	30 W	30 W		
Minimum active current required	1.5 A	0.75 A		
Duty cycle	100%	100%		
Type of protection: see connector version page 47				


Travel direction valve, electric

Technical data, solenoid a with ø37	R1	R2		
Voltage	12 V (±20%)	24 V (±20%)		
Direction of rotation Working pressure in				
counter-clockwise B	energized	energized		
clockwise A	de-energized	de-energized		
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω		
Nominal power	26.2 W	26.5 W		
Minimum active current required	1.32 A	0.67 A		
Duty cycle	100%	100%		
Type of protection: see connector version page 47				

▼ Circuit diagram HA1.R1, HA1.R2

▼ Circuit diagram HA2.R1, HA2.R2

DA - Automatic control, speed related

The variable motor A6VM with automatic speed-related control is intended for use in hydrostatic travel drives in combination with the variable pump A4VG with DA control. A drive speed-related pilot pressure signal is generated by the A4VG variable pump, and that signal, together with the working pressure, regulates the swivel angle of the hydraulic motor.

Increasing drive speed, i.e. increasing pilot pressure, causes the motor to swivel to a smaller displacement (lower torque, higher rotational speed), depending on the working pressure.

If the working pressure exceeds the pressure command value of the controller, the variable motor swivels to a larger displacement (higher torque, lower rotational speed).

• Pressure ratio p_{St}/p_{HD} = 3/100, 5/100, 8/100

DA control is only suitable for certain types of travel drive systems and requires review of the engine and vehicle parameters to ensure that the motor is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Our Sales department will provide you detailed information.

Notice

The beginning of control and the DA characteristic curve are influenced by case pressure. An increase in the case pressure causes a decrease / reduction in the beginning of control (see page 6) and thus a parallel displacement of the characteristic curve.

Response time damping

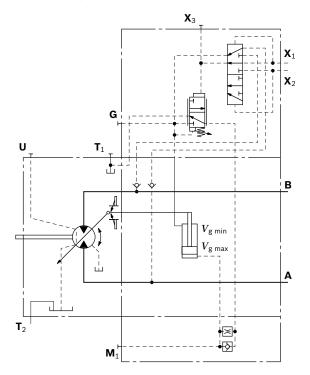
The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for size 28

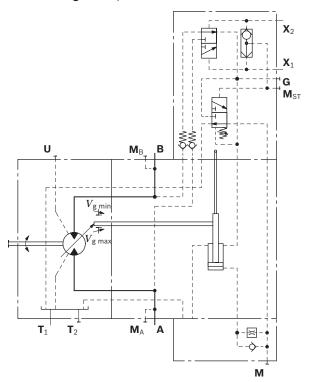
DA with throttle pin on one side, throttle from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. (see table)

▼ Throttle pin overview

Size	28	
Groove size [mm]	0.30	


Standard for sizes 250 to 1000 with orifice (ø1.2 mm)

DA, DA1, DA4 hydraulic travel direction valve,


Dependent on the direction of rotation (travel direction), the travel direction valve is switched by using pilot pressures \mathbf{X}_1 or \mathbf{X}_2 . The maximum permissible pilot pressure for sizes 250 to 1000 is $p_{\rm st}$ = 25 bar. Momentary (t < 0.1 s) pressure peaks of up to 40 bar are permitted.

Direction of rotation	Working pressure in	Pilot pressure in
clockwise	A	X_1
counter-clockwise	В	\mathbf{X}_2

▼ Circuit diagram DA1, DA4, size 28

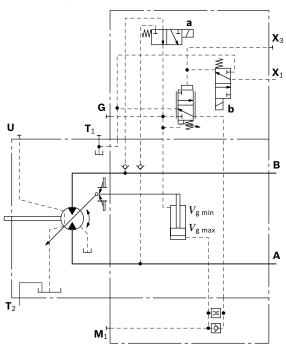
▼ Circuit diagram DA, sizes 250 to 1000

DA2, DA3, DA5, DA6 electric travel direction valve + electric $V_{\rm g\ max}\text{-circuit,}$

size 28

Depending on the direction of rotation (direction of travel), the travel direction valve is actuated through the compression spring or the switching solenoid **a**.

When switching solenoid ${\bf b}$ is energized, the control can be overridden and the motor can be swiveled to maximum displacement (high torque, lower rotational speed) (electric $V_{\rm g\ max}$ -circuit).


Travel direction valve, electric

Technical data, solenoid a with ø37	DA2, DA5	DA3, DA6		
Voltage	12 V (±20%)	24 V (±20%)		
Direction of rotation Working pressure in				
counter-clockwise B	de-energized	de-energized		
clockwise A	energized	energized		
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω		
Nominal power	26.2 W	26.5 W		
Minimum active current required	1.32 A	0.67 A		
Duty cycle	100%	100%		
Type of protection: see connector version page 47				

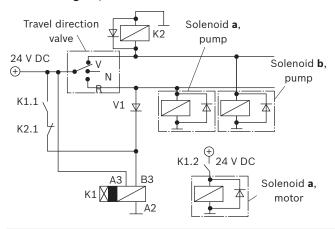
Electric override

Technical data, solenoid b with ø37	DA2, DA5	DA3, DA6		
Voltage	12 V (±20%)	24 V (±20%)		
No override	de-energized	de-energized		
Position $V_{g\;max}$	energized	energized		
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω		
Nominal power	26.2 W	26.5 W		
Minimum active current required	1.32 A	0.67 A		
Duty cycle	100%	100%		
Type of protection: see connector version page 47				

▼ Circuit diagram DA2, DA3, DA5, DA6, size 28

Electric travel direction valve (for DA, HA.R)

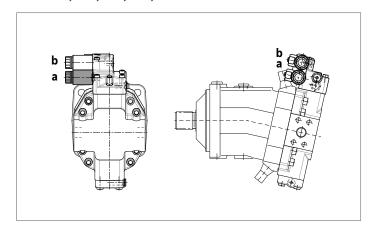
Application in travel drives in closed circuits. The travel direction valve of the motor is actuated by an electric signal that also switches the swivel direction of the travel drive pump (e.g. A4VG with DA control valve).

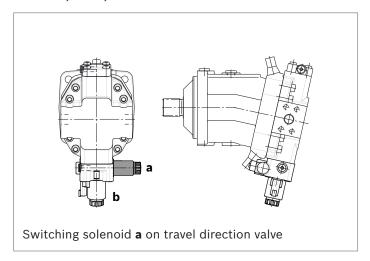

If the pump in the closed circuit is switched to the neutral position or into reverse, the vehicle may experience jerky deceleration or braking, depending on the vehicle weight and current travel speed.

When the travel direction valve, which must be logically coordinated with the pump control, of the pump (e.g. 4/3-way directional valve of the DA-control) is switched to

- ► the neutral position, the electrical circuitry causes the previous signal on the travel direction valve on the motor to be retained.
- ► Reversing, the electrical circuitry causes the travel direction valve of the motor to switch to the other travel direction following a time delay (approx. 0.8 s) with respect to the pump.

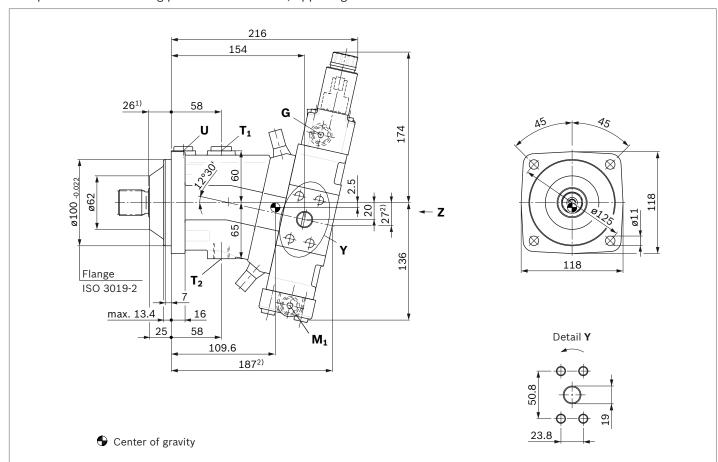
As a result, jerky deceleration or braking is prevented in both cases.


▼ Circuit diagram, electric travel direction valve


Notice

The shown diodes and relays are not included in the scope of delivery of the motor.

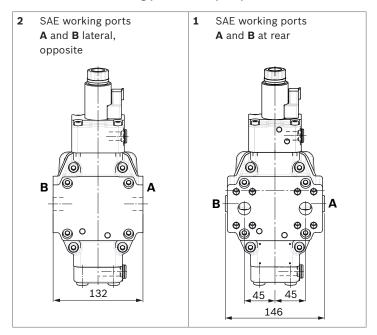
▼ Control, DA2, DA3, DA5, DA6


▼ Control, HA1R., HA2R.

Dimensions, sizes 28

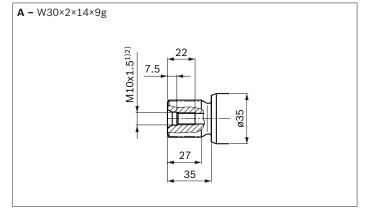
EP1, EP2 - Proportional control, electric

Port plate 2 - SAE working ports **A** and **B** lateral, opposing

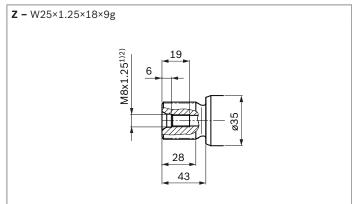


Ports		Standard	Size ³⁾	$p_{\sf max\;abs}$ [bar] $^{4)}$	State ⁸⁾
A, B	Working port	SAE J518 ⁵⁾	3/4 in	450	0
	Fastening thread	DIN 13	M10 × 1.5; 17 deep		
T ₁	Drain port	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	3	X ⁶⁾
T ₂	Drain port	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	3	O ⁶⁾
G	Synchronous control	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	450	X
G_2	2nd pressure setting (HD.E, EP.E)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	X
U	Bearing flushing	DIN 3852 ⁷⁾	M16 × 1.5; 12 deep	3	Х
Х	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
Х	Pilot signal (HA1, HA2)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	X
X ₁ , X ₂	Pilot signal (DA1, DA4)	DIN 2353-CL	8B-ST	40	0
X ₁	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	40	0
X ₃	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	40	X
M ₁	Stroking chamber measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	450	Х

- 1) To shaft collar
- 2) Port plate $1-\mathsf{SAE}$ working ports \boldsymbol{A} and \boldsymbol{B} at rear
- 3) For notes on tightening torques, see the instruction manual
- 4) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard
- $_{6}$) Depending on installation position, T_{1} or T_{2} must be connected (see also installation instructions on page 52).
- 7) The countersink can be deeper than as specified in the standard.
- 8) O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)

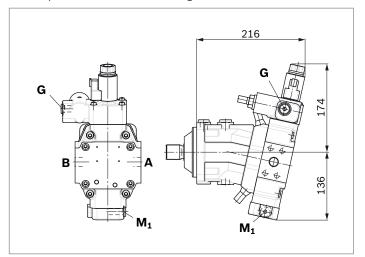

Europe | RE-E 91604/05.2016, Bosch Rexroth AG

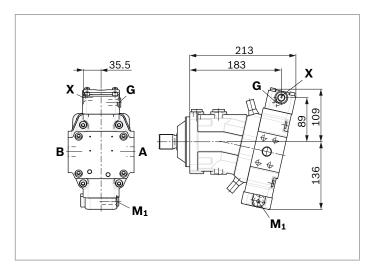
▼ Location of the working ports on the port plates (view Z)



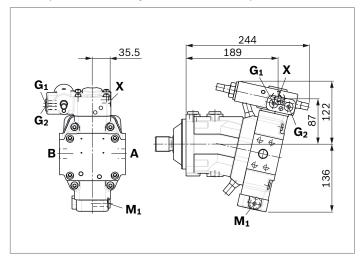
▼ Splined shaft DIN 5480

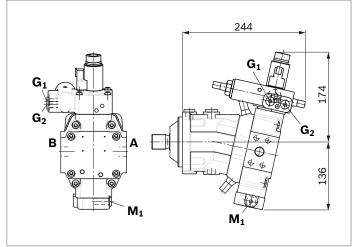
32

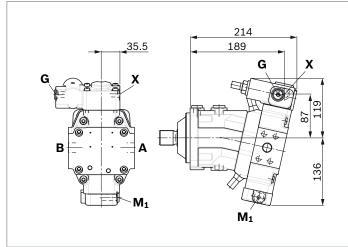

▼ Splined shaft DIN 5480

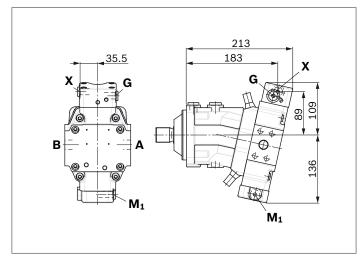

¹⁾ For notes on tightening torques, see the instruction manual

²⁾ Center bore according to DIN 332 (thread according to DIN 13)

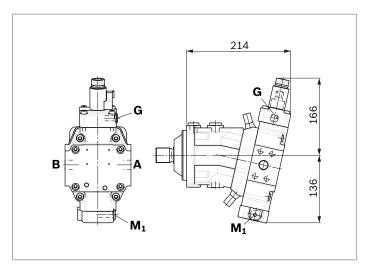

▼ EP.D – Proportional control, electric, with pressure control fixed setting


▼ HD1, HD2 - Proportional control, hydraulic

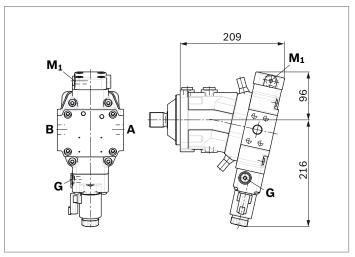

▼ HD.E – Proportional control, hydraulic, with pressure control hydraulic override, two-point


▼ EP.E – Proportional control, electric, with pressure control hydraulic override, two-point

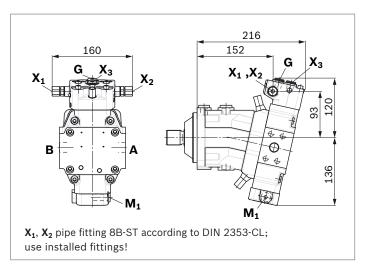
▼ **HD.D** – Proportional control, hydraulic, with pressure control fixed setting

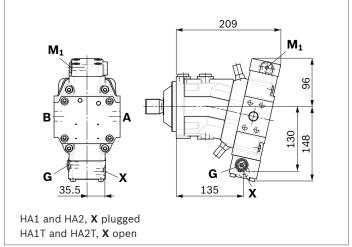


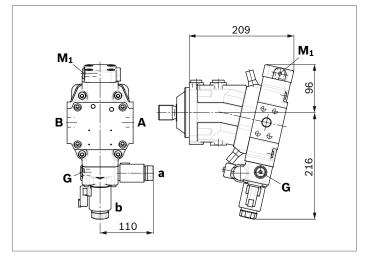
▼ **HZ1** – Two-point control, hydraulic



▼ EZ1, EZ2 - Two-point control, electric


34

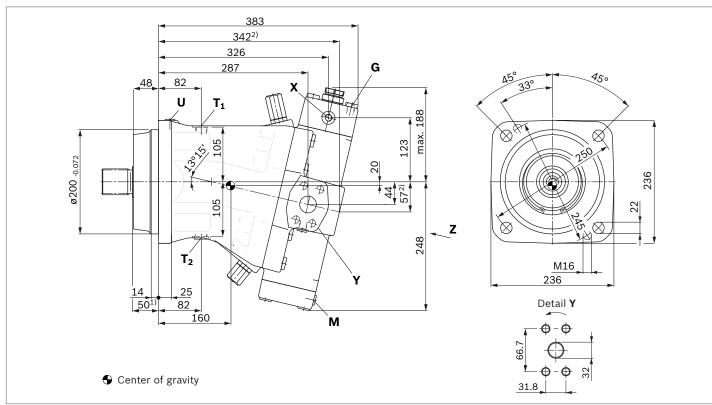

▼ HA1U1, HA2U2 – Automatic high-pressure related control, with electric override, two-point


▼ DA1, DA4 - Automatic speed related control, with hydraulic travel direction valve

▼ HA1, HA2 / HA1T, HA2T – Automatic high-pressure related control, with override, hydraulic remote control, proportional

▼ HA1R1, HA2R2 – Automatic high-pressure related control, with electric override and electric travel direction valve

▼ DA2, DA3, DA5, DA6 - Automatic speed related control, with electric travel direction valve and electric V_{g max}-circuit

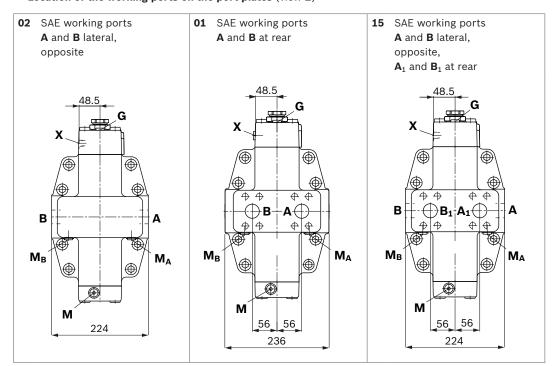


Dimensions, sizes 250

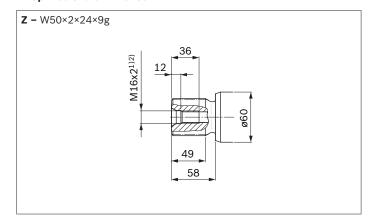
HD1, HD2 - Proportional control, hydraulic

HZ - Two-point control, hydraulic

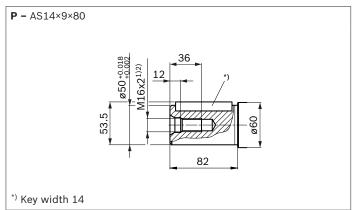
Port plate 2 - SAE working ports **A** and **B** lateral, opposing



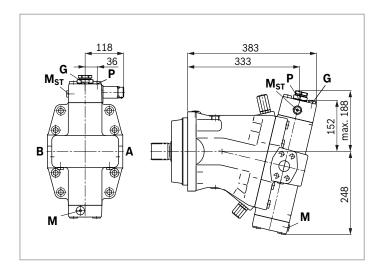
Ports		Standard	Size ³⁾	$p_{max\;abs}$ [bar] $^{4)}$	State ⁸⁾
A, B	Working port	SAE J518 ⁵⁾	1 1/4 in	400	0
	Fastening thread A/B	DIN 13	M14 × 2; 19 deep		
A_1, B_1	Additional working port for plate 15 fastening thread A ₁ /B ₁	SAE J518 ⁵⁾	1 1/4 in	400	0
		DIN 13	M14 × 2; 19 deep		
T ₁	Drain port	DIN 3852 ⁷⁾	M22 × 1.5; 14 deep	3	X ⁶⁾
T ₂	Drain port	DIN 3852 ⁷⁾	M22 × 1.5; 14 deep	3	O ⁶⁾
G	Synchronous control	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	X
G ₂	2nd pressure setting (HD.D, EP.D)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	X
P	Pilot oil supply (EP)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
U	Bearing flushing	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	X
Х	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
Х	Pilot signal (HA1, HA2)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	X
X ₁ , X ₂	Pilot signal (DA)	DIN 2353-CL	8B-ST	40	0
X ₃	Pilot signal (HD.G, EP.G)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	0
М	Stroking chamber measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	X
M _A , M _B	Pressure measurement A/B	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Χ
M _{St}	Pilot pressure measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	X

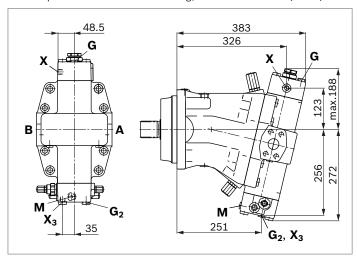

- 1) To shaft collar
- 2) Port plate $1/15-{\sf SAE}$ working ports ${\bf A}$ and ${\bf B}$ at rear
- $_{
 m 3)}$ For notes on tightening torques, see the instruction manual
- 4) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- $_{50}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard
- $_{6)}$ Depending on installation position, T_{1} or T_{2} must be connected (see also installation instructions on page 52).
- $_{7)}\,$ The countersink can be deeper than as specified in the standard.
- a) O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)

Europe | RE-E 91604/05.2016, Bosch Rexroth AG

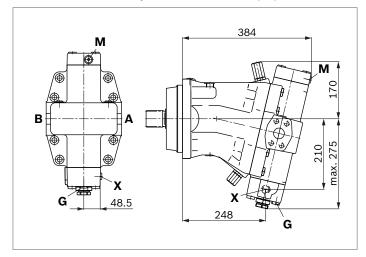

▼ Location of the working ports on the port plates (view Z)

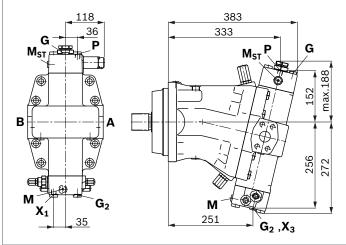
▼ Splined shaft DIN 5480

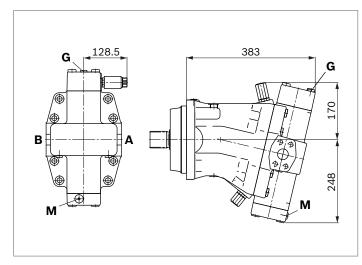

▼ Cyl. Keyed shaft, DIN 6885

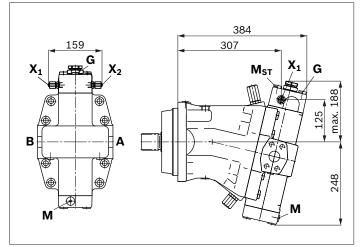

¹⁾ For notes on tightening torques, see the instruction manual

 $_{\rm 2)}$ Center bore according to DIN 332 (thread according to DIN 13)


▼ EP1, EP2 - Proportional control, electric

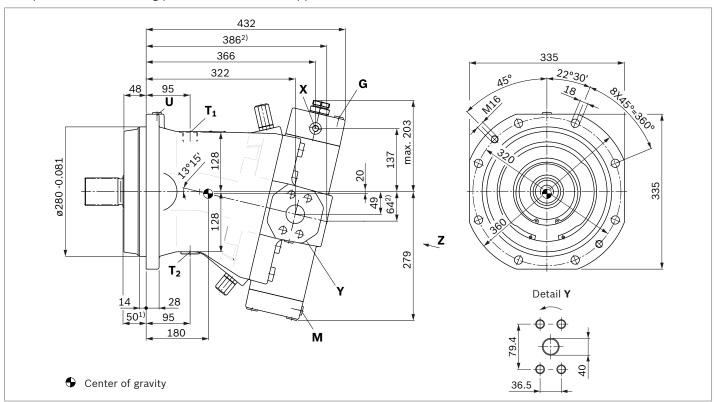

▼ HD.D, HD.G - Proportional control hydraulic with pressure control fixed setting; remote controlled (HD.G)


▼ HA1, HA2 / HA1T, HA2T – Automatic high-pressure related control, with override hydraulic remote control, proportional


▼ EP.D, EP.G - Proportional control electric, with pressure control fixed setting; remote controlled (EP.G)

▼ EZ1, EZ2 - Two-point control, electric

▼ **DA** – Automatic speed related control, with hydraulic travel direction valve

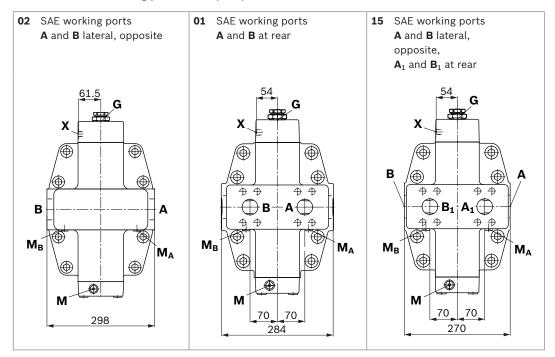


Dimensions, sizes 355

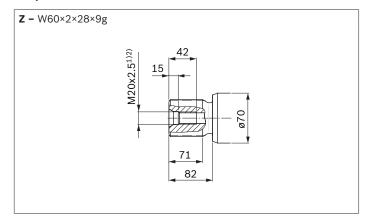
HD1, HD2 - Proportional control, hydraulic

HZ – Two-point control, hydraulic

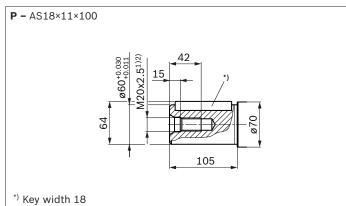
Port plate 2 - SAE working ports **A** and **B** lateral, opposite



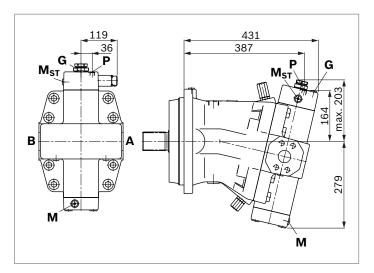
Ports		Standard	Size ³⁾	$p_{maxabs}[bar]^{4)}$	State ⁸⁾
А, В	Working port Fastening thread A/B	SAE J518 ⁵⁾ DIN 13	1 1/2 in M16 × 2; 24 deep	400	0
A ₁ , B ₁	Additional working port for plate 15 fastening thread A ₁ /B ₁	SAE J518 ⁵⁾ DIN 13	1 1/2 in M16 × 2; 24 deep	400	0
T ₁	Drain port	DIN 3852 ⁷⁾	M33 × 2; 18 deep	3	X ⁶⁾
T ₂	Drain port	DIN 3852 ⁷⁾	M33 × 2; 18 deep	3	O ⁶⁾
G	Synchronous control	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	X
G ₂	2nd pressure setting (HD.D, EP.D)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	X
Р	Pilot oil supply (EP)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
U	Bearing flushing	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	X
Х	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
Х	Pilot signal (HA1, HA2)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	X
X ₁ , X ₂	Pilot signal (DA)	DIN 2353-CL	8B-ST	40	0
X ₃	Pilot signal (HD.G, EP.G)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	0
М	Stroking chamber measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х
M _A , M _B	Pressure measurement A/B	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	X
M _{ST}	Pilot pressure measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Χ

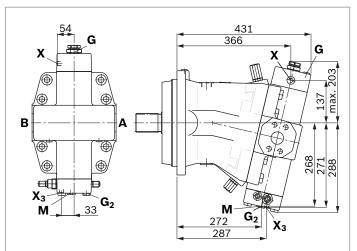

- 1) To shaft collar
- 2) Port plate 1/15 SAE working ports **A** and **B**
- 3) For notes on tightening torques, see the instruction manual
- 4) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- $_{5)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard
- 6) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 52).
- 7) The countersink can be deeper than as specified in the standard.
- 8) O = Must be connected (plugged when delivered)X = Plugged (in normal operation)

Bosch Rexroth AG, RE-E 91604/05.2016 | Europe

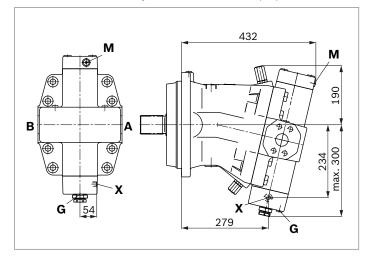

▼ Location of the working ports on the port plates (view Z)

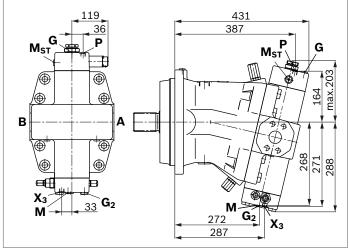
▼ Splined shaft DIN 5480


▼ Cyl. Keyed shaft, DIN 6885

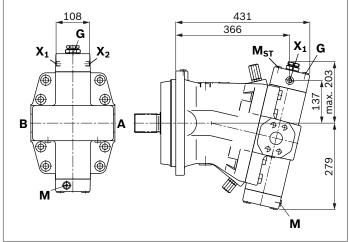

¹⁾ For notes on tightening torques, see the instruction manual

²⁾ Center bore according to DIN 332 (thread according to DIN 13)


▼ EP1, EP2 - Proportional control, electric

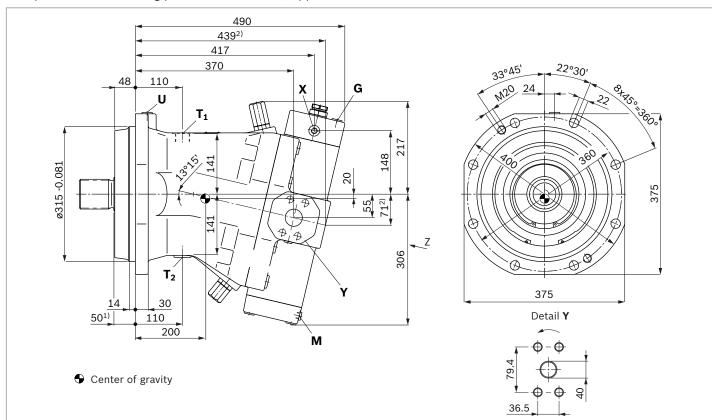

▼ HD.D, HD.G - Proportional control hydraulic with pressure control fixed setting; remote controlled (HD.G)

▼ HA1, HA2 / HA1T, HA2T – Automatic high-pressure related control, with override hydraulic remote control, proportional


▼ EP.D, EP.G – Proportional control electric, with pressure control fixed setting; remote controlled (EP.G)

▼ EZ1, EZ2 - Two-point control, electric

▼ **DA** – Automatic speed related control, with hydraulic travel direction valve

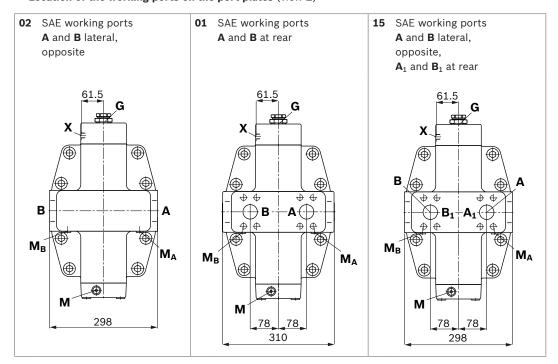

Bosch Rexroth AG, RE-E 91604/05.2016 | Europe

Dimensions, sizes 500

HD1, HD2 - Proportional control, hydraulic

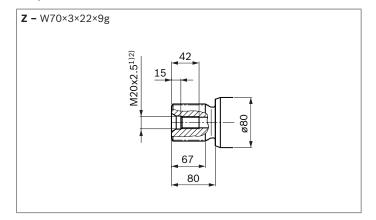
HZ - Two-point control, hydraulic

Port plate 2 - SAE working ports **A** and **B** lateral, opposite

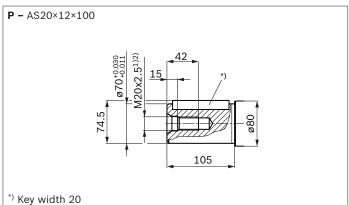


Ports		Standard	Size ³⁾	$p_{\rm max\;abs}$ [bar] ⁴⁾	State ⁸⁾
A, B	Working port	SAE J518 ⁵⁾	1 1/2 in	400	0
	Fastening thread A/B	DIN 13	M16 × 2; 24 deep		
A ₁ , B ₁	Additional working port for plate 15	SAE J518 ⁵⁾	1 1/2 in	400	0
	fastening thread A ₁ /B ₁	DIN 13	M16 × 2; 24 deep		
T ₁	Drain port	DIN 3852 ⁷⁾	M33 × 2; 18 deep	3	X ₆)
T ₂	Drain port	DIN 3852 ⁷⁾	M33 × 2; 18 deep	3	O ⁶⁾
G	Synchronous control	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	400	X
G ₂	2nd pressure setting (HD.D, EP.D)	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	400	X
Р	Pilot oil supply (EP)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
U	Bearing flushing	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	3	X
Х	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
Х	Pilot signal (HA1, HA2)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	X
X ₁ , X ₂	Pilot signal (DA)	DIN 2353-CL	8B-ST	40	0
X ₃	Pilot signal (HD.G, EP.G)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	0
М	Stroking chamber measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х
M _A , M _B	Pressure measurement A/B	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	X
M _{St}	Pilot pressure measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Χ

- 1) To shaft collar
- 2) Port plate 1/15-SAE working ports ${\bf A}$ and ${\bf B}$ at rear
- 3) For notes on tightening torques, see the instruction manual
- 4) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard
- $_{6)}$ Depending on installation position, T_{1} or T_{2} must be connected (see also installation instructions on page 52).
- 7) The countersink can be deeper than as specified in the standard.
- 8) O = Must be connected (plugged when delivered)
 - X = Plugged (in normal operation)

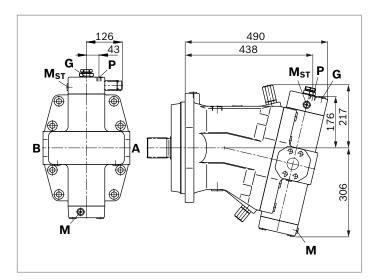

Europe | RE-E 91604/05.2016, Bosch Rexroth AG

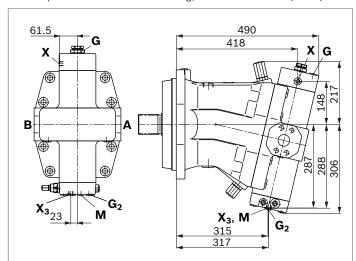
▼ Location of the working ports on the port plates (view Z)



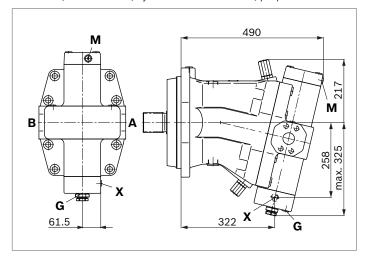
▼ Splined shaft DIN 5480

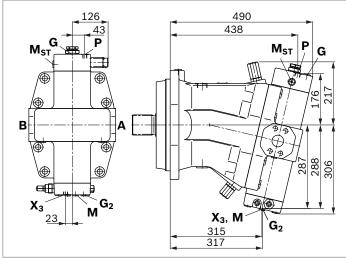
42

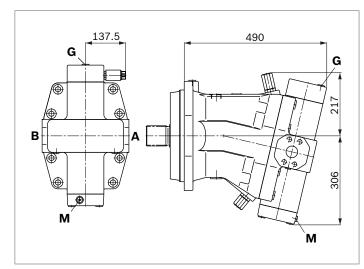

▼ Cyl. Keyed shaft, DIN 6885

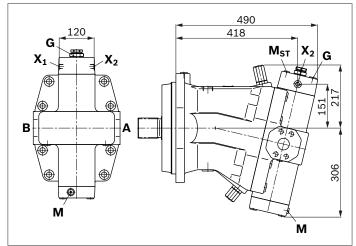

¹⁾ For notes on tightening torques, see the instruction manual

 $_{\rm 2)}$ Center bore according to DIN 332 (thread according to DIN 13)


▼ EP1, EP2 - Proportional control, electric

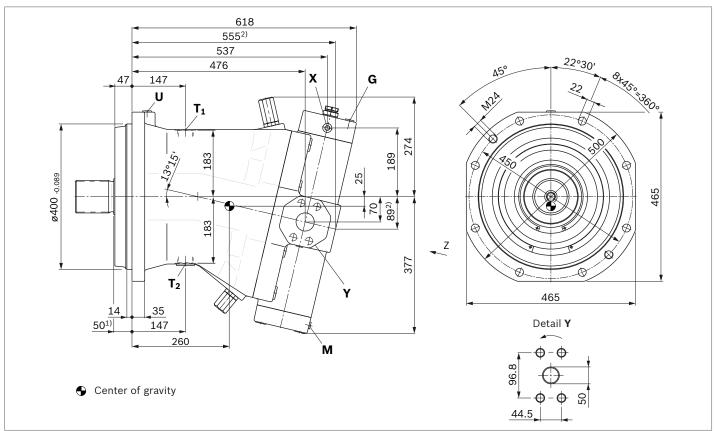

▼ HD.D, HD.G - Proportional control hydraulic with pressure control fixed setting; remote controlled (HD.G)


▼ HA1, HA2 / HA1T, HA2T – Automatic high-pressure related control, with override, hydraulic remote control, proportional


▼ EP.D, EP.G - Proportional control electric, with pressure control fixed setting; remote controlled (EP.G)

▼ EZ1, EZ2 - Two-point control, electric

▼ **DA** – Automatic speed related control, with hydraulic travel direction valve

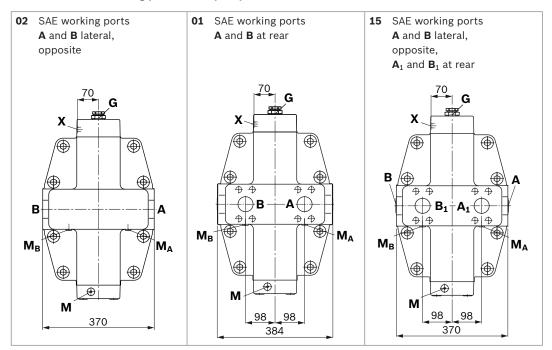

44

Dimensions, sizes 1000

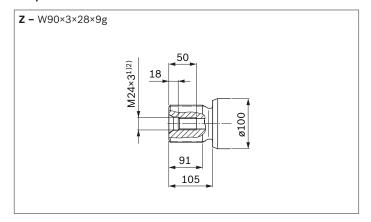
HD1, HD2 - Proportional control, hydraulic

HZ - Two-point control, hydraulic

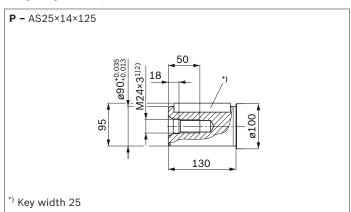
Port plate 2 - SAE working ports **A** and **B** lateral, opposite


Ports		Standard	Size ³⁾	$p_{\rm max\;abs}$ [bar] ⁴⁾	State ⁸⁾
A, B	Working port	SAE J518 ⁵⁾	2 in	400	0
	Fastening thread A/B	DIN 13	M20 × 2.5; 24 deep		
A ₁ , B ₁	Additional working port for plate 15	SAE J518 ⁵⁾	2 in	400	0
	fastening thread A ₁ /B ₁	DIN 13	M20 × 2.5; 24 deep		
T ₁	Drain port	DIN 3852 ⁷⁾	M42 × 2; 20 deep	3	X ⁶⁾
T ₂	Drain port	DIN 3852 ⁷⁾	M42 × 2; 20 deep	3	O ⁶⁾
G	Synchronous control	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	400	X
G ₂	2nd pressure setting (HD.E, EP.E)	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	400	Х
P	Pilot oil supply (EP)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
U	Bearing flushing	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	3	X
Х	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
Х	Pilot signal (HA1, HA2)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	X
X ₃	Pilot signal (HD.G, EP.G)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	0
М	Stroking chamber measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х
M _A , M _B	Pressure measurement A/B	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	X
M _{St}	Pilot pressure measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	X

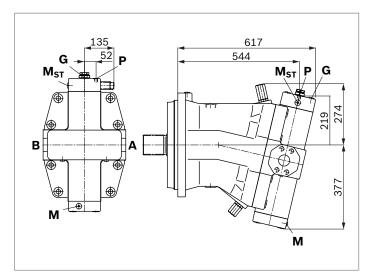
- 1) To shaft collar
- 2) Port plate 1/15 SAE working ports **A** and **B** at rear
- $_{
 m 3)}$ For notes on tightening torques, see the instruction manual
- 4) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard
- 6) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 52).
- 7) The countersink can be deeper than as specified in the standard.
- 8) O = Must be connected (plugged when delivered)

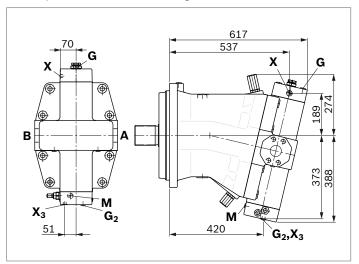

 X = Plugged (in normal operation)

Bosch Rexroth AG, RE-E 91604/05.2016 | Europe

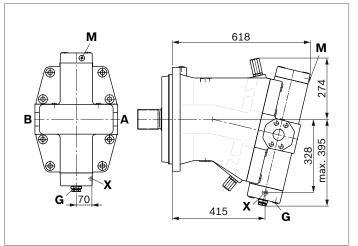

▼ Location of the working ports on the port plates (view Z)

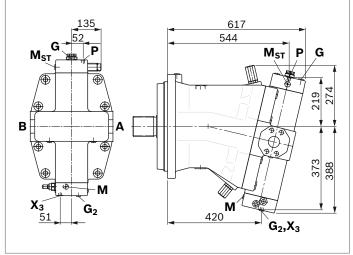
▼ Splined shaft DIN 5480

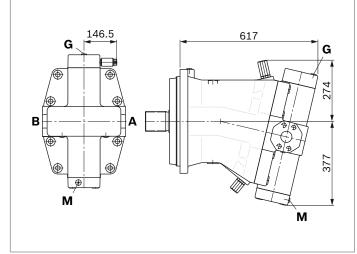

▼ Cyl. Keyed shaft, DIN 6885


¹⁾ For notes on tightening torques, see the instruction manual

²⁾ Center bore according to DIN 332 (thread according to DIN 13)


▼ EP1, EP2 - Proportional control, electric


▼ HD.D, HD.G - Proportional control hydraulic with pressure control fixed setting; remote controlled (HD.G)


▼ HA1, HA2 / HA1T, HA2T – Automatic high-pressure related control, with override hydraulic remote control, proportional

▼ EP.D, EP.G - Proportional control electric, with pressure control fixed setting; remote controlled (EP.G)

▼ EZ1, EZ2 - Two-point control, electric

Bosch Rexroth AG, RE-E 91604/05.2016 | Europe

Connector for solenoids

DEUTSCH DT04-2P-EP04 Size 28

Molded connector, 2-pin, without bidirectional suppressor diode

The following type of protection ensues with an installed mating connector:

- ► IP67 (DIN/EN 60529) and
- ► IP69K (DIN 40050-9)

▼ Switching symbol

▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation	
1 housing	DT06-2S-EP04	_
1 wedge	W2S	
2 sockets	0462-201-16141	

The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902601804).

Notice

- ► If necessary, you can change the position of the connector by turning the solenoid.
- ▶ The procedure is defined in the instruction manual.

HIRSCHMANN DIN EN 175 301-803-A/ISO 4400 Sizes 250 to 1000

Without bidirectional suppressor diode Type of protection:

► IP65 (DIN/EN 60529)

The seal ring in the cable fitting is suitable for lines of diameter 4.5 mm to 10 mm.

The mating connector is included in the scope of delivery.

Flushing and boost-pressure valve

The flushing and boost-pressure valve is used to remove heat from the hydraulic circuit.

In a closed circuit, it is used for flushing the case and safeguarding the minimum boost pressure.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the leakage. In the closed circuit, the removed hydraulic fluid must be replaced by cooled hydraulic fluid supplied by the boost pump.

The valve is mounted on the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

(observe when setting the primary valve)

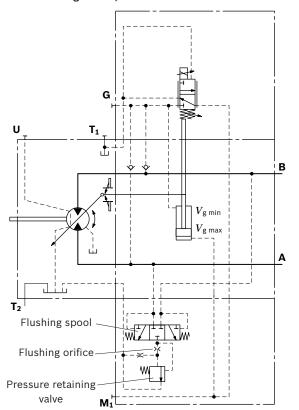
▶ sizes 28, 250 to 1000, fixed setting 16 bar

Switching pressure of flushing spool Δp

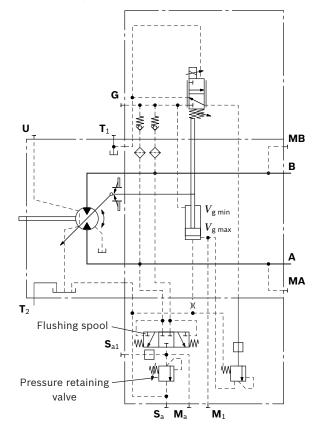
- ▶ size 28, 8±1 bar
- ▶ sizes 250 to 1000, 17.5±1.5 bar

Flushing flow q_{v}

Orifices can be used to adjust the flushing flows as required. The following parameters are based on: $\Delta p_{\rm ND} = p_{\rm ND} - p_{\rm G} = 25$ bar and v = 10 mm²/s ($p_{\rm ND} = 1$) low pressure, $p_{\rm G} = 1$ 0 case pressure)

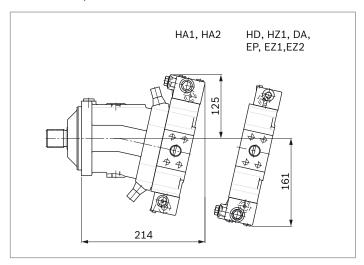

Flushing valve for size 28

Material number of orifice	ø [mm]	$q_{ m v}$ [l/min]
R909651766	1.2	3.5
R909419695	1.4	5

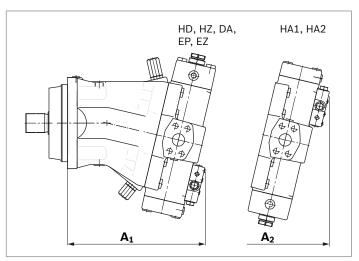

Flushing valve for sizes 250 to 1000

Material number of orifice	ø [mm]	$q_{\scriptscriptstyle extsf{V}}$ [l/min]
R909419697	2.0	10
R910928643	2.8	16

▼ Circuit diagram EP, size 28



▼ Circuit diagram EP, sizes 250 to 1000

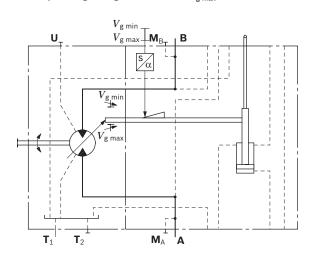


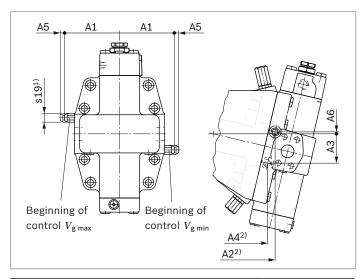
Bosch Rexroth AG, RE-E 91604/05.2016 | Europe

▼ Dimensions, size 28

▼ Dimensions, sizes 250 to 1000

NG	A1	A2	
250	357	402	
355	397	446	
500	440	504	
1000	552	629	


Swivel angle indicator


Optical (V)

The swivel position is indicated by a pin on the side of the port plate. The length of pin protruding depends on the position of the lens plate.

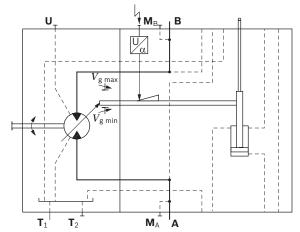
If the pin is flush with the port plate, the motor is at the beginning of control. At maximum swivel, the pin length is 8 mm (visible after removing the cap nut).

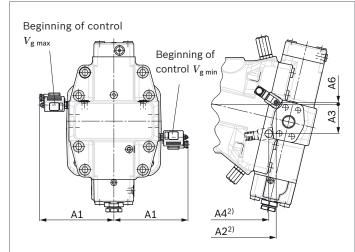
▼ Example: Beginning of control at $V_{\rm g\ max}$

NG	A1	A2 ²⁾	А3	A4	A5 ³⁾	A6
250	136.5	256	73	238	11	5
355	159.5	288	84	266	11	8
500	172.5	331	89	309	11	3
1000	208.5	430	114	402	11	3

Electric (E)

The motor position is detected by an inductive position transducer. This converts the travel of the control device into an electric signal.


This signal is used to forward the swivel position to an electric control unit.


Inductive position transducer

Type of protection:

► IP65 (DIN/EN 60529)

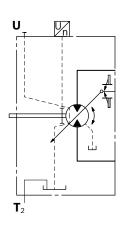
▼ Example: Beginning of control at $V_{\text{g max}}$

NG	A1	A2 ²⁾	А3	A4	A6	
250	185	256	73	238	5	
355	208	288	84	266	8	
500	221	331	89	309	3	
1000	257	430	114	402	3	

- 1) Width across flats
- 2) Dimension to mounting flange
- 3) Required clearance for removal of cap nut

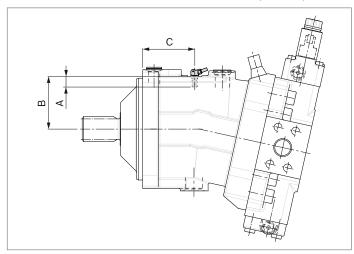
Bosch Rexroth AG, RE-E 91604/05.2016 | Europe

Speed sensor

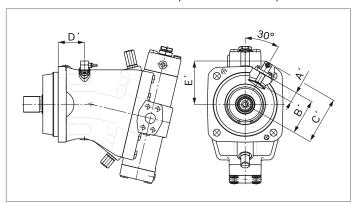

Version A6VM...U ("prepared for speed sensor", i.e. without sensor) is equipped with a spline on the rotary group. A signal proportional to motor rotational speed can be generated with the DSA/DSM or HDD speed sensor mounted. The DSA/DSM sensor registers the rotational speed and direction of rotation.

Type code, technical data, dimensions and parameters for the connector, plus safety instructions about the sensor can be found in the relevant data sheet 95132 – DSM, 95133 – DSA or 95135 – HDD.

The sensor is mounted on the port provided for this purpose with a mounting bolt. On deliveries without sensor, the port is plugged with a pressure-resistant cover. We recommend ordering the A6VM variable motor complete with mounted sensor.


▼ Circuit diagram

Size 28



▼ Dimensions

Version "V" with DSA sensor or DSM senor (size 28)

Version "H" with HDD sensor (sizes 250 to 500)

NG			28	250	355	500
Numbe	r of teeth		40	78	78	90
DSA	А	Insertion depth (tolerance -0.25)	18.4	1)	1)	1)
	В	Contact surface	61	1)	1)	1)
	С		57.2	1)	1)	1)
HDD	A'	Insertion depth (tolerance ±0.1)	_	32.5	32.5	32.5
	B'	Contact surface	_	110.5	122.5	132.5
	C'		_	149	161	171
	D'		_	82	93	113
	E'		_	135	145	154

¹⁾ On request

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may empty via the hydraulic lines.

Particularly in the installation position "drive shaft upwards", filling and air bleeding must be carried out completely as there is, for example, a danger of dry running. The leakage in the housing area must be directed to the reservoir via the highest drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the maximum permissible case pressure of all connected units is not exceeded at any operational conditions. If this is not possible, separate drain lines must be laid.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Notice

In certain installation positions, an influence on the control characteristic can be expected. Gravity, dead weight and case pressure can cause minor characteristic shifts and changes in response time.

Key	
F	Filling / air bleeding
U	Bearing flushing / air bleed port
T ₁ , T ₂	Drain port
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required distance to reservoir bottom (100 mm)

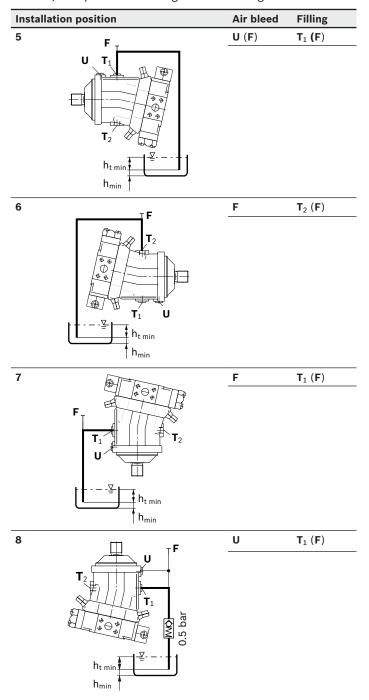
Installation position

See the following examples 1 to 8.

Further installation positions are available upon request.

Recommended installation position: 1 and 2

Below-reservoir installation (standard)


Below-reservoir installation means that the axial piston unit is installed outside of the reservoir and below the minimum fluid level of the reservoir

Installati	on position	Air bleed	Filling
1	h _{t min} h _{min} h _{min} T ₁		T ₁
2	$h_{t min}$ h_{min} T_2 $G G G G$ $G G G$ $G G G$ $G G G G$ $G G $		T ₂
3	h _{t min} h _{min}		T 1
1	h _{t min}	U	T ₁

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. Recommendation for installation position 8 (drive shaft upward):

A check valve in the reservoir line (cracking pressure 0.5 bar) can prevent draining of the housing area.

Notice

Port ${\bf F}$ is part of the external piping and must be provided on the customer side to make filling and air bleeding easier.

Project planning notes

- ► The motor A6VM is designed to be used in open and closed circuits.
- ► The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified skilled personnel.
- ▶ Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- ► Before finalizing your design, please request a binding installation drawing.
- ► The specified data and notes contained herein must be observed
- ► For safety reasons, controls with beginning of control at $V_{\rm g \, min}$ (e.g., HA) are not permissible for winch drives (e.g. anchor winches)!
- ► Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- ▶ Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the instruction manual.
- ▶ Not all variants of the product are approved for use in safety functions according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- ▶ Depending on the type of control used, electromagnetic effects can be produced when using solenoids. When a direct current is applied, solenoids do not cause electromagnetic interference nor is their operation impaired by electromagnetic interference.
 - Other behavior can result when a modulated direct current (e.g. PWM signal) is applied. Potential electromagnetic interference for persons (e.g. persons with a pacemaker) and other components must be tested by the machine manufacturer.
- Please note the details regarding the tightening torques of port threads and other threaded joints in the instruction manual.

► Working ports:

- The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
- The working ports and function ports are only intended to accommodate hydraulic lines.

Safety instructions

- ▶ During and shortly after operation, there is a risk of getting burnt on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- ▶ Moving parts in control equipment (e.g. valve spools) can, under certain circumstances get blocked in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filter) will not rule out a fault but merely reduce the risk.
 - The machine/system manufacturer must check whether additional measures are required on the machine for the relevant application in order to bring the driven consumer into a safe position (e.g. safe stop) and ensure any measures are properly implemented.
- Moving parts in high-pressure relief valves may in certain circumstances become stuck in an undefined position due to contamination (e.g. contaminated hydraulic fluid). This can result in restriction or loss of the load holding function in lifting winches.
 - The machine/system manufacturer must check whether additional measures are required on the machine for the relevant application in order to keep the load in a safe position and ensure they are properly implemented.
- ▶ When using the axial piston motor in winch drives, make certain that the technical limit values are not exceeded under all operating conditions. If the axial piston motor is extremely overloaded (e.g., if the maximum permissible rotational speeds are exceeded during weighing of the anchor while the ship is in motion), the rotary group may be damaged and, in the worst case, the axial piston motor may burst. The machine manufacturer / system manufacturer is to undertake additional measures, up to and including encapsulation.

Bosch Rexroth AG

Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE-E 91604/05.2016 | Europe

Rexroth Bosch Group

Axial piston variable motor A6VM series 65

RE 91607

Edition: 06.2016 Replaces: 06.2014

- ► All-purpose high pressure motor
- ▶ Sizes 55 to 200
- ► Nominal pressure 400 bar
- ► Maximum pressure 450 bar
- ▶ Open and closed circuits

Features

- Robust motor with long service life
- Approved for very high rotational speeds
- ► High control range (can be swiveled to zero)
- ► High torque
- ▶ Variety of controls
- ► Optionally with flushing and boost-pressure valve mounted
- Optionally with mounted high-pressure counterbalance valve
- ▶ Bent-axis design

Contents	
Ordering code	2
Hydraulic fluids	6
Flow direction	7
Shaft seal	7
Operating pressure range	8
Technical data	9
HP - Proportional hydraulic control	11
EP - Proportional electric control	14
HZ – Two-point hydraulic control	16
EZ – Two-point electric control	17
HA – Automatic high-pressure related control	18
DA – Automatic speed-related control	23
Electric travel direction valve (for DA, HA.R)	25
Dimensions size 55 to 200	26
Connector for solenoids	62
Neutral position switch	63
Flushing and boost pressure valve	64
Counterbalance valve BVD and BVE	66
Speed sensor	69
Setting range for displacement	70
Installation instructions	72
Project planning notes	74
Safety instructions	75

Ordering code

0	1	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17	18	19	20	21
Αθ	6V	М						0			/	65	М	W	V	0						<u> </u>
xial _I	piston	unit																				
01	Bent-	axis c	lesign	, varia	ble, no	ominal	press	sure 40	00 bar	, maxii	mum	pressu	re 450) bar								A6V
pera	ting m	ode																				
02	Moto	r																				М
ize (I	NG)																					
03		netric	displa	aceme	nt, see	e tech	nical d	lata oı	n page	9					055	080	107	7 1	L40	160	200]
ontr	ol devi	CE													055	080	107		<u>'</u> L40	160	200	,
04			al cor	itrol		po	sitive	contr	ol			Δp_{St}	= 10 b	ar	•	•	10.		•	•	•	HP1
	hydra	ulic				•							= 25 b		•	•	•		•	•	•	HP2
						ne	egative	cont	rol				= 10 b		•	•	•		•	•	•	HP5
													= 25 b		•	•	•		•	•	•	HP6
	Propo	ortion	al cor	itrol		ро	sitive	contr	ol				.2 V D		•	•	•		•	•	•	EP1
	electi	rical										U = 2	24 V D	С	•	•	•		•	•	•	EP2
						ne	egative	cont	rol			<i>U</i> = 1	.2 V D	С	•	•	•		•	•	•	EP5
												U = 2	24 V D	С	•	•	•		•	•	•	EP6
	Two-p	ooint	contro	ol		ne	egative	cont	rol						_	-	-		•	•	•	HZ5
	hydra	ulic													•	•	•		-	-	-	HZ7
	Two-point control			ne	negative control				<i>U</i> = 1	.2 V D	С	-	_	-		•	•	•	EZ5			
	electi	rical									U = 2	24 V D	С	-	-	-		•	•	•	EZ6	
												U = 1	.2 V D	С	•	•	•		-	-	-	EZ7
												U = 2	24 V D	С	•	•	•		-	-	-	EZ8
	1		contro ure re			W	ith mir	nimum	press	ure inc	rease	<i>Δp</i> ≤ 10 ba		X.	•	•	•		•	•	•	HA1
	Posit	ive co	ntrol			w	ith pre	essure	increa	ase		Δp =	100 b	ar	•	•	•		•	•	•	HA2
	Autor	natic	contro	ol		hy	dr. tra	avel di	rectio	n valve	;				•	•	•		•	•	•	DA0
	1			egativ		el	ectric	travel	direct	tion va	lve	U = 1	.2 V D	С	•	•	•		•	•	•	DA1
	contr	OI p_{St}	/ p _{HD}	= 5/10)O	+	electri	ic V_{gm}	_{lax} circ	uit		U = 2	24 V D	С	•	•	•		•	•	•	DA2
ressu	ıre coı	ntrol/	overri	ide											055	080	107	7 1	L 40	160	200	
05	Witho	out pr	essure	e cont	rol/ove	erride									•	•	•		•	•	•	00
	Press	ure c	ontrol	fixed	settin	g, only	for H	P5, H	P6, EP	5 and	EP6				•	•	•		•	•	•	D1
	Overr	ride				hy	drauli	c rem	ote co	ntrol,	propo	rtiona	I		•	•	•		•	•	•	Т3
	1	ntrols				el	ectric,	two-	ooint			U = 1	.2 V D	С	•	•	•		•	•	•	U1
	HA1 a	and H	A2			_						U = 2	24 V D	С	•	•	•		•	•	•	U2
										irectio	n	U = 1	.2 V D	С	•	•	•		•	•	•	R1
						va	lve, el	ectric				U = 2	24 V D	С	•	•	•		•	•	•	R2
onne	ctor f	or sol	enoid	s 1) (se	e page	e 62)				·		·										
06							oid, on	ly for	hydrai	ulic co	ntrol)											0
	DFUT	SCH	- mold	led co	nnecto	or, 2-p	in, wit	hout	suppre	ssor d	liode											Р

• = Available • = On request - = Not available

 $[\]scriptstyle ext{1)}$ Connectors for other electric components can deviate.

	01	02	03	04	05	06	07	08	09	10		11	12	13	14	15 1	16 17	7 18	19	20	21
Α	\6V	М						0			/	65	М	w	V	0				-	-
Neut	ral pos	ition	switch												055	080	107	140	160	200	·
07			ditiona		ction										•	•	•	•	•	•	0
	Neutr	al pos	sition s	witch	l										_	•	•	•	•	•	N
V 44!	tional 1	functi	on													-	1				
08	1		ditiona	al fund	rtion													1			0
	onse t																				
09	Damp		mping	(Stan	dard v				and El	25 6D	<u></u>	E7 UA	with	count	arbalan	ce valve	DVD/D	\/E			1
	Danip	Jilig										cham			Dalaili	ce vaive	- BVD/B	V C			4
												king cl)						7
					-2)		Jidea	III Out			,0 3110	Milig Ci	Tarrib	JI (DA	,						
	ng ran				ent²)	T.7									055	000	407	4 40	400	000	
10			ng scre				_n -setti t (0-ac								055	080	107	140	160	200	
	VVILLIC	out se	ttilig S	crew		med		ijustai	oie)						•	•	•	•	•	•	A B
						long									•	•	•	•	•	•	С
							a long								_	_	•			•	D
	Short						t (0-ac	liustal	nle)						•	•	•		•	•	E
	Onor	•				med		ijustai							•	•	•		•	•	F
						long									•	•	•	•	•	•	G
							a long								_	_	•	•	•	•	Н
	Medi	um					t (0-ac	ljustal	ole)						•	•	•	•	•	•	J
						med									•	•	•	•	•	•	К
						long									•	•	•	•	•	•	L
						extra	a long								-	_	•	•	•	•	М
Serie			-													1			I.		
11	i -	s 6, in	dex 5																		65
	igurati			and f																	
12	-		t threa					ccord	ng to	ISO 6	1/19										м
				aus Wi	111 0 11	ing sea	aiiiig a	ccoru	ing to	130 0.	143										141
	tion of			L - £4	la : al : a a		1														
13			drive s	mart,	niairea	Liona	1														W
	ng mat																				
14	FKM	(fluor	elasto	mer)																	V
Drive	shaft																				
15	Stand	dard b	earing																		0
Mour	nting fl	lange													055	080	107	140	160	200	
16	ISO 3	8019-2				125-	4								•	_	-	-	-	-	M4
						140-	4								-	•	-	-	-	-	N4
						160-	4								-	_	•	_	-	-	P4
						180-									-	_	-	•	•	-	R4
	1					200-	4								1	1	1	_	l _	1	S4

2) The settings for the setting screws can be found in the table (see pages 70 and 71).

o = On request

- = Not available

= Available

4 **A6VM series 65** | Axial piston variable motor Ordering code

	01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	L6 17	18	19	20	21
Δ	\6V	М						0			1	65	М	W	V	0				-	-
Driv€	shaft														055	080	107	140	160	200	_
17	Spline	ed sha	ıft			1 1/4	4 in 14	T 12/2	24 DP						•	•	-	-	-	_	S7
	ANSI	B92.1	a			1 3/4	4 in 13	T 8/16	S DP						_	-	•	•	•	-	T1
						2 in	15T 8/	16 DF							-	-	-	-	-	•	T2
	Spline		ıft			W30	x2x14	k9g							•	_	-	-	-	_	Z 6
	DIN 54	480				W35	×2×16	×9g							•	•	-	-	-	_	Z 8
						W40	×2×18	×9g							_	•	•	-	-	_	Z 9
						W45	×2×21	×9g							-	-	•	•	•	_	A1
						W50	×2×24	×9g							_	_	-	-	•	•	A2
Work	ing po	rt													055	080	107	140	160	200	
18	SAE w	vorkin	g port	s A ar	nd B at	t rear									•	•	•	•	•	•	1
	SAE w	vorkin	g port	s A ar	nd B at	t side,	oppos	ite							•	•	•	•	•	•	2
	Port p								BVI	D20					•	•	•	-	-	-	7
	valves	for m	ounti	ng a c	ounter	balan	ce valv	(e ³⁾	BVI	D25, E	3VE25				_	_	•	•	•	•	8
Valve	(see p	ages	64 to	68)											055	080	107	140	160	200	
19	Witho	ut val	ve												•	•	•	•	•	•	0
	With o	counte	erbala	nce va	lve BV	/D/BVE	Emour	nted ⁴⁾							•	•	•	•	•	•	W
	With f				t press	sure va	alve, m	ounte	d Flu	shing	flow	$q_{\scriptscriptstyle extsf{V}}$ [l/m	in]				_				
	Flushi			sides					3.5						•	•	•	-	-	_	Α
	Flushi $\Delta p = p$			har a	nd v =	10 mi	m²/s		5						•	•	•	-	-	_	В
	$(p_{ND} =$								8						•	•	•	•	•	•	С
	Only p	oossib	le wit	h port	plate	s 1 and	d 2		10						•	•	•	•	•	•	D
									14						•	•	•	-	-	-	F
									17						-	-	-	•	•	•	G
									20						-	_	● ⁵⁾	•	•	•	Н
									25						-	_	● ⁵⁾	•	•	•	J
									30						-	-	● ⁵⁾	•	•	•	K
									35						_	_	-	•	•	•	L
									40						-	-	-	•	•	•	М

• = Available • = On request - = Not available

³⁾ Only possible in combination with HP, EP and HA control. Note the restrictions described on page 66.

⁴⁾ State ordering code for counterbalance valve separately in accordance with data sheet 95522 – BVD or 95525 – BVE. Note the restrictions described on page 66.

⁵⁾ Not for EZ7, EZ8 and HZ7.

Г	01	02	03	04	05	06	07	08	 	 11				 	17	18	19	20		21
- 1	A6V	I M								 1 65	N/I	W	\ \/						_	

Spee	d sensor (see page 69)	055	080	107	140	160	200	
20	Without speed sensor	•	•	•	•	•	•	0
	Prepared with speed sensor DSM/DSA	•	•	•	•	•	•	U
	With speed sensor DSM/DSA mounted ⁶⁾	•	•	•	•	•	•	V

Standard / special version

2	Standard version	0
	Standard version with installation variants, e.g. T ports against standard open and closed	Υ
	Special version	S

• = Available • = On request - = Not available

Notice

▶ Note the project planning notes on page 74.

⁶⁾ State ordering code for sensor separately in accordance with data sheet 95132 – DSM or 95133 – DSA and note the requirements relating to the electronics.

Hydraulic fluids

The variable motor A6VM is designed for operation with mineral oil HLP according to DIN 51524.

Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- ▶ 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids
- ▶ 90222: Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)
- ▶ 90223: Fire-resistant, water-containing hydraulic fluids (HFC, HFB)
- ▶ 90225: Axial piston units for operation with water-free and water-containing fire-resistant hydraulic fluids (HFDR, HFDU, HFB, HFC).

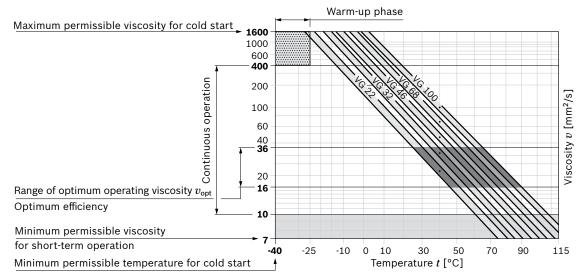
The variable motor A6VM is not suitable for operation with HFA fluids. If operating with HFB-, HFC- and HFD or environmentally acceptable hydraulic fluids, the limitations regarding technical data or other seals must be observed.

Notes on selection of hydraulic fluid

The hydraulic fluid should be selected such that the operating viscosity in the operating temperature range is withinthe optimum range (v_{opt} see selection diagram).

Note

At no point of the component may the temperature be higher than 115 °C. The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.


If the above conditions cannot be maintained due to extreme operating parameters, we recommend the use of a flushing and boost-pressure valve (see page 64).

Viscosity and temperature of hydraulic fluids

	Viscosity	Temperature	Comment
Cold start ¹⁾	$v_{\text{min}} \ge 1600 \text{ mm}^2/\text{s}$	θ _{St} ≥ -40 °C	$t \le 3$ min, $n \le 1000$ rpm, without load $p \le 50$ bar
Permissible temper	rature difference	Δ <i>T</i> ≤ 25 K	between axial piston unit and hydraulic fluid in the system
Warm-up phase	$v = 1600 \text{ to } 400 \text{ mm}^2/\text{s}$	θ = -40 °C to -25 °C	at $p \le 0.7 \times p_{\text{nom}}$, $n \le 0.5 \times n_{\text{nom}}$ and $t \le 15$ min
Continuous operation	$v = 400 \text{ to } 10 \text{ mm}^2/\text{s}$		This corresponds, for example on the VG 46, to a temperature range of +5 °C to +85 °C (see selection diagram)
		θ = -25 °C to +103 °C	measured at port T Note the permissible temperature range of the shaft seal $(\Delta T = \text{approx. } 12 \text{ K between the bearing/shaft seal and port } \mathbf{T})$
	$v_{\rm opt}$ = 36 to 16 mm ² /s		Range of optimum operating viscosity and efficiency
Short-term operation	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		$t < 3 \text{ min}, p < 0.3 \times p_{\text{nom}}$

¹⁾ For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range -40 °C to +90 °C).

▼ Selection diagram

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.

At very high hydraulic fluid temperatures (90 °C to maximum 103 °C, measured at port T), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

Influence of case pressure on beginning of control

An increase in case pressure affects the beginning of control of the variable motor when using the following control options:

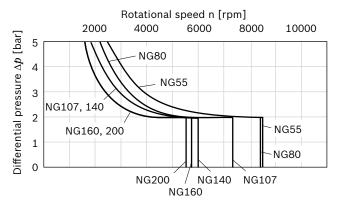
- ► HP, HA.T3: increase
- ▶ DA: decrease

With the following settings, an increase in case pressure will have no effect on the beginning of control:

HA.R and HA.U, EP, HA

The factory setting of the beginning of control is made at p_{abs} = 2 bar case pressure.

Flow direction

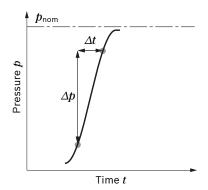

Direction of rotation, viewed on drive shaft									
CW	ccw								
A to B	B to A								

Shaft seal

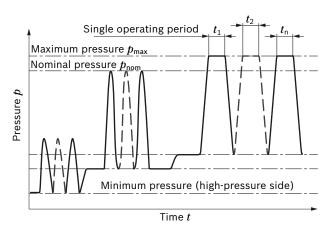
Permissible pressure loading

The service life of the shaft seal will be influenced by the speed of the axial piston unit and the leakage pressure in the housing (case pressure). Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. Case pressures of a continuous 2 bar maximum are permitted to be able to utilize the entire speed range. Higher case pressures are permissible at lower rotational speeds (see diagram). The service life of the shaft seal decreases with increasing frequency of pressure spikes and increasing mean differential pressure.

The case pressure must be equal to or higher than the ambient pressure.

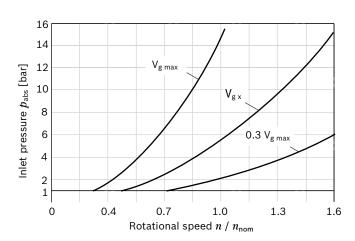


The FKM shaft seal may be used for leakage temperatures from -25 °C to +115 °C. For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).


Operating pressure range

Pressure at service line port A or B		Definition
Nominal pressure p_{nom}	400 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure $p_{\sf max}$	450 bar	The maximum pressure corresponds to the maximum operating pressure
Single operating period	10 s	within the single operating period. The sum of the single operating periods
Total operating period	300 h	must not exceed the total operating period.
Minimum pressure (high-pressure side)	25 bar absolute	Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.
Minimum pressure – pump operating mode (inlet)	See the diagram below	To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e.g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). This minimum pressure is dependent on the speed and displacement of the axial piston unit (see characteristic curve)
Summation pressure p_{Su} (pressure A + pressure B)	700 bar	The summation pressure is the sum of the pressures at both service line ports (A and B)
Rate of pressure change $R_{A \text{ max}}$		Maximum permissible rate of pressure build-up and reduction during a pres-
With integrated pressure-relief valve	9000 bar/s	sure change over the entire pressure range.
Without pressure-relief valve	16000 bar/s	-

▼ Rate of pressure change R_{A max}



▼ Pressure definition

Total operating period = $t_1 + t_2 + ... + t_n$

▼ Minimum pressure - pump operating mode (inlet)

This diagram is valid only for the optimum viscosity range from v_{opt} = 36 to 16 mm²/s.

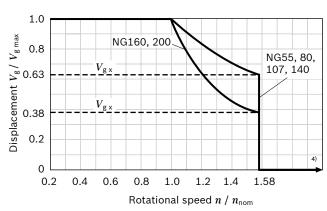
Please contact us if these conditions cannot be satisfied.

Notice

Operating pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids, please contact us.

Technical data

Size		NG		55	80	107	140	160	200
Displacement geometric, per	revolution	$V_{g\;max}$	cm ³	54.8	80	107	140	160	200
		$V_{g\;min}$	cm ³	0	0	0	0	0	0
		V_{gx}	cm ³	35	51	68	88	61	76
Maximum speed ¹⁾	at $V_{g\;max}$	n_{nom}	rpm	4450	3900	3550	3250	3100	2900
(complying with the maxi-	at $V_{\rm g}$ < $V_{\rm gx}$ (see diagram)	n_{max}	rpm	7000	6150	5600	5150	4900	4600
mum permissible inlet flow)	at $V_{ m g0}$	n_{max}	rpm	8350	7350	6300	5750	5500	5100
Inlet flow ²⁾	at n_{nom} and V_{gmax}	$q_{ m v\; max}$	l/min	244	312	380	455	496	580
Torque ³⁾	at $V_{\rm g\ max}$ and Δp = 400 bar	T	Nm	349	509	681	891	1019	1273
Rotary stiffness	$V_{ m g\ max}$ to $V_{ m g}/2$	c_{min}	kNm/rad	10	16	21	34	35	44
	$V_{\rm g}/2$ to 0 (interpolated)	c_{min}	kNm/rad	32	48	65	93	105	130
Moment of inertia for rotary	group	J_{TW}	kgm²	0.0042	0.008	0.0127	0.0207	0.0253	0.0353
Maximum angular acceleration	on	α	rad/s²	31500	24000	19000	11000	11000	11000
Case volume		V	I	0.75	1.2	1.5	1.8	2.4	2.7
Weight, approx.		m	kg	28	36	46	61	62	78


Speed range

The minimum rotational speed n_{\min} is not limited. For applications with requirements on the evenness of the rotation at low rotational speeds, please contact us.

Notice

- ► Theoretical values, without efficiency levels and tolerances; values rounded
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet 90261.

Permissible displacement in relation to speed

Determining	Determining the operating characteristics											
Inlet flow	~		$V_{g} \times n$		[l/min]							
illet now	q_{v}		1000 × η _ν		[1/111111]							
Rotational			$q_{ m v} imes 1000 imes \eta_{ m v}$		[rnm]							
speed	n	_	V_{g}		[rpm]							
Torque	Т	_	$V_{g}\! imes\!\Delta p\! imes\!\eta_{mh}$		[Nm]							
Torque	1	-	20 × π		נואווון							
Power	P		$2 \pi \times T \times n$	$q_{v} \times \Delta p \times \eta_{t}$	- [kW]							
Power	Ρ	-	60000	600	- [KVV]							

Key		
V_{g}	=	Displacement per revolution [cm ³]
Δp	=	Differential pressure [bar]
n	=	Rotational speed [rpm]
η_{v}	=	Volumetric efficiency
η_{mh}	=	Mechanical-hydraulic efficiency
η_{t}	=	Total efficiency $(\eta_{t} = \eta_{v} \cdot \eta_{mh})$

¹⁾ The values are valid:

⁻ for the optimum viscosity range from $v_{\rm opt}$ = 36 to 16 mm²/s

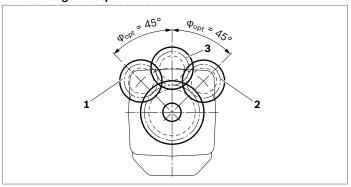
⁻ with hydraulic fluid based on mineral oils

²⁾ Observe limitation of input flow due to counterbalance valve (see page 66).

³⁾ Torque without radial force, With radial force see page 10.

⁴⁾ Values in this range on request

Permissible radial and axial forces of the drive shafts


Size	NG		55	80	107	140	160	200
Drive shaft		in	1 1/4	1 1/4	1 3/4	1 3/4	1 3/4	2
Maximum radial force	$F_{q\;max}$	N	7811	7559	12256	16036	14488	20047
at distance a (from shaft collar)	a	mm	24.0	24.0	33.5	33.5	33.5	33.5
Maximum torque at $F_{q max}$	$T_{q\;max}$	Nm	310	300	681	891	920	1273
Maximum differential pressure at V_{gmax} and $F_{\mathrm{q\;max}}$	$\Delta p_{q\;max}$	bar	315	236	400	400	361	400
Maximum axial force	+ F _{ax max}	N	0	0	0	0	0	0
at standstill or depressurized operation	- F _{ax max}	N	500	710	900	1030	1120	1250
Permissible axial force per bar operating pressure	+ $F_{ m ax\ zul/bal}$, N/ba	r 7.5	9.6	11.3	13.3	15.1	17.0

-,													
Size		NG		55	55	80	80	107	107	140	160	160	200
Drive shaft		Ø	mm	W30	W35	W35	W40	W40	W45	W45	W45	W50	W50
Maximum radial force	ıF.	$F_{q\;max}$	N	7581	8069	10867	10283	13758	12215	15982	18278	16435	20532
at distance a (from shaft collar)	a	a	mm	17.5	20.0	20.0	22.5	22.5	25.0	25.0	25.0	27.5	27.5
Maximum torque at $F_{q max}$		T _{q max}	Nm	281	349	470	509	681	681	891	1019	1019	1273
	sure at $V_{\sf gmax}$	$\Delta p_{ extsf{q max}}$	bar	322	400	369	400	400	400	400	400	400	400
Maximum axial force at	тfh	+ F _{ax max}	N	0	0	0	0	0	0	0	0	0	0
standstill or depressurized operation	Fax ± ===================================	- F _{ax max}	N	500	500	710	710	900	900	1030	1120	1120	1250
Permissible axial force per pressure	bar operating	+ F _{ax zul/ba}	_r N/bai	r 7.5	7.5	9.6	9.6	11.3	11.3	13.3	15.1	15.1	17.0

Effect of radial force $F_{\rm q}$ on the service life of bearings

By selecting a suitable direction of radial force $F_{\rm q}$, the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

▼ Toothed gear output drive

- 1 Direction of rotation "counter-clockwise", pressure at port A
- ${\bf 2}$ Direction of rotation "clockwise", pressure at port ${\bf B}$
- **3** Alternating direction of rotation

Bosch Rexroth AG, RE 91607/06.2016

Notice

- ► The values given are maximum values and do not apply to continuous operation.
- ► The permissible axial force in direction -F_{ax} is to be avoided as the lifetime of the bearing is reduced.
- ► Special requirements apply in the case of belt drives. Please contact us.

HP - Proportional hydraulic control

The proportional hydraulic control provides infinite adjustment of the displacement. Control is proportional to the pilot pressure applied to port **X**.

HP1, HP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible speed at minimum pilot pressure)
- ► End of control at $V_{\rm g \ max}$ (maximum torque, minimum speed at maximum pilot pressure)

HP5, HP6 negative control

- ▶ Beginning of control at $V_{g max}$ (maximum torque, minimum speed at minimum pilot pressure)
- ► End of control at $V_{g min}$ (minimum torque, maximum permissible speed at maximum pilot pressure)

Notice

- Maximum permissible pilot pressure: p_{St} = 100 bar
- ► The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us.

 Bear in mind that pressures up to 450 bar can occur at
 - Bear in mind that pressures up to 450 bar can occur at port \mathbf{G} .
- ► Specify the desired beginning of control in plain text when ordering, e.g.: beginning of control at 10 bar.
- ► The beginning of control and the HP charakteristic curve are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 7) and thus a parallel shift of the characteristic.
- ► A leakage flow of maximum 0.3 l/min can occur at port X due to internal leakage (working pressure > pilot pressure). The control is to be suitably configured to avoid an independent build-up of pilot pressure.

Response time damping

The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for sizes 55 to 200

HP without damping.

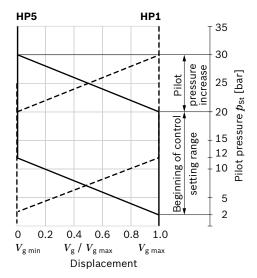
HP.D with throttle pin on both sides, symmetrical (see table)

Optional for sizes 55 to 200

HP with throttle pin on both sides, symmetrical (see table)

▼ Throttle pin overview

Size	55	80	107	140	160	200
Groove size [mm]	0.45	0.45	0.55	0.55	0.55	0.65


HP1, HP5 pilot pressure increase Δp_{St} = 10 bar HP1 positive control

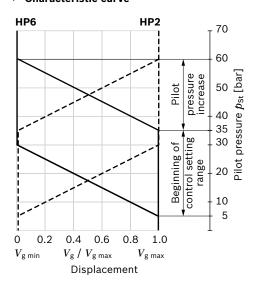
A pilot pressure increase of 10 bar at port **X** results in an increase in displacement from $V_{\rm g\,min}$ to $V_{\rm g\,max}$.

HP5 negative control

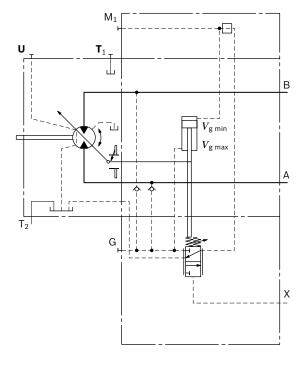
A pilot pressure increase of 10 bar at port **X** results in a decrease in displacement from $V_{\rm g\ max}$ to $V_{\rm g\ min}$. Beginning of control, setting range 2 to 20 bar Standard setting: beginning of control at 3 bar (end of control at 13 bar)

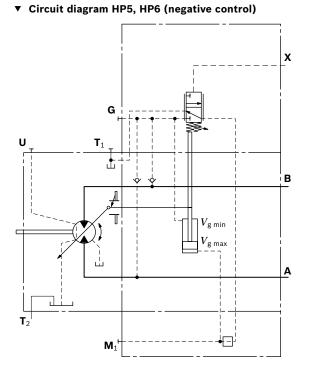
▼ Characteristic curve

HP2, HP6 pilot pressure increase $\Delta p_{\rm St}$ = 25 bar HP2 positive control


A pilot pressure increase of 25 bar at port **X** results in an increase in displacement from $V_{\rm g\;min}$ to $V_{\rm g\;max}$.

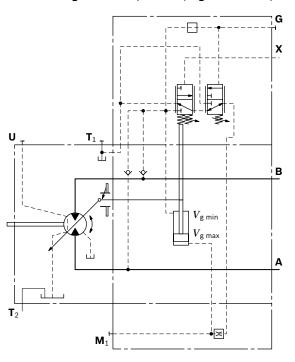
HP6 negative control


A pilot pressure increase of 25 bar at port **X** results in a decrease in displacement from $V_{\rm g\,max}$ to $V_{\rm g\,min}$. Beginning of control, setting range 5 to 35 bar Standard setting:


beginning of control at 10 bar (end of control at 35 bar)

▼ Characteristic curve

▼ Circuit diagram HP1, HP2 (positive control)



HP5D1, HP6D1 Pressure control, fixed setting

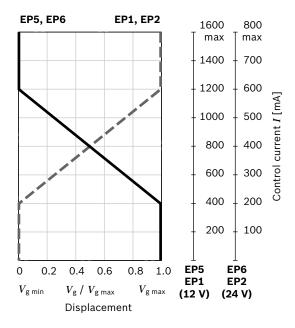
The pressure control overrides the HP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger displacement.

The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant. Setting range of the pressure control valve 80 to 400 bar

▼ Circuit diagram HP5D1, HP6D1 (negative control)

EP - Proportional electric control

The proportional electric control, type EP, provides infinite adjustment of the displacement, proportional to the control current applied to the solenoid.


EP1, EP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible speed at minimum control current)
- ► End of control at $V_{g \text{ max}}$ (maximum torque, minimum speed at maximum control current)

EP5, EP6 negative control

- ▶ Beginning of control at $V_{g max}$ (maximum torque, minimum speed at minimum control current)
- ► End of control at $V_{g min}$ (minimum torque, maximum permissible speed at maximum control current)

▼ Characteristic curve

Notice

The control oil is internally taken from the high pressure side of the motor (**A** or **B**). For reliable control, an operating pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port **G**.

Response time damping

The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for sizes 55 to 200

EP without damping.

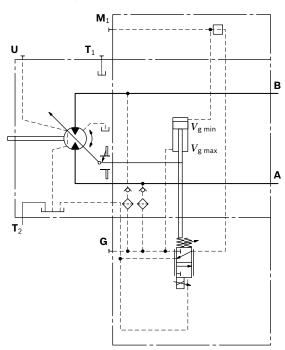
EP.D with throttle pin on both sides, symmetrical (see table)

Optional for sizes 55 to 200

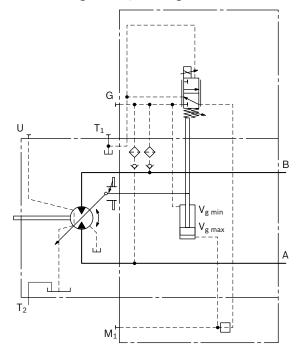
EP with throttle pin on both sides, symmetrical (see table)

▼ Throttle pin overview

Size	55	80	107	160	200
Groove size [mm]	0.45	0.45	0.55	0.55	0.65


Technical data, solenoid	EP1, EP5	EP2, EP6				
Voltage	12 V (±20%)	24 V (±20%)				
Control current						
Beginning of control	400 mA	200 mA				
End of control	1200 mA	600 mA				
Current limit	1.54 A	0.77 A				
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω				
Dither						
Frequency	100 Hz	100 Hz				
Minimum oscillation range ¹⁾	240 mA	120 mA				
Duty cycle	100%	100%				
Type of protection: see connector version on page 62						

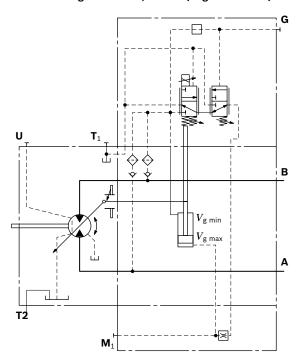
Various BODAS controllers with application software and amplifiers are available for controlling the proportional solenoids.


Further information can also be found on the internet at www.boschrexroth.com/mobile-electronics.

¹⁾ Minimum required oscillation range of the control current $\Delta I_{\mathrm{p-p}}$ (peak to peak) within the respective control range (start of control to end of control)

▼ Circuit diagram EP1, EP2 (positive control)

▼ Circuit diagram EP5, EP6 (negativ control)

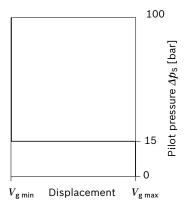


EP5D1, EP6D1 Pressure control, fixed setting

The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger displacement.

The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant. Setting range of the pressure control valve 80 to 400 bar

▼ Circuit diagram EP5D1, EP6D1 (negativ control)


HZ - Two-point hydraulic control

The two-point hydraulic control allows the displacement to be set to either $V_{\rm g\,min}$ or $V_{\rm g\,max}$ by switching the pilot pressure at port **X** on or off.

HZ5, HZ7 negative control

- ▶ Position at $V_{g max}$ (without pilot pressure, maximum torque, minimum speed)
- Position at $V_{\rm g\,min}$ (with pilot pressure > 15 bar activated, minimum torque, maximum permissible speed)

▼ Characteristic curve HZ5, HZ7

Notice

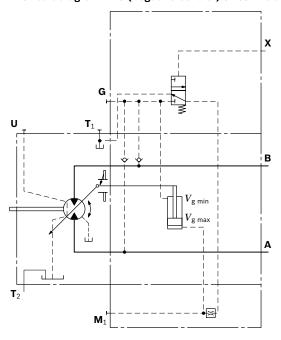
- ► Maximum permissible pilot pressure: 100 bar
- ► The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us. Please note that pressures up to 450 bar can occur at port G.</p>
- At port X a leakage flow of maximum 0.3 l/min occurs (working pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir.

Response time damping

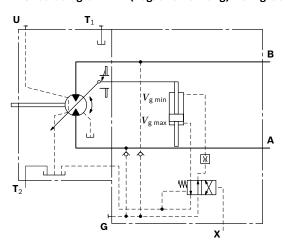
The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for sizes 140 to 200

HZ5 with throttle pin on both sides, symmetrical (see table)


Standard for sizes 55 to 107

HZ7 (synchronous piston) with throttle pin on both sides, symmetrical (see table)


▼ Throttle pin overview

Size	55	80	107	140	160	200
Groove size [mm]	0.30	0.30	0.30	0.55	0.55	0.65

▼ Circuit diagram HZ5 (negative control) sizes 140 and 200

▼ Circuit diagram HZ7 (negative Kennung) Nenngröße 55 bis 107

EZ - Two-point electric control

The two-point electric control allows the displacement to be set to either $V_{\rm g\;min}$ or $V_{\rm g\;max}$ by switching the electric current to a switching solenoid on or off.

Notice

The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, an operating pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

Response time damping

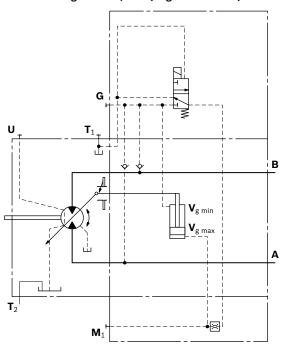
The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for sizes 140 to 200

EZ5, EZ6 with throttle pin on both sides, symmetrical (see table)

Standard for sizes 55 to 107

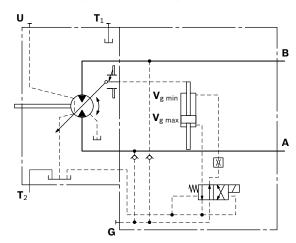
EZ7, EZ8 (synchronous piston) with throttle pin on both sides, symmetrical (see table)


▼ Throttle pin overview

Size	55	80	107	140	160	200
Groove size [mm]	0.30	0.30	0.30	0.55	0.55	0.65

Sizes 140 to 200

Technical data, solenoid with ø37	EZ5	EZ6
Voltage	12 V (±20%)	24 V (±20%)
Position $V_{g\;max}$	de-energized	de-energized
Position V_{gmin}	energized	energized
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum required active current	1.32 A	0.67 A
Duty cycle	100%	100%
Type of protection: see connector ve	ersion on page 6	2


▼ Circuit diagram EZ5, EZ6 (negative control)

Sizes 55 to 107

Technical data, solenoid with ø45	EZ7	EZ8				
Voltage	12 V (±20%)	24 V (±20%)				
Position $V_{g\;max}$	de-energized	de-energized				
Position V_{gmin}	energized	energized				
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω				
Nominal power	30 W	30 W				
Minimum required active current	1.5 A	0.75 A				
Duty cycle	100%	100%				
Type of protection: see connector version on page 62						

▼ Circuit diagram EZ7, EZ8 (negative control)

HA - Automatic high-pressure related control

The automatic high-pressure related control adjusts the displacement automatically depending on the operating pressure.

The displacement of the A6VM motor with HA control is $V_{\rm g\,min}$ (maximum speed and minimum torque). The control device measures internally the operating pressure at ${\bf A}$ or ${\bf B}$ (no control line required) and upon reaching the set beginning of control, the controller swivels the motor from $V_{\rm g\,min}$ to $V_{\rm g\,max}$ with increase of operating pressure. The displacement is modulated between $V_{\rm g\,min}$ and $V_{\rm g\,max}$, thereby depending on load conditions.

HA1, HA2 positive control

- ▶ Beginning of control at $V_{g min}$ (minimum torque, maximum speed)
- ► End of control at $V_{g max}$ (maximum torque, minimum speed)

Notice

- For safety reasons, winch drives are not permissible with beginning of control at $V_{\rm g \ min}$ (standard for HA).
- ► The control oil is internally taken from the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.</p>
 - Please note that pressures up to 450 bar can occur at port \mathbf{G} .
- ► The beginning of control and the HA.T3 charakteristic curve are influenced by case pressure. An increase in case pressure causes an increase in the beginning of control (see page 7) and thus a parallel shift of the characteristic.
- At port X a leakage flow of maximum 0.3 l/min occurs (working pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir. Only with HA.T control

Response time damping

The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for sizes 55 to 200

HA1,2 with one-sided throttle pin, throttling occurs from $V_{\rm g \, min}$ to $V_{\rm g \, max}$. (see table)

HA3 and HA3T3 with BVI and throttle pin on both sides, 0.30, symmetrical

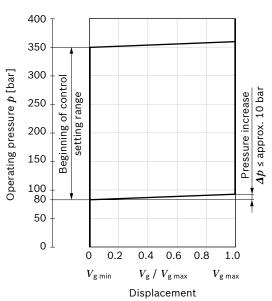
▼ Throttle pin overview

Size	55	80	107	140	160	200
Groove size [mm]	0.45	0.45	0.55	0.55	0.55	0.65

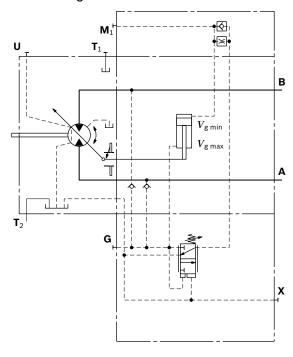
Standard for sizes 55 to 200

HA with BVD or BVE counterbalance valve, with throttle screw (see table)

▼ Throttle screw

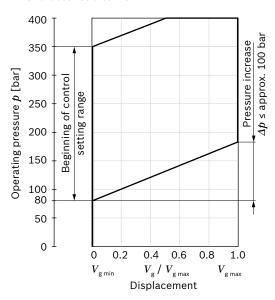

Size	55	80	107	140	160	200
Diameter [mm]	0.80	0.80	0.80	0.80	0.80	0.80

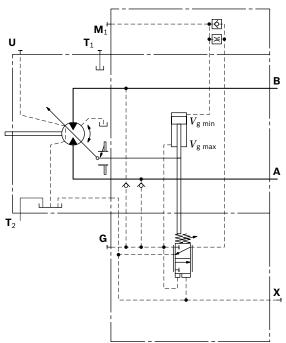
HA1 with minimum pressure increase, positive control


An operating pressure increase of $\Delta p \leq$ approx. 10 bar results in an increase in displacement from $V_{\rm g\ min}$ towards $V_{\rm g\ max}$.

Beginning of control, setting range 80 to 350 bar Please state the desired beginning of control in plain text when ordering, e.g.: beginning of control at 300 bar.

▼ Characteristic curve HA1


▼ Circuit diagram HA1

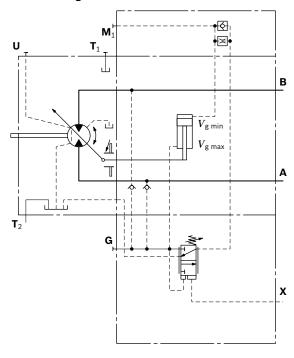

HA2 with pressure increase, positive control

An operating pressure increase of Δp approx. 100 bar results in an increase in displacement from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. Beginning of control, setting range 80 to 350 bar Please state the desired beginning of control in plain text when ordering, e.g.: beginning of control at 200 bar.

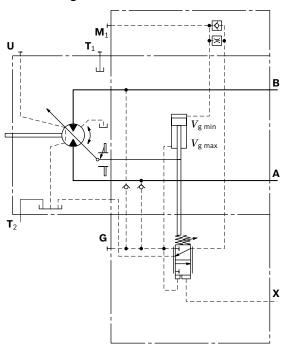
▼ Characteristic curve HA2

▼ Circuit diagram HA2

HA.T3 override, hydraulic, remote controlled, proportional


With the HA.T3 control, the beginning of control can be influenced by applying a pilot pressure to port \mathbf{X} . For every 1 bar of pilot pressure increase, the beginning of control is reduced by 17 bar.

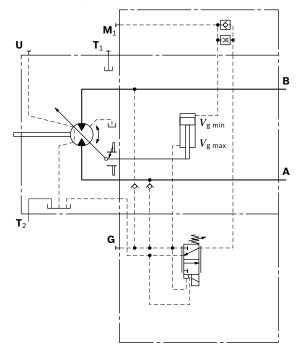
Beginning of control setting	300 bar	300 bar
Pilot pressure at port X	0 bar	10 bar
Beginning of control at	300 bar	130 bar


Notice

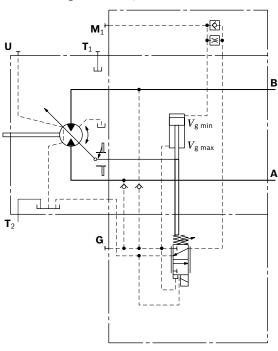
Maximum permissible pilot pressure 100 bar.

▼ Circuit diagram HA1T3

▼ Circuit diagram HA2T3


HA.U1, HA.U2 electric override, two-point

With the HA.U1 or HA.U2 control, the beginning of control can be overridden by an electric signal to a switching solenoid. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position.


The beginning of control can be set between 80 and 300 bar (specify required setting in plain text when ordering).

Technical data, solenoid with ø45	U1	U2		
Voltage	12 V (±20%)	24 V (±20%)		
No override	de-energized	de-energized		
Position $V_{\sf g\ max}$	energized	energized		
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω		
Nominal power	30 W	30 W		
Minimum required active current	1.5 A	0.75 A		
Duty cycle	100%	100%		
Type of protection: see connector version on page 62				

▼ Circuit diagram HA1U1, HA1U2

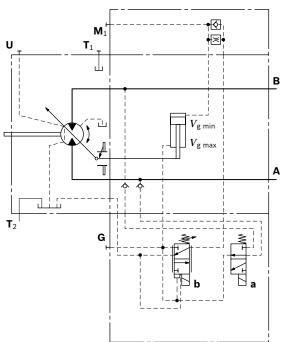
▼ Circuit diagram HA2U1, HA2U2

HA.R1, HA.R2 electric override, electric travel direction valve

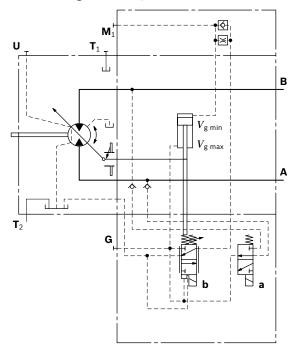
With the HA.R1 or HA.R2 control, the beginning of control can be overridden by an electric signal to switching solenoid **b**. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position.

The travel direction valve ensures that the preselected pressure side of the hydraulic motor (**A** or **B**) is always connected to the HA control, and thus determines the swivel angle, even if the high-pressure side changes (e.g. -travel drive during a downhill operation). This thereby prevents undesired jerky deceleration and/or braking characteristics.

The travel direction valve (see page 25) is either pressure spring or switched by energizing switching solenoid **a**, depending on the direction of rotation (travel direction).


Electric override

Technical data, solenoid b with ø45	R1	R2		
Voltage	12 V (±20%)	24 V (±20%)		
No override	de-energized	de-energized		
Position V_{gmax}	energized	energized		
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω		
Nominal power	30 W	30 W		
Minimum required active current	1.5 A	0.75 A		
Duty cycle	100%	100%		
Type of protection: see connector version on page 62				


Travel direction valve, electric

Technical data,	solenoid a with ø37	R1	R2
Voltage		12 V (±20%)	24 V (±20%)
Direction of rotation	Operating pressure in		
ccw	В	energized	energized
cw	Α	de-energized	de-energized
Nominal resista	nce (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power		26.2 W	26.5 W
Minimum required active current		1.32 A	0.67 A
Duty cycle		100%	100%
Type of protection: see connector version on page 62			

▼ Circuit diagram HA1R1, HA1R2

▼ Circuit diagram HA2R1, HA2R2

DA - Automatic speed-related control

The variable motor A6VM with automatic speed-related control, type DA, is intended for use in hydrostatic travel drives in combination with the variable pump A4VG with DA control.

A drive-speed-related pilot pressure signal is generated by the A4VG variable pump, and that signal, together with the operating pressure, regulates the swivel angle of the hydraulic motor.

Increasing pump speed, i.e. increasing pilot pressure, causes the motor to swivel to a smaller displacement (lower torque, higher speed), depending on the operating pressure.

If the operating pressure exceeds the pressure setpoint set on the controller, the variable motor swivels to a larger displacement (higher torque, lower speed).

▶ Pressure ratio p_{St}/p_{HD} = 5/100

DA closed loop control is only suitable for certain types of drive systems and requires review of the engine and vehicle parameters to ensure that the motor is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Detailed information is available from our sales organization.

Notice

The beginning of control and the DA charakteristic curve are influenced by case pressure. An increase in case pressure causes a decrease in the beginning of control (see page 7) and thus a parallel shift of the characteristic.

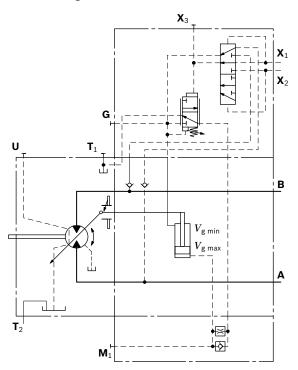
Response time damping

The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for sizes 55 to 200

DA with throttle pin on one side, throttling occurs from $V_{\rm g\,min}$ to $V_{\rm g\,max}$ (see table).

▼ Throttle pin overview


Size	55	80	107	140	160	200
Groove size [mm]	0.45	0.45	0.55	0.55	0.55	0.65

DA0 hydraulic travel direction valve, negative control

Depending on the direction of rotation (travel direction), the travel direction valve is switched by using pilot pressures connections \mathbf{X}_1 or \mathbf{X}_2 .

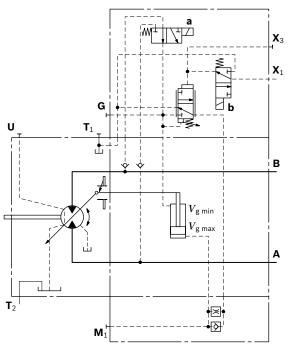
Direction of rotation	Operating pressure in	Pilot pressure in
cw	Α	X_1
ccw	В	X ₂

▼ Circuit diagram DA0

DA1, DA2 electric travel direction valve + electric $V_{\rm g\ max}$ circuit, negative control

Depending on the direction of rotation (direction of travel), the travel direction valve is actuated through the compression spring or the switching solenoid **a**.

When switching solenoid ${\bf b}$ is energized, the control can be overridden and the motor can be swiveled to maximum displacement (high torque, lower rotational speed) (electric $V_{\rm g\ max}$ -circuit).


Travel direction valve, electric

Technical data, solenoid a with ø37 DA1 DA2					
	Solchold a With 207				
Voltage		12 V (±20%)	24 V (±20%)		
Direction	Operating				
of rotation	pressure in				
ccw	В	de-energized	de-energized		
cw	Α	energized	energized		
Nominal resista	nce (at 20 °C)	5.5 Ω	21.7 Ω		
Nominal power		26.2 W	26.5 W		
Minimum required active current		1.32 A	0.67 A		
Duty cycle		100%	100%		
Type of protection: see connector version on page 62					

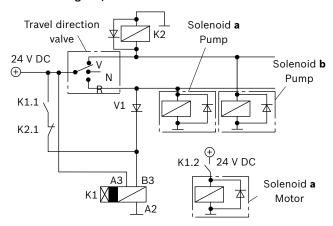
Electric override

Technical data, solenoid b with ø37	DA1	DA2		
Voltage	12 V (±20%)	24 V (±20%)		
No override	de-energized	de-energized		
Position V_{gmax}	energized	energized		
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω		
Nominal power	26.2 W	26.5 W		
Minimum required active current	1.32 A	0.67 A		
Duty cycle	100%	100%		
Type of protection: see connector version on page 62				

▼ Circuit diagram DA1, DA2

Electric travel direction valve (for DA, HA.R)

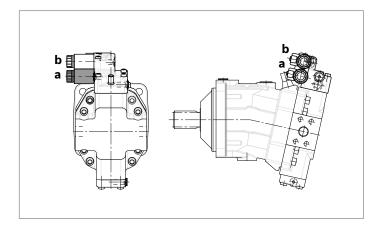
Application in travel drives in closed circuits. The travel direction valve of the motor is actuated by an electric signal that also switches the swivel direction of the travel drive pump (e.g. A4VG with DA control valve).

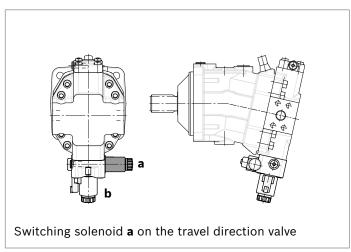

If the pump in the closed circuit is switched to the neutral position or into reverse, the vehicle may experience jerky deceleration or braking, depending on the vehicle weight and current travel speed.

When the travel direction valve, which must be logically coordinated with the pump control, of the pump (e.g. 4/3-way directional valve of the DA-control) is switched toneutral position,

- the neutral position, the electrical circuitry causes the previous signal on the travel direction valve on the motor to be retained.
- ► Reversing, the electrical circuitry causes the travel direction valve of the motor to switch to the other travel direction following a time delay (approx. 0.8 s) with respect to the pump.

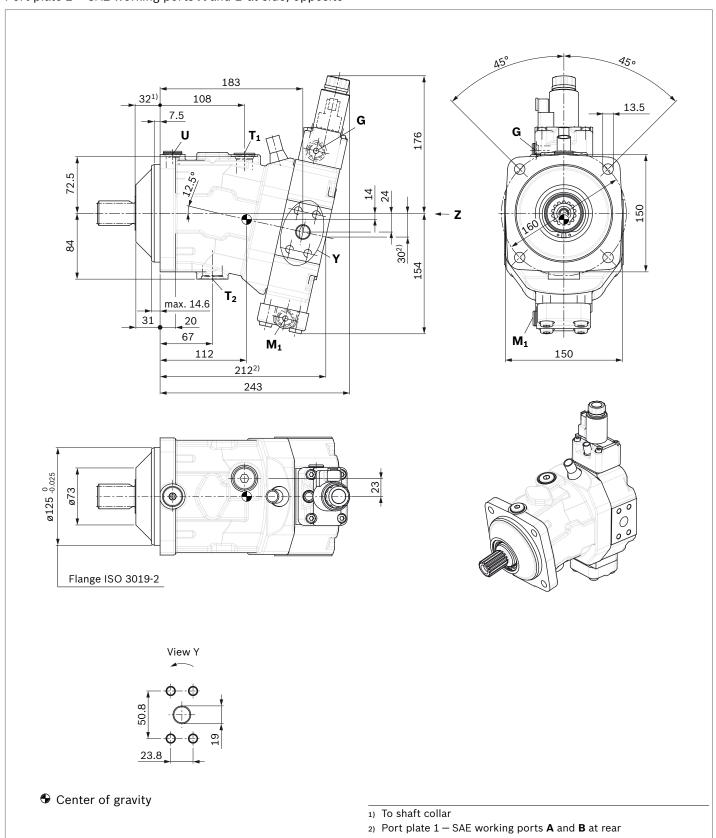
As a result, jerky deceleration or braking is prevented in both cases. Circuit diagram, electric travel direction valve


▼ Circuit diagram, electric travel direction valve


Notice

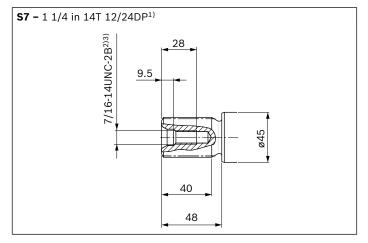
The shown diodes and relays are not included in the scope of delivery of the motor.

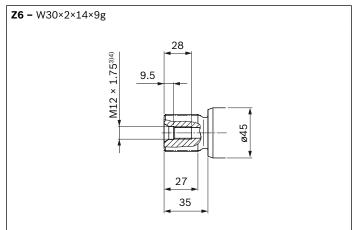
▼ Control DA1, DA

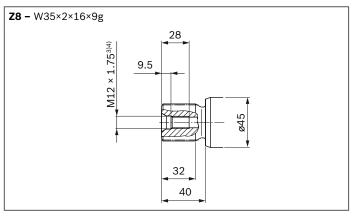

▼ Control HA1R., HA2R.

Dimensions size 55

EP5, EP6 - Proportional electric control, negative control


Port plate 2-SAE working ports \boldsymbol{A} and \boldsymbol{B} at side, opposite


▼ Location of the service line ports on the port plates (view Z)


▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

▼ Splined shaft DIN 5480

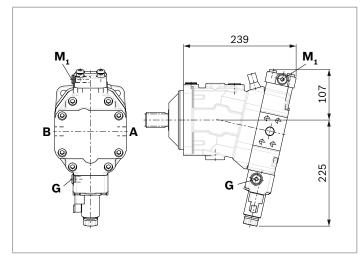
- Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) For notes on tightening torques, see instruction manual
- 4) Center bore according to DIN 332 (thread according to DIN 13)

RE 91607/06.2016, Bosch Rexroth AG

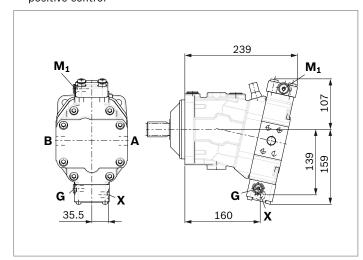
Ports		Standard	Size ¹⁾	$p_{\sf max}$ [bar] $^{2)}$	Status ⁶⁾
A, B	Working port	SAE J518 ³⁾	3/4 in	450	0
	Fastening thread A/B	DIN 13	M10 × 1.5; 17 deep		
T ₁	Drain port	ISO 6149 ⁵⁾	M22 × 1.5; 15.5 deep	3	X ⁴⁾
T ₂	Drain port	ISO 6149 ⁵⁾	M27 × 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	X
U	Bearing flushing	ISO 6149 ⁵⁾	M18 × 1.5; 14.5 deep	3	X
х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
х	Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	X
M_1	Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	X

¹⁾ For notes on tightening torques, see instruction manual

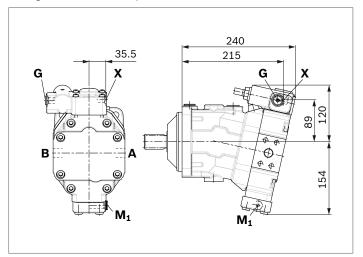
²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

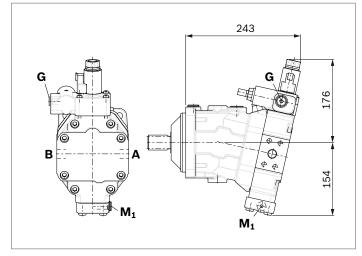

 $_{
m 3)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

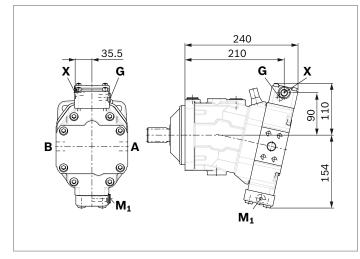
Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 72).


⁵⁾ The countersink can be deeper than as specified in the standard.

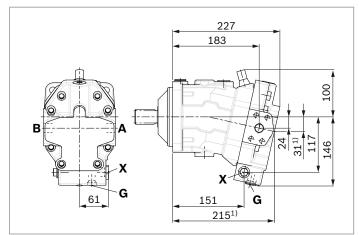
⁶⁾ O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

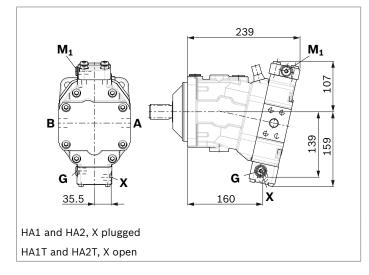

▼ **EP1, EP2** – Electric proportional control, positive control


▼ **HP1**, **HP2** – Hydraulic proportional control, positive control


▼ HP5D1, HP6D1 – Hydraulic proportional control, negative control, with pressure control, fixed

▼ EP5D1, EP6D1 - Electric proportional control, negative control, with pressure control, fixed

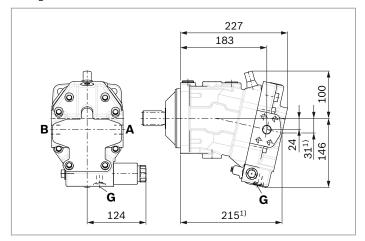

▼ **HP5, HP6** – Hydraulic proportional control, negative control

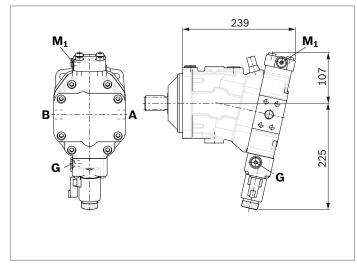

Dimensions size se

30

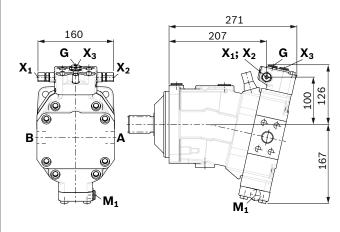
▼ **HZ7** – Hydraulic two-point control, negative control

▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional

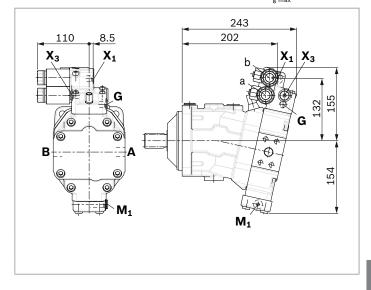

▼ HA1R1, HA2R2 - Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric


1) Port plate 1 – SAE working ports **A** and **B** at rear

Bosch Rexroth AG, RE 91607/06.2016

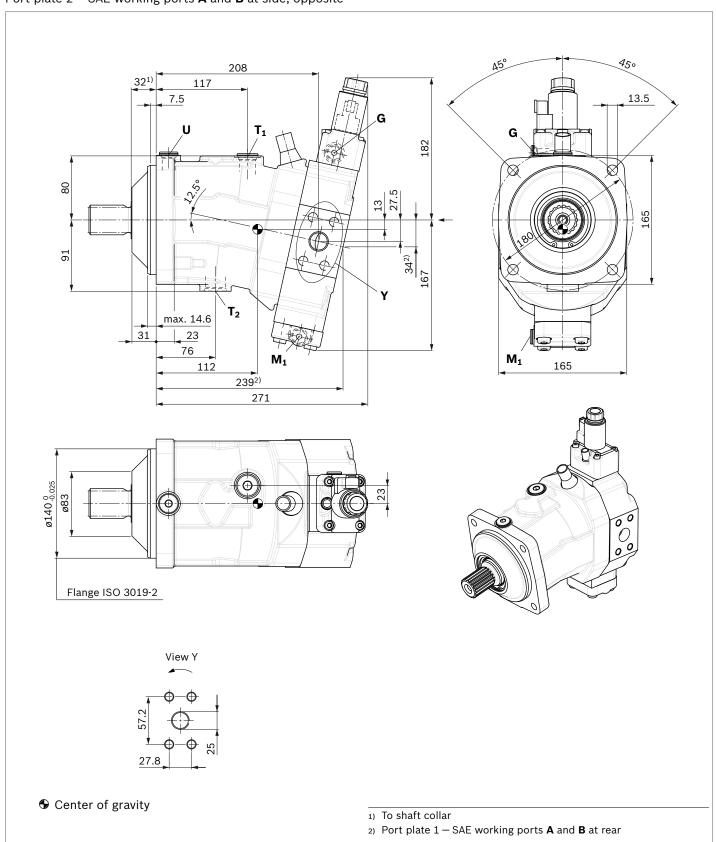

▼ EZ7, EZ8 - Electric two-point control, negative control

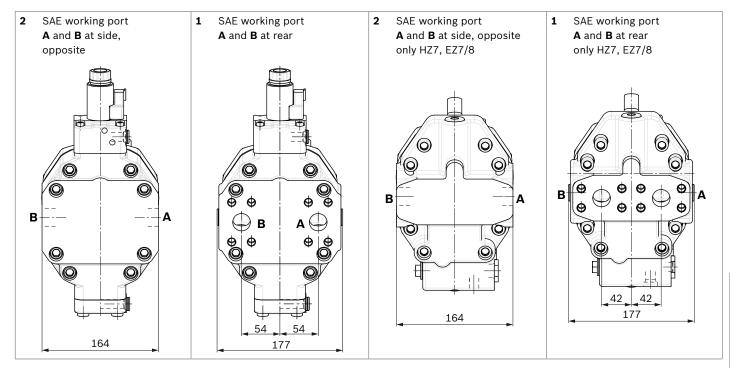
▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point



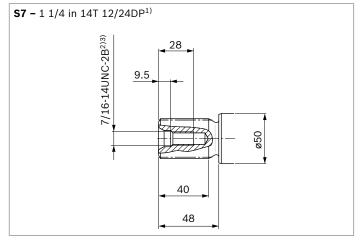
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve

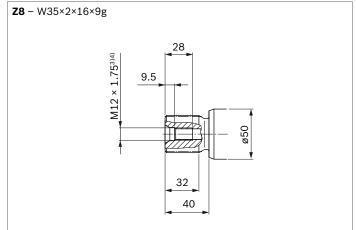
 \mathbf{X}_1 , \mathbf{X}_2 pipe fitting SDSC – L8×M12 – F according to ISO 8434-1 Use assembled fitting!

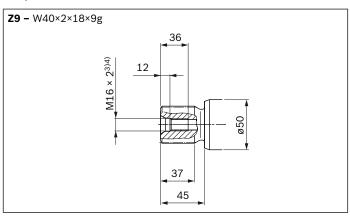

▼ DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric $V_{\rm g\ max}$ circuit


Dimensions size 80

EP5, EP6 - Proportional electric control, negative control


Port plate 2-SAE working ports \boldsymbol{A} and \boldsymbol{B} at side, opposite


▼ Location of the service line ports on the port plates (view Z)


▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

▼ Splined shaft DIN 5480

- Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) For notes on tightening torques, see instruction manual
- 4) Center bore according to DIN 332 (thread according to DIN 13)

RE 91607/06.2016, Bosch Rexroth AG

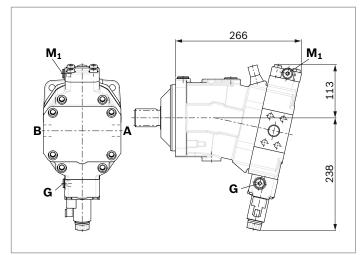
A6VM series 65 | Axial piston variable motor Dimensions size 80

34

Ports		Standard	Size ¹⁾	p_{max} [bar] $^{2)}$	Status ⁶⁾
A, B	Working port	SAE J518 ³⁾	1 in	450	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	ISO 6149 ⁵⁾	M22 × 1.5; 15.5 deep	3	X ⁴⁾
T ₂	Drain port	ISO 6149 ⁵⁾	M27 × 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	Х
U	Bearing flushing	ISO 6149 ⁵⁾	M18 × 1.5; 14.5 deep	3	X
х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
х	Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	X
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	X
M ₁	Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	Х

¹⁾ For notes on tightening torques, see instruction manual

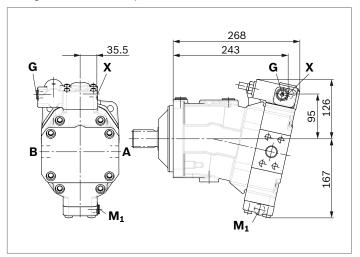
²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

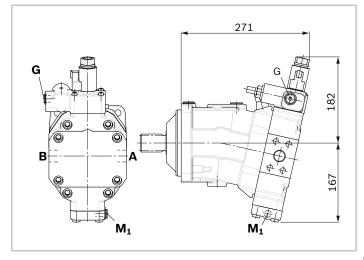

 $_{
m 3)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

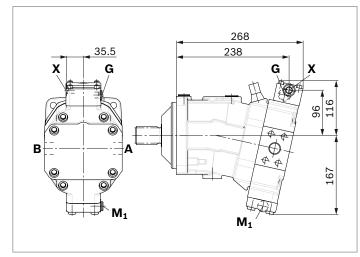
Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 72).

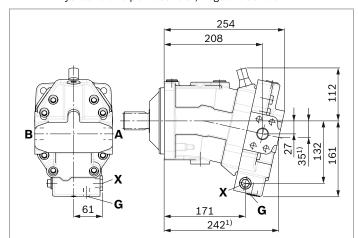

⁵⁾ The countersink can be deeper than as specified in the standard.

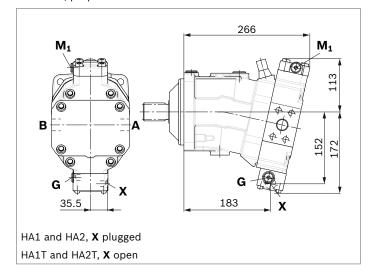
⁶⁾ O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

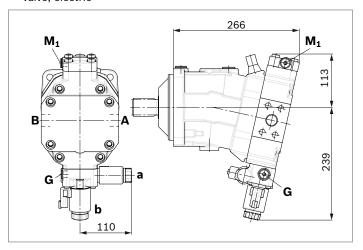

▼ **EP1, EP2** – Electric proportional control, positive control


▼ **HP1**, **HP2** – Hydraulic proportional control, positive control

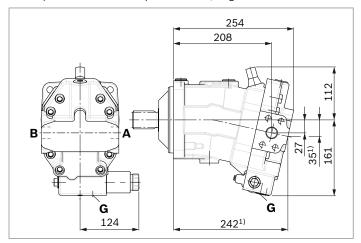

▼ HP5D1, HP6D1 – Hydraulic proportional control, negative control, with pressure control, fixed

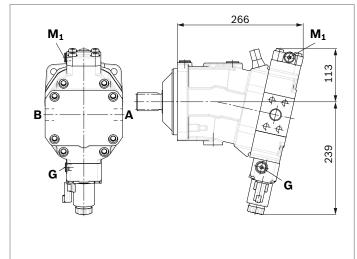

▼ **EP5D1, EP6D1** – Electric proportional control, negative control, with pressure control, fixed


▼ **HP5, HP6** – Hydraulic proportional control, negative control

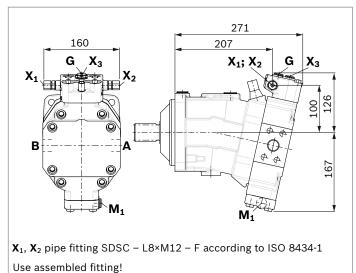

▼ HZ7 - Hydraulic two-point control, negative control

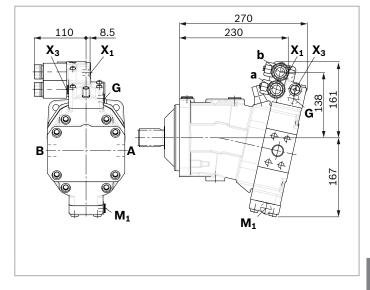
▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric

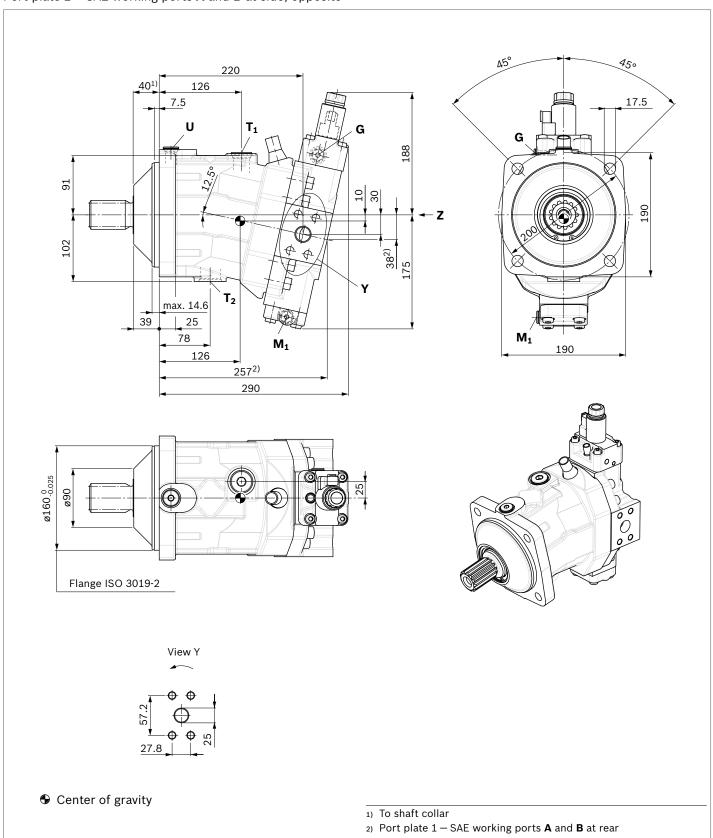

1) Port plate 1 – SAE working ports **A** and **B** at rear

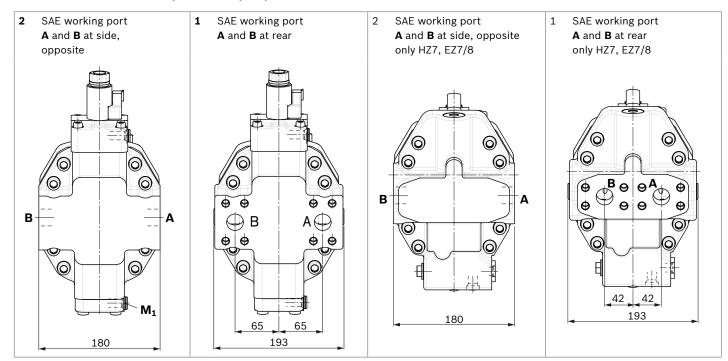
Bosch Rexroth AG, RE 91607/06.2016


▼ EZ7, EZ8 - Electric two-point control, negative control

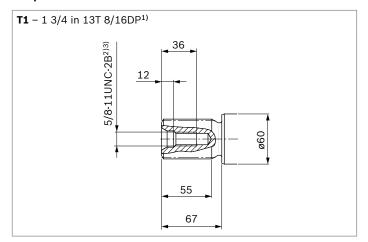

▼ HA1U1, HA2U2 - Automatic high-pressure-related control, positive control, with override, electric, two-point

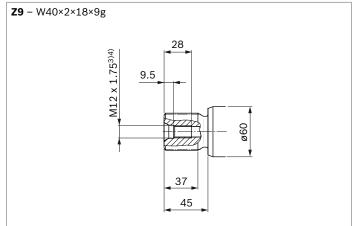
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve

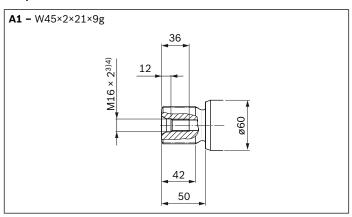

ightharpoonup DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric $V_{\rm g\ max}$ circuit


Dimensions size 107

EP5, EP6 - Proportional electric control, negative control


Port plate 2-SAE working ports \boldsymbol{A} and \boldsymbol{B} at side, opposite


▼ Location of the service line ports on the port plates (view Z)


▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

▼ Splined shaft DIN 5480

- 1) Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) For notes on tightening torques, see instruction manual
- 4) Center bore according to DIN 332 (thread according to DIN 13)

RE 91607/06.2016, **Bosch Rexroth AG**

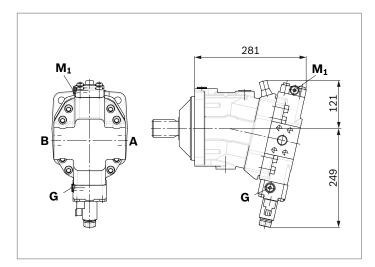
A6VM series 65 | Axial piston variable motor Dimensions size 107

40

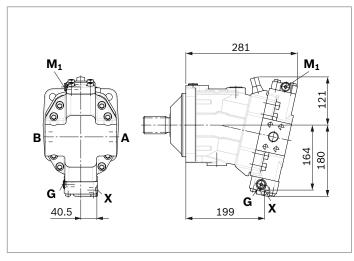
Ports		Standard	Size ¹⁾	$p_{\sf max}$ [bar] $^{2)}$	Status ⁶⁾
A, B	Working port	SAE J518 ³⁾	1 in	450	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	ISO 6149 ⁵⁾	M27 × 2; 19 deep	3	X ⁴⁾
T ₂	Drain port	ISO 6149 ⁵⁾	M33 × 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	X
U	Bearing flushing	ISO 6149 ⁵⁾	M18 × 1.5; 14.5 deep	3	Х
х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
Х	Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	X
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	Х
M ₁	Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	X

¹⁾ For notes on tightening torques, see instruction manual

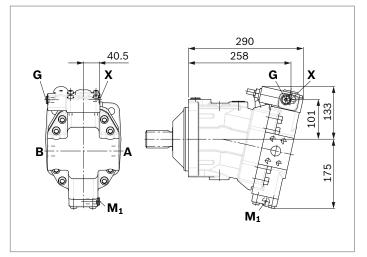
²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.


³⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

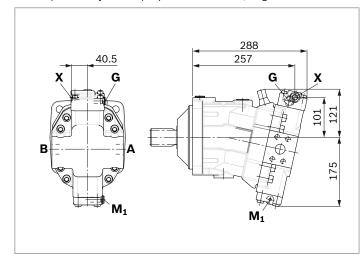
Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 72).

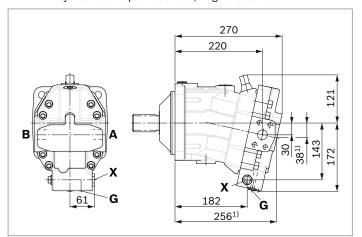

⁵⁾ The countersink can be deeper than as specified in the standard.

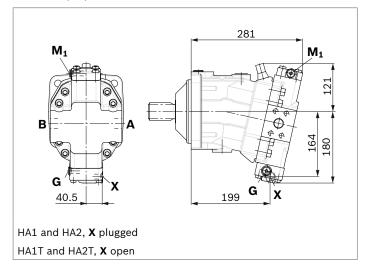
⁶⁾ O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

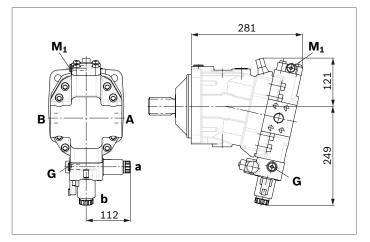

▼ EP1, EP2 - Electric proportional control, positive control

▼ **HP1, HP2** – Hydraulic proportional control, positive control


▼ **HP5D1, HP6D1** – Hydraulic proportional control, negative control, with pressure control, fixed

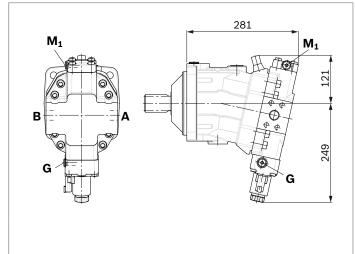

▼ **EP5D1, EP6D1** – Electric proportional control, negative control, with pressure control, fixed


▼ **HP5, HP6** – Hydraulic proportional control, negative control

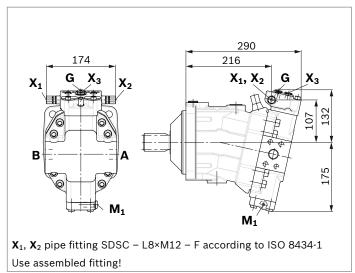

▼ HZ7 - Hydraulic two-point control, negative control

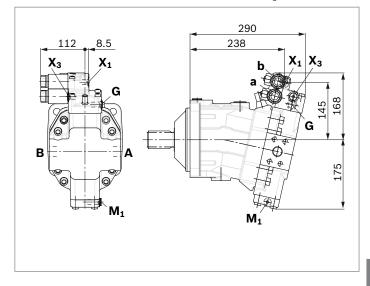
▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional

▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric

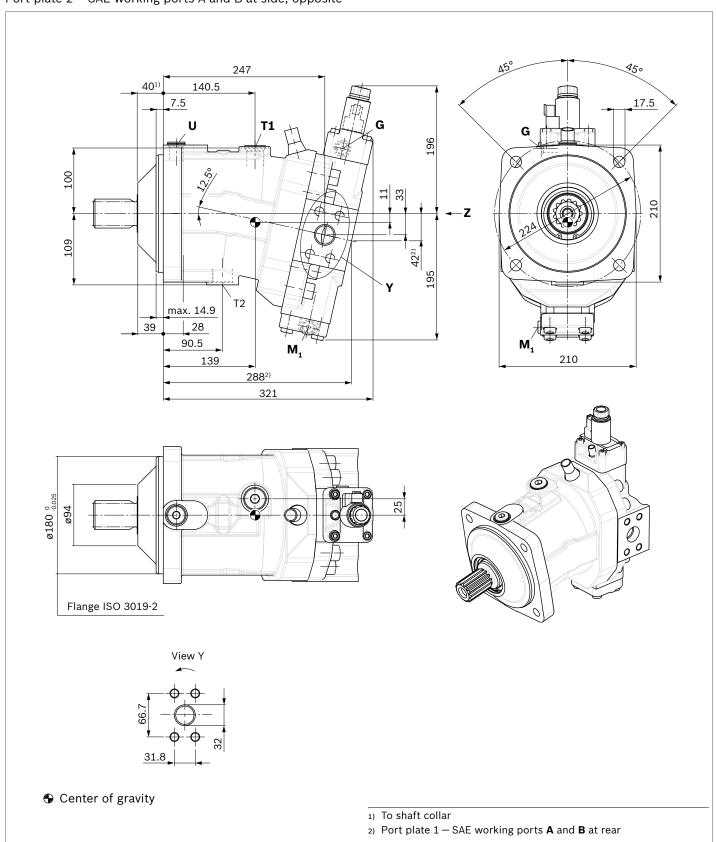

1) Port plate 1 – SAE working ports **A** and **B** at rear

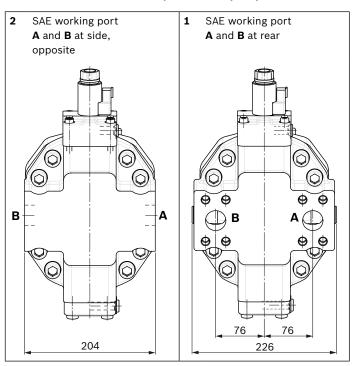
Bosch Rexroth AG, RE 91607/06.2016


▼ EZ7, EZ8 - Electric two-point control, negative control

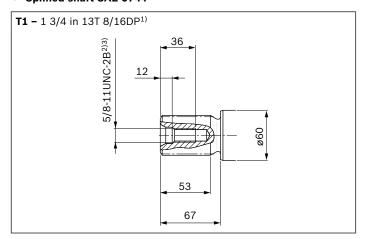

▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point

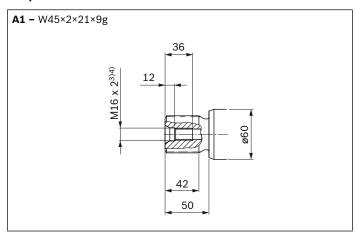
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve


lacktriangledown DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric $V_{\rm g\ max}$ circuit


Dimensions size 140

EP5, EP6 - Proportional electric control, negative control


Port plate 2-SAE working ports A and B at side, opposite


▼ Location of the service line ports on the port plates (view Z)

▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

¹⁾ Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

³⁾ For notes on tightening torques, see instruction manual

⁴⁾ Center bore according to DIN 332 (thread according to DIN 13)

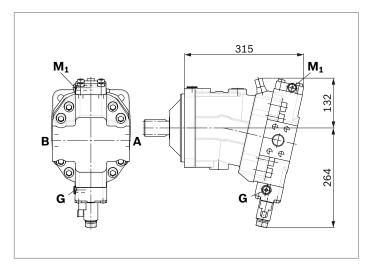
A6VM series 65 | Axial piston variable motor Dimensions size 140

46

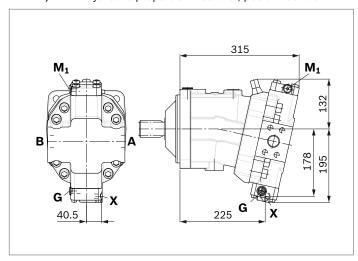
Ports		Standard	Size ¹⁾	$p_{\sf max}$ [bar] $^{2)}$	Status ⁶⁾
A, B	Working port	SAE J518 ³⁾	1 1/4 in	450	0
	Fastening thread A/B	DIN 13	M14 × 2; 19 deep		
T ₁	Drain port	ISO 6149 ⁵⁾	M27 × 2; 19 deep	3	X ⁴⁾
T ₂	Drain port	ISO 6149 ⁵⁾	M33 × 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	Х
U	Bearing flushing	ISO 6149 ⁵⁾	M22 × 1.5; 15.5 deep	3	Х
х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
х	Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	Х
M ₁	Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	Х

¹⁾ For notes on tightening torques, see instruction manual

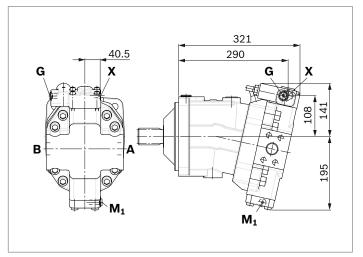
²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

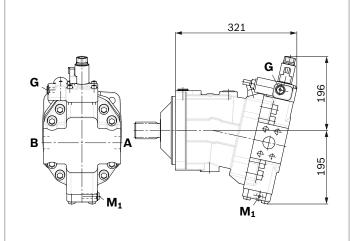

³⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

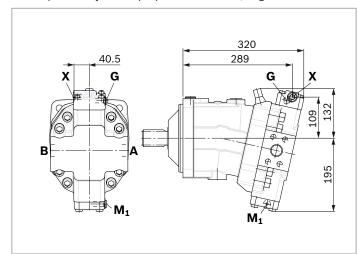
⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 72).

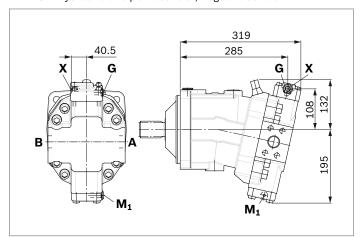

⁵⁾ The countersink can be deeper than as specified in the standard.

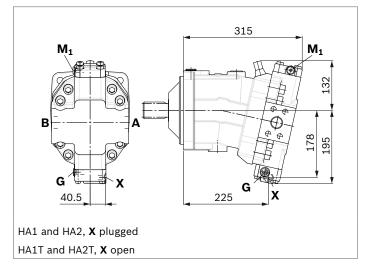
⁶⁾ O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

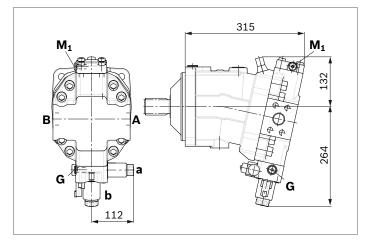

▼ EP1, EP2 - Electric proportional control, positive control

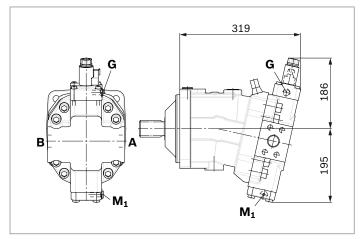

▼ HP1, HP2 - Hydraulic proportional control, positive control

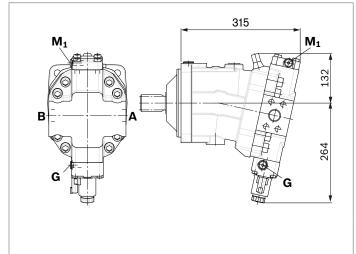

▼ **HP5D1, HP6D1** – Hydraulic proportional control, negative control, with pressure control, fixed

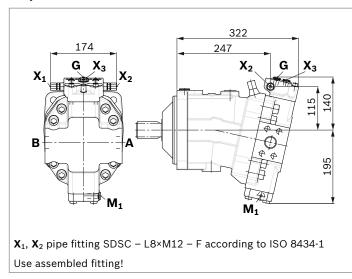

▼ EP5D1, EP6D1 - Electric proportional control, negative control, with pressure control, fixed

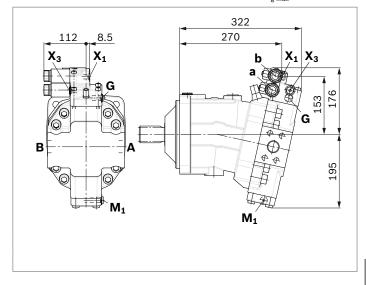

▼ HP5, HP6 - Hydraulic proportional control, negative control


▼ HZ5 - Hydraulic two-point control, negative control

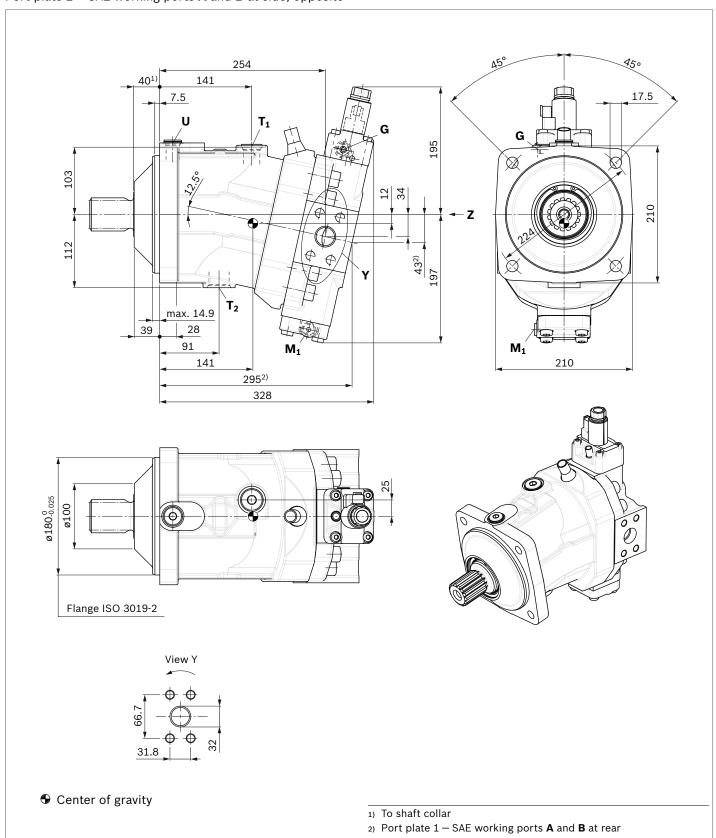

▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional

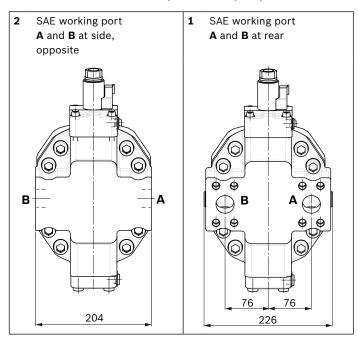

▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric


▼ EZ5, EZ6 - Electric two-point control, negative control

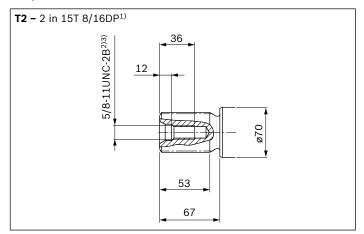

▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point

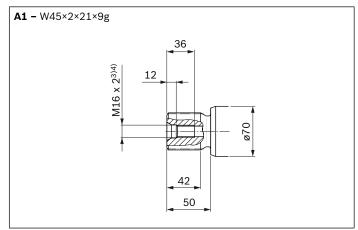
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve

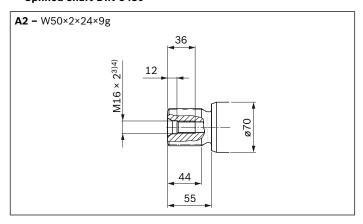

 $label{eq:decomposition}
label{eq:decomposition}
label{eq:decomposi$


Dimensions size 160

EP5, EP6 - Proportional electric control, negative control


Port plate 2-SAE working ports \boldsymbol{A} and \boldsymbol{B} at side, opposite


▼ Location of the service line ports on the port plates (view Z)


▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

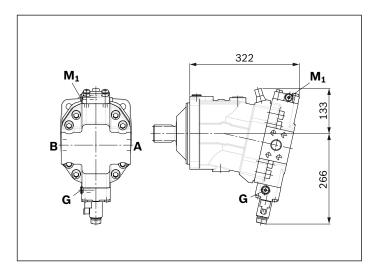
▼ Splined shaft DIN 5480

- 1) Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) For notes on tightening torques, see instruction manual
- 4) Center bore according to DIN 332 (thread according to DIN 13)

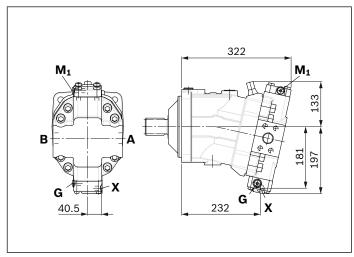
Ports		Standard	Size ¹⁾	$p_{\sf max}$ [bar] $^{2)}$	Status ⁶⁾
A, B	Working port	SAE J518 ³⁾	1 1/4 in	450	0
	Fastening thread A/B	DIN 13	M14 × 2; 19 deep		
T ₁	Drain port	ISO 6149 ⁵⁾	M27 × 2; 19 deep	3	X ⁴⁾
T ₂	Drain port	ISO 6149 ⁵⁾	M33 × 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	Х
U	Bearing flushing	ISO 6149 ⁵⁾	M22 × 1.5; 15.5 deep	3	X
Х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
Х	Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	X
M ₁	Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	Χ

¹⁾ For notes on tightening torques, see instruction manual

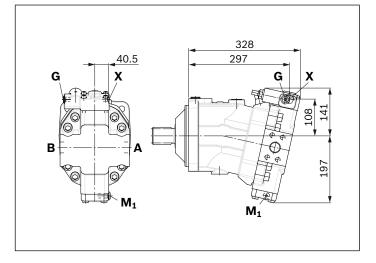
²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

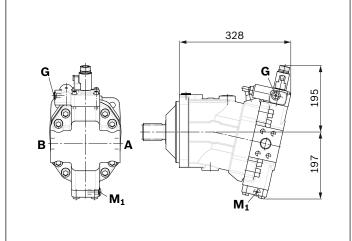

³⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

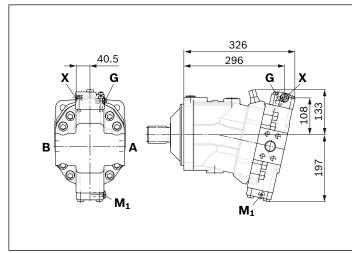
⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 72).


⁵⁾ The countersink can be deeper than as specified in the standard.

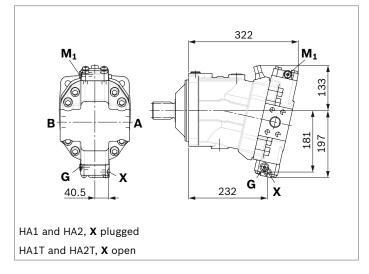
⁶⁾ O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

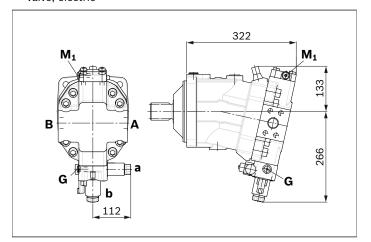

▼ EP1, EP2 - Electric proportional control, positive control

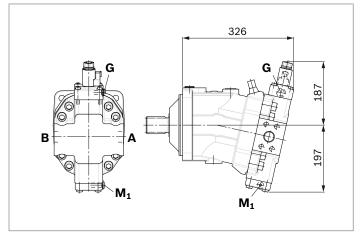

▼ **HP1, HP2** – Hydraulic proportional control, positive control

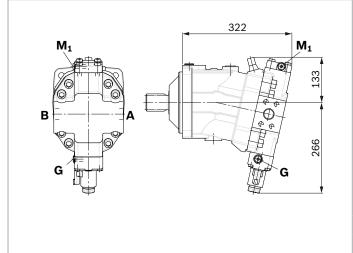

▼ HP5D1, HP6D1 - Hydraulic proportional control, negative control, with pressure control, fixed

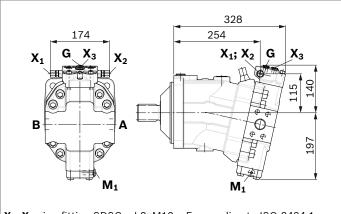

▼ **EP5D1, EP6D1** – Electric proportional control, negative control, with pressure control, fixed


▼ **HP5, HP6** – Hydraulic proportional control, negative control

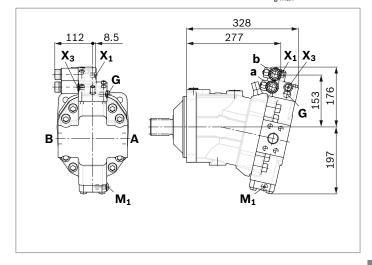

▼ HZ5 - Hydraulic two-point control, negative control


▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric

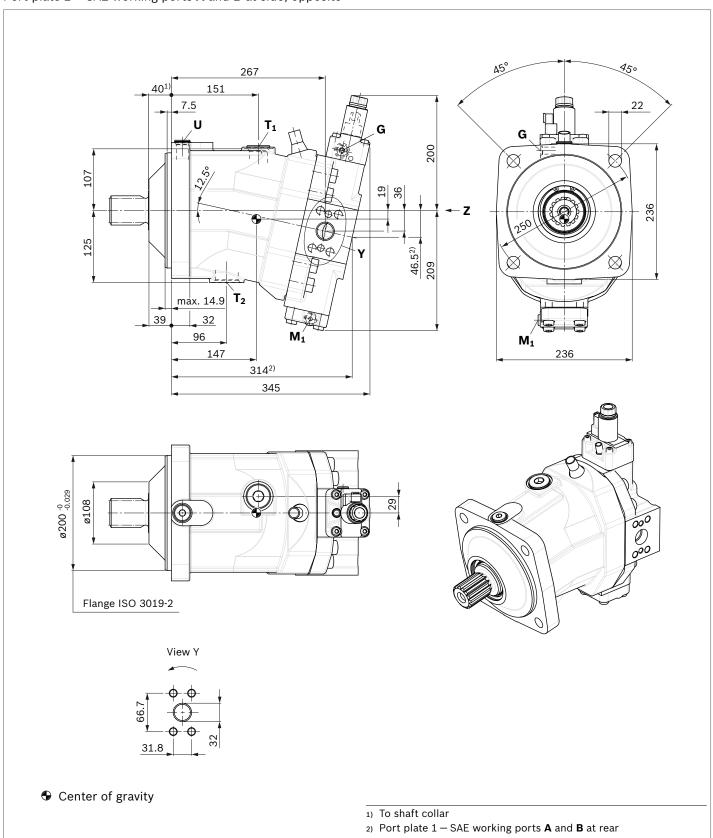

▼ EZ5, EZ6 - Electric two-point control, negative control

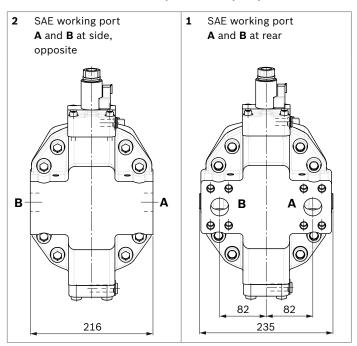
▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point



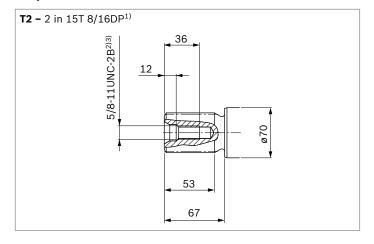
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve

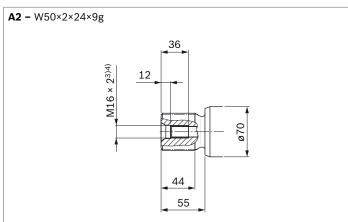
 $\mathbf{X}_1,\,\mathbf{X}_2$ pipe fitting SDSC – L8×M12 – F according to ISO 8434-1 Use assembled fitting!


lacktriangledown DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric $V_{\rm g\ max}$ circuit


Dimensions size 200

EP5, EP6 - Proportional electric control, negative control


Port plate 2-SAE working ports \boldsymbol{A} and \boldsymbol{B} at side, opposite


▼ Location of the service line ports on the port plates (view Z)

▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

¹⁾ Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

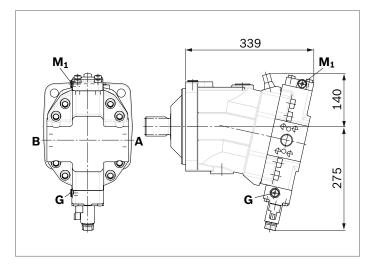
³⁾ For notes on tightening torques, see instruction manual

⁴⁾ Center bore according to DIN 332 (thread according to DIN 13)

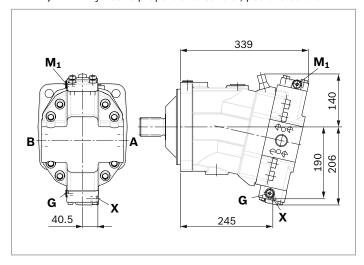
			$p_{\sf max}$ [bar] $^{2)}$	Status ⁶⁾
Working port	SAE J518 ³⁾	1 1/4 in	450	0
Fastening thread A/B	DIN 13	M14 × 2; 19 deep		
Drai port	ISO 6149 ⁵⁾	M33 × 2; 19 deep	3	X ⁴⁾
Drain port	ISO 6149 ⁵⁾	M42 × 2; 19.5 deep	3	O ⁴⁾
Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	X
Bearing flushing	ISO 6149 ⁵⁾	M22 × 1.5; 15.5 deep	3	X
Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	X
Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	Х
Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	450	Х
	Fastening thread A/B Drai port Drain port Synchronous control Bearing flushing Pilot signal (HP, HZ, HA1T/HA2T) Pilot signal (DA1, DA2) Pilot signal (DA1, DA2) Pilot signal (DA1, DA2)	Fastening thread A/B DIN 13 Drai port ISO 6149 ⁵⁾ Drain port ISO 6149 ⁵⁾ Synchronous control ISO 6149 ⁵⁾ Bearing flushing ISO 6149 ⁵⁾ Pilot signal (HP, HZ, HA1T/HA2T) ISO 6149 ⁵⁾ Pilot signal (HA1, HA2) ISO 6149 ⁵⁾ Pilot signal (DA0) ISO 8434-1 Pilot signal (DA1, DA2) ISO 6149 ⁵⁾ Pilot signal (DA1, DA2) ISO 6149 ⁵⁾	Fastening thread A/B DIN 13 M14 × 2; 19 deep Drai port ISO 6149 ⁵⁾ M33 × 2; 19 deep Drain port ISO 6149 ⁵⁾ M42 × 2; 19.5 deep Synchronous control ISO 6149 ⁵⁾ M14 × 1.5; 11.5 deep Bearing flushing ISO 6149 ⁵⁾ M22 × 1.5; 15.5 deep Pilot signal (HP, HZ, HA1T/HA2T) ISO 6149 ⁵⁾ M14 × 1.5; 11.5 deep Pilot signal (HA1, HA2) ISO 6149 ⁵⁾ M14 × 1.5; 11.5 deep Pilot signal (DA0) ISO 8434-1 SDSC-L8×M12-F Pilot signal (DA1, DA2) ISO 6149 ⁵⁾ M14 × 1.5; 11.5 deep Pilot signal (DA1, DA2) ISO 6149 ⁵⁾ M14 × 1.5; 11.5 deep	Fastening thread A/B DIN 13 M14 × 2; 19 deep Drai port ISO 6149 ⁵⁾ M33 × 2; 19 deep 3 Drain port ISO 6149 ⁵⁾ M42 × 2; 19.5 deep 3 Synchronous control ISO 6149 ⁵⁾ M14 × 1.5; 11.5 deep 450 Bearing flushing ISO 6149 ⁵⁾ M22 × 1.5; 15.5 deep 3 Pilot signal (HP, HZ, HA1T/HA2T) ISO 6149 ⁵⁾ M14 × 1.5; 11.5 deep 100 Pilot signal (DA1, DA2) ISO 6149 ⁵⁾ M14 × 1.5; 11.5 deep 40 Pilot signal (DA1, DA2) ISO 6149 ⁵⁾ M14 × 1.5; 11.5 deep 40 Pilot signal (DA1, DA2) ISO 6149 ⁵⁾ M14 × 1.5; 11.5 deep 40

¹⁾ For notes on tightening torques, see instruction manual

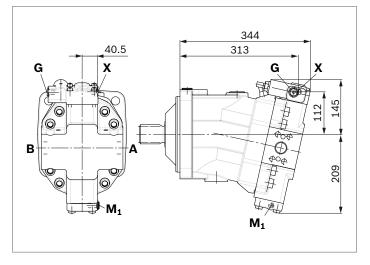
²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

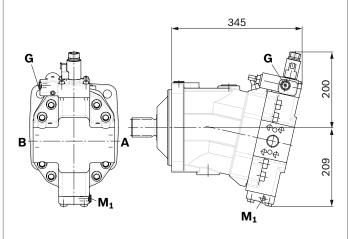

³⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

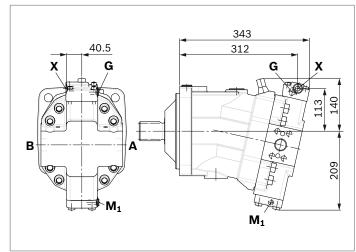
⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 72).


⁵⁾ The countersink can be deeper than as specified in the standard.

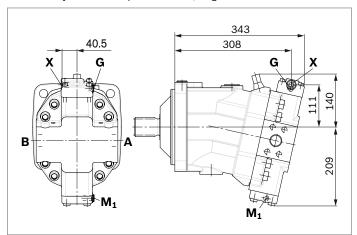
⁶⁾ O = Must be connected (plugged on delivery) X = Plugged (in normal operation)


▼ EP1, EP2 - Electric proportional control, positive control

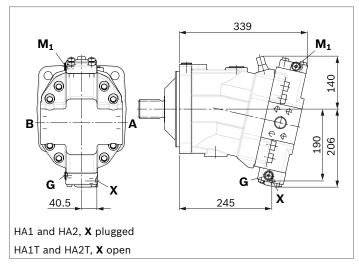

▼ HP1, HP2 - Hydraulic proportional control, positive control


▼ **HP5D1, HP6D1** – Hydraulic proportional control, negative control, with pressure control, fixed

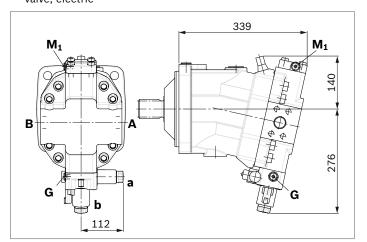
▼ **EP5D1, EP6D1** – Electric proportional control, negative control, with pressure control, fixed

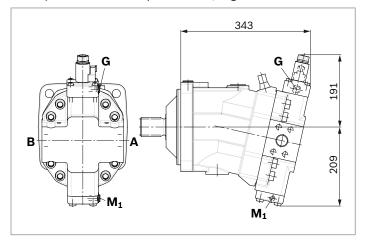


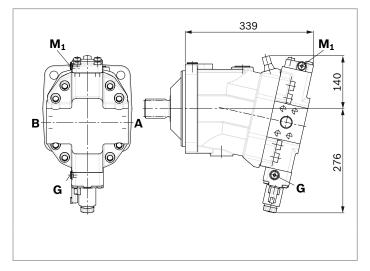
▼ **HP5, HP6** - Hydraulic proportional control, negative control

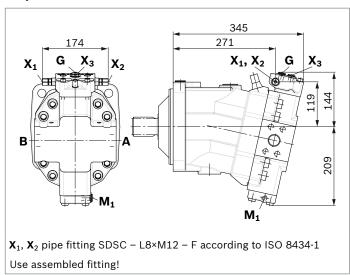


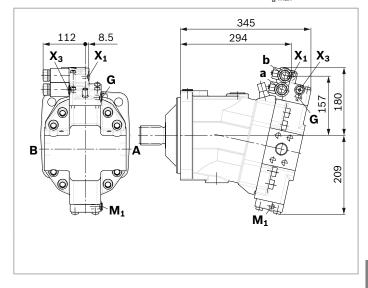
60


▼ HZ5 - Hydraulic two-point control, negative control


▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric


▼ EZ5, EZ6 - Electric two-point control, negative control


▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point

▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve

ightharpoonup DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric $V_{\rm g\ max}$ circuit

Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded connector, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

- ► IP67 (DIN/EN 60529) and
- ► IP69K (DIN 40050-9)

▼ Switching symbol

▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation
1 housing	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902601804).

Notice

- ► If necessary, you can change the position of the connector by turning the solenoid.
- ▶ The procedure is defined in the instruction manual.

Neutral position switch

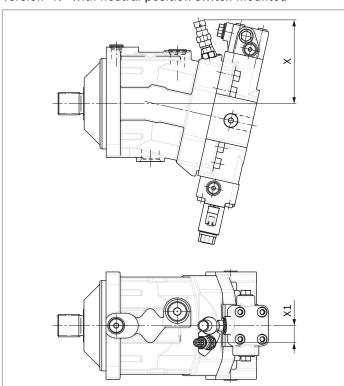
The neutral position switch NLS electronically detects the neutral position of the A6VM, thereby ensuring the torque freedom of the motor. The use of the NLS in a transmission control provides a faster switching cycle in the drive. In addition, the switch reliability is improved and thereby the service life of the drive is increased. Type code, technical data, dimensions and parameters for the connector, plus safety instructions about the sensor can be found in the relevant data sheet 95152 – NLS.

Technical data

Туре	NLS	
Recommended opera	Recommended operating voltage	
Maximum voltage	not actuated	32 V
	actuated	11.5 V
Minimum permissible	current	0 mA
Maximum permissible	current	10 mA
Maximum switching cycle number		1 million
Contact type		normally open contact (open in unactuated state)
Type of protection (with mating connector plugged)		IP67/IP69K
Temperature range of sensor (medium and ambient temperature) ¹⁾		-40 °C 125 °C
Temperature range of thread seal ring FKM ¹⁾		-15 °C 125 °C
Pressure resistance	nominal	3 bar
	maximum (momentary peaks)	10 bar ²⁾

Notice

The minimum swivel angle is dependent on the $V_{\mathrm{g\ min}}$ -stop


▼ Mating Connector

Consisting of	Material number
1 housing	282080
1 socket contact	282403-1

The mating connector is not included in the scope of delivery. This mating connector can be ordered from AMP.

▼ Dimensions

Version "N" with neutral position switch mounted

Size	Adjustable angle		Adjustable angle X [mm]		X1 [mm]
	min.	max.	at	at	
			min angle	max angle	
80	0°	2°	144.7	141.4	28.0
107	0°	4°	148.1	140.4	30.0
140	0°	1°	153.1	150.9	30.0
160	0°	0°		153.1	30.0
200	0°	0°		159.1	30.0

¹⁾ Observe the permissible temperature range of the axial piston motor.

²⁾ Observe the permissible viscosity range of the axial piston motor. At oil viscosities >1800 mm²/s, the switch may be unintentionally actuated by case pressure peaks of > 10 bar.

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In a closed circuit, it is used for flushing the case and safeguarding the minimum boost pressure.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the leakage. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

The valve is mounted onto the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

(observe when adjusting the primary valve)

▶ Sizes 55 to 200, fixed setting 16 bar

Switching pressure of flushing spool Δp

- ► Sizes 55 to 107 (small flushing valve) 8±1 bar
- ➤ Sizes 107 to 200 (medium and large flushing valve) 17.5±1.5 bar

Flushing flow q_{v}

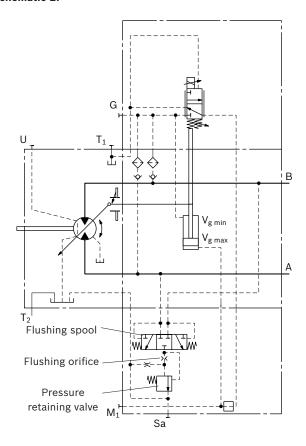
Orifices can be used to adjust the flushing flows as required. The following information is based on:

$$\Delta p_{\rm ND}$$
 = $p_{\rm ND}$ - $p_{\rm G}$ = 25 bar and ν = 10 mm²/s

 $(p_{ND} = low pressure, p_G = case pressure)$

Small flushing valve for sizes 55 to 107

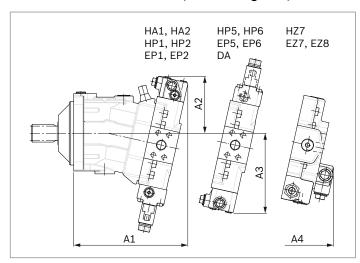
Material number of orifice	ø [mm]	$q_{\scriptscriptstyle m V}$ [l/min]	Code
R909651766	1.2	3.5	А
R909419695	1.4	5	В
R909419696	1.8	8	С
R909419697	2.0	10	D
R909444361	2.4	14	F


Medium flushing valve for size 107

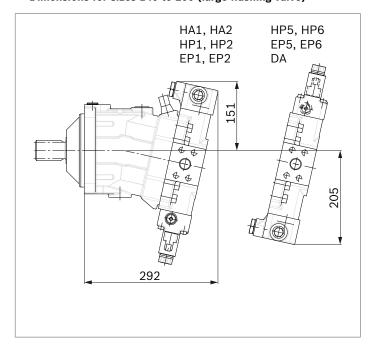
Material number of orifice	ø [mm]	$q_{\scriptscriptstyle m V}$ [l/min]	Code
R909431310	2.8	18	1
R909435172	3.5	27	K
R909449967	5.0	31	L

Large flushing valve for sizes 140 to 200

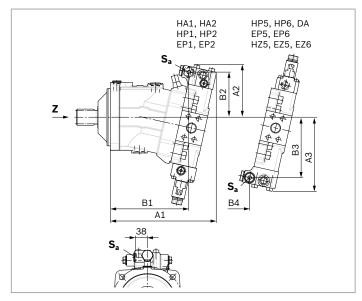
Material number of orifice	ø [mm]	$q_{\scriptscriptstyle m V}$ [l/min]	Code
R909449998	1.8	8	С
R909431308	2.0	10	D
R909431309	2.5	15	G
R909431310	2.8	18	I
R902138235	3.1	21	J
R909435172	3.5	27	K
R909436622	4.0	31	L
R909449967	5.0	37	М


▼ Schematic EP

Notice


- ► Port **S**_a only for sizes 140 to 200
- ► For a flushing flow of 35 l/min, it is recommended that port **S**_a be connected in order to prevent an increase in case pressure. An increased case pressure reduces the flushing flow.

▼ Dimensions of sizes 55 to 107 (small flushing valve)



NG	A1	A2	А3	A4	
55	245	137	183	236	
80	273	142	194	254	
107	287	143	202	269	

▼ Dimensions for sizes 140 to 200 (large flushing valve)

▼ Dimensions of size 107 (medium flushing valve)

NG	A1	B1	A2	B2	А3	В3	В4	Sa ¹⁾
140	325	239	165	142	230	187	166	M22 × 1.5; 15.5 deep
160	332	246	165	142	233	190	172	M22 × 1.5; 15.5 deep
200	349	263	172	148	244	201	185	M22 × 1.5; 15.5 tief

ISO 6149, ports plugged (in normal operation)
 For notes on tightening torques, see instruction manual.
 The spot face may be deeper than that specified in the standard.

Counterbalance valve BVD and BVE

Function

Counterbalance valves for travel drives and winches operations are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if, during braking, when driving downhill or during the load-lowering process, the motor speed is greater than it should be for the given inlet flow and thus the supply pressure collapses.

If the supply pressure falls below the level specified for the relevant counterbalance valve, the counterbalance valve piston moves into the closed position. The cross-sectional area of the counterbalance valve return duct is then reduced, creating a bottleneck in the return flow of the hydraulic fluid. The pressure increases and brakes the motor until the rotational speed of the motor is again as it should be for the given inlet flow.

Notice

- ▶ BBVD available for sizes 55 to 200 and BVE available for sizes 107 to 200.
- ► The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set.

Ordering example: A6VM080HA1T30004A/65MWV0N4S 97W0-0 + BVD20F27S/41B-V03K16D0400S12

- For safety reasons, controls with beginning of control at $V_{\rm g\ min}$ (e.g. HA) are not permissible for winch drives!
- ► Counterbalance valves must be optimized during prototype commissioning to prevent unacceptable operating conditions and compliance with the specification must be verified.
- ► The counterbalance valve does not replace the mechanical service brake and holding brake.
- ► Observe the detailed notes on the counterbalance valve in data sheet 95522 BVD and in data sheet 95525 BVE!
- ► For the design of the brake release valve, we require the following data for the mechanical holding brake:
 - the cracking pressure
 - the volume of the counterbalance spool between minimum travel (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Permissible inlet flow or pressure when using DBV and BVD/BVE

	Without valv	ve	Limited value	es when usin	g DBV and BV	D/BVE				
Motor			DBV ¹⁾				BVD ²⁾ /BVE ³⁾			
NG	p_{nom}/p_{max} [bar]	$q_{ m Vmax}$ [l/min]	NG	p_{nom}/p_{max} [bar]	$q_{ m V}$ [I/min]	Code	NG	$p_{\sf nom}/p_{\sf max}$ [bar]	q_{ee} [l/min]	Code
55	400/450	244	22	350/420	240	7	20	350/420	220	7W
80		312					(BVD)			
107		380	32		400					
107		380				8	25		320	8W
140		455					(BVD/BVE)			
160		496								
200		580	On request							

Mounting of the counterbalance valve

When delivered, the counterbalance valve is fastened to the motor with two tacking screws (transport lock). The tacking screws may not be removed while mounting the working lines! If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be fastened to the motor port plate using the provided tacking screws.

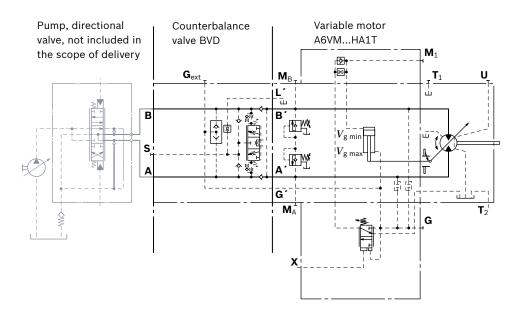
The counterbalance valve is finally mounted to the motor by fitting the SAE flange.

The screws to be used and the instructions for mounting can be found in the instruction manual.

¹⁾ Pressure-relief valve

²⁾ Counterbalance valve, double-acting

³⁾ Counterbalance valve, one-sided

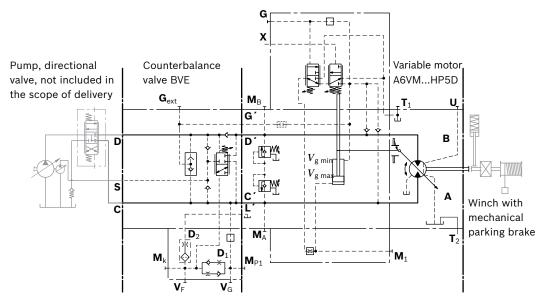

Counterbalance valve for travel drive BVD...F

Application option

► Travel drive for wheeled excavators (BVD and BVE)

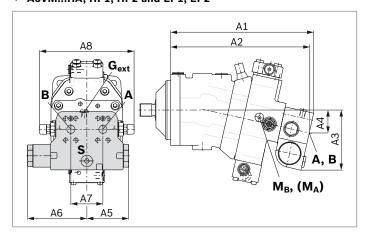
▼ Example circuit diagram for travel drive on wheeled excavators

A6VM080HA1T30004A/65MWV0N4S97W0-0 + BVD20F27S/41B-V03K16D0400S12

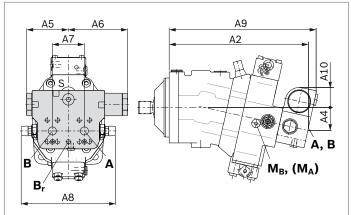

Counterbalance valve for winches and track drives BVD...W and BVE

Application option

- ► Winch drives in cranes (BVD and BVE)
- ► Track drive in excavator crawlers (BVD)


▼ Example circuit diagram for winch drive in cranes

A6VM080HP5D10001A/65MWV0N4S97W0-0 + BVE25W38S/51ND-V100K00D4599T30S00-0



Dimensions

▼ A6VM...HA, HP1, HP2 and EP1, EP2

▼ A6VM...HP5, HP6 and EP5, EP6¹)

A6VM	Counterbaland	ce valve										
NGplate	Туре	Ports	Dimen	sions								
		A, B	A1	A2	А3	A4	A5	A6	Α7	A8	А9	A10
557	BVD2017	3/4 in	311	302	143	50	98	139	75	222	326	50
807	BVD2027	1 in	340	331	148	55	98	139	75	222	355	46
1077	BVD2028	1 in	362	353	152	59	98	139	84	234	377	41
1078	BVD2538	1 1/4 in	380	370	165	63	120.5	175	84	238	395	56
1408	BVD2538	1 1/4 in	411	401	168	67	120.5	175	84	238	426	53
1608	BVD2538	1 1/4 in	417	407	170	68	120.5	175	84	238	432	51
2008	BVD2538	1 1/4 in	448	438	176	74	120.5	175	84	299	463	46
1078	BVE2538	1 1/4 in	380	370	171	63	137	214	84	238	397	63
1408	BVE2538	1 1/4 in	411	401	175	67	137	214	84	238	423	59
1608	BVE2538	1 1/4 in	417	407	176	68	137	214	84	238	432	59
2008	BVE2538	1 1/4 in	448	438	182	74	137	214	84	299	463	52

Ports		Version	A6VM plate	Standard	Size ²⁾	<i>P</i> _{max} [bar] ³⁾	Status ⁵⁾
A, B	Working port			SAE J518	see table above	420	0
S	Infeed	BVD20		DIN 3852 ⁴⁾	M22 × 1.5; 14 deep	30	X
		BVD25, BVE25		DIN 3852 ⁴⁾	M27 × 2; 16 deep	30	X
B _r	Brake release,	L	7	DIN 3852 ⁴⁾	M12 × 1.5; 12.5 deep	30	0
	reduced high pressure		8	DIN 3852 ⁴⁾	M12 × 1.5; 12 deep	30	0
G _{ext}	Brake release, high pressure	S		DIN 3852 ⁴⁾	M12 × 1.5; 12.5 deep	420	Х
M _A , M _B	Pressure measurement A and B			ISO 6149 ⁴⁾	M18 × 1.5; 14.5 deep	420	Х

¹⁾ At the mounting version for the controls HP5, HP6 and EP5, EP6, the cast-in port designations A and B on the BVD counterbalance valve do not correspond with the port designation of the A6VM motor..

The designation of the ports on the installation drawing of the motor is binding!

2) For notes on tightening torques, see instruction manual

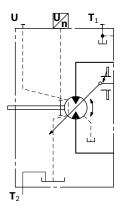
³⁾ Depending on the application, momentary pressure peaks can occur.

Keep this in mind when selecting measuring devices and fittings.

⁴⁾ The countersink can be deeper than as specified in the standard.

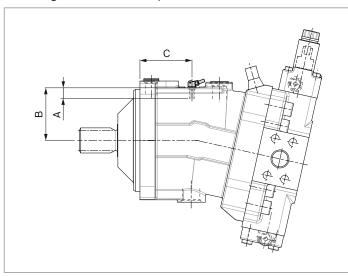
⁵⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


Speed sensor

Version A6VM...U ("prepared for speed sensor", i.e. without sensor) is equipped with a spline on the rotary group. A signal proportional to motor speed can be generated with the fitted DSA/DSM speed sensor. The DSA/DSM sensor registers the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety instructions about the sensor can be found in the relevant data sheet (95132 – DSM, 95133 – DSA).


The sensor is mounted on the port provided for this purpose with a mounting bolt. On deliveries without sensor, the port is plugged with a pressure-resistant cover. We recommend ordering the A6VM variable motor complete with mounted sensor.

▼ Circuit diagram EP

▼ Dimensions

"V" design with mounted speed sensor

Siz	ze	55	80	107	140	160	200
Nu	mber of teeth	54	58	67	72	75	80
Α	Insertion depth (tolerance -0.25)	18.4	18.4	18.4	18.4	18.4	18.4
В	Contact surface	75	79	88	93	96	101
С		66.2	75.2	77.2	91.2	91.7	95.2

Setting range for displacement

		55	8	0	10	07
	$V_{ m g\;max}\;({ m cm^3/rev})$	$V_{ m g\;min}\;({ m cm^3/rev})$	$V_{ m g\; max}\; ({ m cm^3/rev})$	$V_{ m g\;min}\;({ m cm^3/rev})$	$V_{ m gmax}$ (cm 3 /rev)	$V_{ m gmin}$ (cm 3 /rev)
	from to	from to	from to	from to	from to	from to
Α	54.8 54.8	0.0 13.3	80.0 80.0	0.0 9.0	107.0 107.0	0.0 22.2
	without screw	M10 × 60 R909154690	ohne Schraube M12 × 60 R909083530		without screw	M12 × 70 R909085976
В	54.8 54.8	> 13.3 27	80.0 80.0	> 9.0 26.0	107.0 107.0	> 22.2 43.8
	without screw	M10 × 70 R909153779	ohne Schraube	M12 × 70 R909085976	without screw	M12 × 80 R909153075
С	54.8 54.8	> 27.0 38.0	80.0 80.0	> 26.0 44.0	107.0 107.0	> 43.8 65.5
	without screw	M10 × 80 R909154058	ohne Schraube	M12 × 80 R909153075	without screw	M12 × 90 R909154041
D	х	х	80.0 80.0	> 44.0 56.0	107.0 107.0	> 65.5 75.0
			ohne Schraube	M12 × 90 R909154041	without screw	M12 × 100 R909153975
E	< 54.8 42.0	0.0 13.3	< 80.0 72.0	0.0 9.0	< 107.0 86.0	0.0 22.2
	M10 × 60 R909154690	M10 × 60 R909154690	M12 × 60 R909083530	M12 × 60 R909083530	M12 × 70 R909085976	M12 × 70 R909085976
F	< 54.8 42.0	> 13.3 27.0	< 80.0 72.0	> 9.0 26.0	< 107.0 86.0	> 22.2 43.8
	M10 × 60 R909154690	M10 × 70 R909153779	M12 × 60 R909083530	M12 × 70 R909085976	M12 × 70 R909085976	M12 × 80 R909153075
G	< 54.8 42.0	> 27.0 38.0	< 80.0 72.0	> 26.0 44.0	< 107.0 86.0	> 43.8 65.5
	M10 × 60 R909154690	M10 × 80 R909154058	M12 × 60 R909083530	M12 × 80 R909153075	M12 × 70 R909085976	M12 × 90 R909154041
Н	х	х	< 80.0 72.0	> 44.0 56.0	< 107.0 86.0	> 65.5 75.0
			M12 × 60 R909083530	M12 × 90 R909154041	M12 × 70 R909085976	M12 × 100 R909153975
J	< 42.0 29.0	0.0 13.3	< 72.0 55.0	0.0 9.0	< 86.0 64.0	0.0 22.2
	M10 × 70 R909153779	M10 × 60 R909154690	M12 × 70 R909085976	M12 × 60 R909083530	M12 × 80 R909153075	M12 × 70 R909085976
K	< 42.0 29.0	> 13.3 27.0	< 72.0 55.0	> 9.0 26.0	< 86.0 64.0	> 22.2 43.8
	M10 × 70 R909153779	M10 × 70 R909153779	M12 × 70 R909085976	M12 × 70 R909085976	M12 × 80 R909153075	M12 × 80 R909153075
L	< 42.0 29.0	> 27.0 38.0	< 72.0 55.0	> 26.0 44.0	< 86.0 64.0	> 43.8 65.5
	M10 × 70 R909153779	M10 × 80 R909154058	M12 × 70 R909085976	M12 × 80 R909153075	M12 × 80 R909153075	M12 × 90 R909154041
М	х	X	< 72.0 55.0	> 44.0 56.0	< 86.0 64.0	> 65.5 75.0
			M12 × 70 R909085976	M12 × 90 R909154041	M12 × 80 R909153075	M12 × 100 R909153975

Specify exact settings for $V_{\rm g\,min}$ and $V_{\rm g\,max}$ in plain text when ordering:

► $V_{\rm g \; min} = ... \; {\rm cm^3}, \; V_{\rm g \; max} = ... \; {\rm cm^3}$

Theoretical, maximum setting:

- ▶ for $V_{\rm g\;min}$ = 0.7 × $V_{\rm g\;max}$
- ▶ for $V_{\rm g~max}$ = 0.3 × $V_{\rm g~max}$

Settings that are not listed in the table may lead to damage.

Please contact us.

		1	40			1	60			2	00	
	V _{g max} (c	cm ³ /rev)	$V_{ m gmin}$ (c	m³/rev)	V _{g max} (c	m³/rev)	V _{g min} (c	m³/rev)	V _{g max} (c	cm ³ /rev)	V _{g min} (c	m³/rev)
	from	to	from	to	from	to	from	to	from	to	from	to
Α	140.0	140.0	0.0	38.0	160.0	160.0	0.0	32.6	200.0	200.0	0.0	39.0
	withou	t screw	M12 R9091		without	t screw	M12 R9091		withou	t screw	M12 R9091	
В	140.0	140.0	> 38.0	63.5	160.0	160.0	> 32.6	59.2	200.0	200.0	> 39.0	72.0
	withou	t screw	M12 R9091		without screw		M12 R9091		withou	t screw	M12 × 90 R909154041	
С	140.0	140.0	> 63.5	89.0	160.0	160.0	> 59.2	89.0	200.0	200.0	> 72.0	105.0
	withou	t screw	M12 > R9091		without	t screw	M12 : R9091		withou	t screw	M12 R9091	
D	140.0	140.0	> 89.0	98.0	160.0	160.0	> 89.0	112.0	200.0	200.0	> 105.0	140.0
	withou	t screw	M12 >		without	t screw	M12 : R9091		withou	t screw	M12 R9091	
E	< 140.0	105.0	0.0	38.0	< 160.0	129.0	0.0	32.6	< 200.0	164.0	0.0	39.0
		× 80 .53075	M12 R9091				M12 × 80 M12 × 80 R909153075 R909153075		M12 × 80 R909153075			
F	< 140.0	105.0	> 38.0	63.5	< 160.0	129.0	> 32.6	59.2	< 200.0	164.0	> 39.0	72.0
		× 80 .53075	M12 R9091		M12 R9091		M12 R9091			× 80 .53075	M12 R9091	
G	< 140.0	105.0	> 63.5	89.0	< 160.0	129.0	> 59.2	89.0	< 200.0	164.0	> 72.0	105.0
		× 80 .53075	M12 >		M12 R9091		M12 : R9091			× 80 .53075	M12 R9091	
Н	< 140.0	105.0	> 89.0	98.0	< 160.0	129.0	> 89.0	112.0	< 200.0	164.0	> 105.0	140.0
		× 80 .53075	M12 > R9091		M12 R9091		M12 : R9091		M12 R9091	× 80 .53075	M12 R9091	
J	< 105.0	80.0	0.0	38.0	< 129.0	100.0	0.0	32.6	< 164.0	130.5	0.0	39.0
		× 90 .54041	M12 R9091		M12 R9091		M12 R9091			× 90 .54041	M12 R9091	
K	< 105.0	80.0	> 38.0	63.5	< 129.0	100.0	> 32.6	59.2	< 164.0	130.5	> 39.0	72.0
		× 90 .54041	M12 R9091		M12 R9091		M12 R9091			× 90 .54041	M12 R9091	
L	< 105.0	80.0	> 63.5	89.0	< 129.0	100.0	> 59.2	89.0	< 164.0	130.5	> 72.0	105.0
		× 90 .54041	M12 >		M12 R9091		M12 : R9091			× 90 .54041	M12 R9091	
М	< 105.0	80.0	> 89.0	98.0	< 129.0	100.0	> 89.0	112.0	< 164.0	130.5	> 105.0	140.0
		× 90 .54041	M12 ×		M12 R9091		M12 ×			× 90 .54041	M12 R9091	

Specify exact settings for $V_{\rm g\,min}$ and $V_{\rm g\,max}$ in plain text when ordering:

► $V_{g min} = ... cm^3$, $V_{g max} = ... cm^3$

Theoretical, maximum setting:

- for $V_{g min} = 0.7 \times V_{g max}$
- ▶ for $V_{g max} = 0.3 \times V_{g max}$

Settings that are not listed in the table may lead to damage.

Please contact us.

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the fluid from the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running. The leakage in the motor housing must be directed to the reservoir via the highest available drain port $(\mathbf{T}_1, \mathbf{T}_2)$. For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the maximum permissible case pressure of all connected units is not exceeded at any operational conditions. If this is not possible, separate drain lines must be laid.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

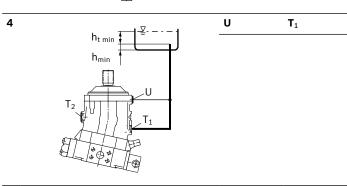
In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Notice

In certain installation positions, an influence on the control characteristic can be expected. Gravity, dead weight and case pressure can cause minor characteristic shifts and changes in response time.

Key	
F	Filling / air bleeding
U	Bearing flushing / air bleed port
T ₁ , T ₂	Drain port
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required spacing to reservoir bottom (100 mm)

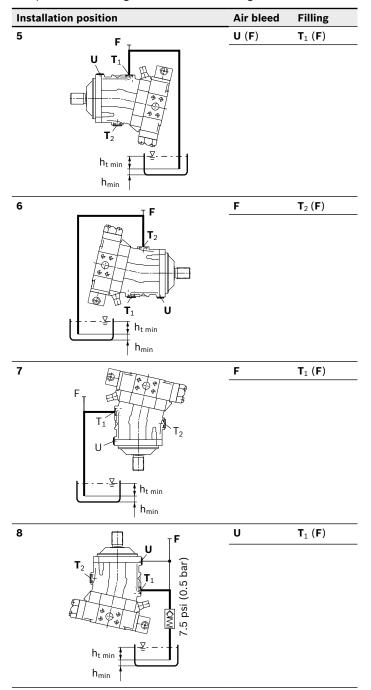
Installation position


See examples 1 to 8 below.

Additional installation positions are available upon request. Recommended installation position: **1** and **2**

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level


$\begin{array}{c} T_1 \\ h_{t min} \\ h_{min} \\ T_2 \\ \hline \end{array}$	nstallation position	Air bleed	Filling
T_1 T_1 T_2 T_1 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 T_1	Nt min Nmin T1 U T4		T ₁
T_1 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 T_3 T_4 T_4			T ₂
T ₁ T ₂ U T ₁	h _{min} T ₂		
T_2 $U \qquad T_1$	h _{t min}		T ₁
	h:	U	T ₁

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. Recommendation for installation position 8 (drive shaft upward):

A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the motor housing.

Notice

Port **F** is part of the external piping and must be provided on the customer side to make filling and air bleeding easier.

Project planning notes

- ► The motor A6VE is designed to be used in open and closed circuits.
- ► The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified skilled personnel.
- ▶ Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- ► Before finalizing your design, please request a binding installation drawing.
- ► The specified data and notes contained herein must be observed
- For safety reasons, controls with beginning of control at $V_{\rm g\ min}$ (e.g. HA) are not permissible for winch drives, e.g. anchor winches.
- ▶ Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- ▶ Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the instruction manual.
- ▶ Not all versions of the product are approved for use in a safety function according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- ▶ Depending on the type of control used, electromagnetic effects can be produced when using solenoids. When a direct current is applied, solenoids do not cause electromagnetic interference nor is their operation impaired by electromagnetic interference.
 - Other behavior can result when a modulated direct current (e.g. PWM signal) is applied. Potential electromagnetic interference for persons (e.g. persons with a pacemaker) and other components must be tested by the machine manufacturer.
- ▶ Please note the details regarding the tightening torques of port threads and other threaded joints in the instruction manual.

► Working ports:

- The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
- The working ports and function ports are only intended to accommodate hydraulic lines.

Safety instructions

- During and shortly after operation, there is a risk of getting burnt on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- ▶ Moving parts in control equipment (e.g. valve pistons) can, under certain circumstances get stuck in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filter) will not rule out a fault but merely reduce the risk.
 - The machine/system manufacturer must test whether remedial measures are needed on the machine for the application concerned in order to set the consumer being driven to a safe position (e.g. safe stop) and if necessary to ensure it is properly implemented.
- Moving parts in high-pressure relief valves may in certain circumstances become stuck in an undefined position due to contamination (e.g. contaminated hydraulic fluid). This can result in restriction or loss of the load holding function in lifting winches.
 - The machine/system manufacturer must check whether additional measures are required on the machine for the relevant application in order to keep the load in a safe position and ensure they are properly implemented.
- ▶ When using the axial piston motor in winch drives, make certain that the technical limit values are not exceeded under all operating conditions. If the axial piston motor is extremely overloaded (e.g. if the maximum permissible rotational speeds are exceeded during weighing of the anchor while the ship is in motion), the rotary group may be damaged and, in the worst case, the axial piston motor may burst. The machine manufacturer / system manufacturer is to undertake additional measures, up to and including encapsulation.

A6VM series 65 | Axial piston variable motor Safety instructions

76

Bosch Rexroth AG

Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel.: +49-7308-82-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 91607/06.2016

Rexroth Bosch Group

Axial piston variable motor A6VM series 71

RE 91610

Edition: 06.2016 Replaces: 06.2014

- ► All-purpose high pressure motor
- ▶ Sizes 60 to 215

Inhalt

- Nominal pressure 450 bar
- Maximum pressure 500 bar
- ▶ Open and closed circuits

Features

- Robust motor with long service life
- Approved for very high rotational speeds
- ► High starting efficiency
- Excellent slow-running characteristics
- Variety of controls
- ► High control range (can be swiveled to zero)
- ▶ High torque
- ▶ Optionally with flushing and boost-pressure valve mounted
- Optionally with mounted high-pressure counterbalance valve
- ► Bent-axis design

iiiiait	
Ordering code	2
Hydraulic fluids	6
Shaft seal	7
Operating pressure range	8
Technical data	9
HP - Proportional hydraulic control	11
EP - Proportional electric control	14
HZ – Two-point hydraulic control	16
EZ – Two-point electric control	17
HA – Automatic high-pressure related control	18
DA – Automatic speed-related control	23
Electric travel direction valve (for DA, HA.R)	25
Dimensions size 60 to 215	26
Connector for solenoids	62
Neutral position switch	63
Flushing and boost pressure valve	64
Counterbalance valve BVD and BVE	66
Speed sensor	69
Setting range for displacement	70
Installation instructions	72
Project planning notes	74
Safety instructions	75

Ordering code

0	1	02	03	04	05	06	07	08	09	10		11	12		13	14	15	16	17	18	19	20	21
A	6V	М						0			/	71	М		W	V	0						-
Vial	piston	unit																					·
01			design	ı, varia	able, n	omina	press	ure 45	i0 bar	, maxi	mum	pressi	ire 50	00 b	ar								A6V
pera	iting m	ode																					
02	Moto	r																					М
ize (NG)																						
03	Geon	netric	displ	aceme	ent, se	e tech	nical d	ata or	page	9						060	08	5	115	150	170	215	
ontr	ol devi	ice														060	08	5	115	150	170	215	
04	Propo	ortior	nal cor	ntrol		р	sitive	contr	ol			Δp_{St}	= 10	bar	r	•	•		•	•	•	•	HP1
	hydra	aulic										Δp_{St}	= 25	bar	r	•	•		•	•	•	•	HP2
						ne	egative	contr	ol			Δp_{St}	= 10	bar	r	•	•		•	•	•	•	HP5
												Δp_{St}	= 25	bar	r	•	•		•	•	•	•	HP6
			nal con	ntrol		р	sitive	contr	ol			U =	12 V I	DC		•	•		•	•	•	•	EP1
	elect	rical										U =	24 V I	DC		•	•		•	•	•	•	EP2
						ne	egative	contr	ol			U =	12 V I	DC		•	•		•	•	•	•	EP5
												U =	24 V I	DC		•	•		•	•	•	•	EP6
			contr	ol		ne	egative	contr	ol							_			-	•	•	•	HZ5
	hydra	aulic														•	•		•	-	-	-	HZ7
	1 .		contr	ol		ne	egative	contr	ol			<i>U</i> =	12 V	DC		-			-	•	•	•	EZ5
	elect	rical										<i>U</i> =	24 V I	DC		-			-	•	•	•	EZ6
												<i>U</i> =	12 V I	DC		•	•		•	-	-	-	EZ7
												U =	24 V I	DC		•	•		•	-	-	-	EZ8
	high-	press		ol lated,		W	ith min	imum	press	ure inc	rease	Δp ≤		rox.		•	•		•	•	•	•	HA1
	posit	ive co	ntrol			W	ith pre	ssure	incre	ase		$\Delta p =$	100	bar		•	•		•	•	•	•	HA2
			contr			hy	dr. tra	vel di	ectio	n valve	9					•	•		•	•	•	•	DA0
			,	egativ = 5/1			ectric				ılve	U =	12 V I	DC		•	•		•	•	•	•	DA1
	Conti	or pst	7 PHD	- 5/1		+	electri	c $V_{\rm g m}$	ax Circ	uit		U =	24 V I	DC		•	•		•	•	•	•	DA2
ress	ure co	ntrol/	overr	ide												060	08	5	115	150	170	215	
05	Witho	out pr	essur	e cont	trol/ov	erride										•	•		•	•	•	•	00
	Press	sure c	ontro	l fixed	settin	g, only	for H	P5, HF	6, EP	5 and	EP6					•	•		•	•	•	•	D1
	Overi					hy	drauli	c remo	ote co	ntrol,	propo	rtiona	ıl			•	•		•	•	•	•	ТЗ
	of co					el	ectric,	two-p	oint			U =	12 V I	DC		•	•		•	•	•	•	U1
	HA1 a	and H	A2									U =	24 V I	DC		•	•		•	•	•	•	U2
							ectric		avel d	lirection	on	U =	12 V I	DC		•	•		•	•	•	•	R1
						va	lve, el	ectric				U =	24 V I	DC		•	•		•	•	•	•	R2
onne	ector f	or sol	enoid	ls ¹⁾ (se	ee pag	e 62)																	
06	Witho	out co	nnec	tor (w	ithout	solend	oid, on	ly for	hydra	ulic co	ntrol)												0
	DEUT	SCH	- mol	ded co	nnect	or, 2-p	in, wit	hout s	uppre	essor	diode												Р

• = Available • = On request - = Not available

Bosch Rexroth AG, RE 91610/06.2016

¹⁾ Connectors for other electric components can deviate.

Α	6V M						0				/	71	r	И	W	V	0						- _
eut	ral position s	witch	(see r	page 6	3)											060	085	11	5	150	170	215	
07	Without add	ditional	funct	tion												•	•	•	,	•	•	•	0
	Neutral pos	ition sv	witch													-	•	•	,	•	•	•	N
ddi	ional function	on																					
08	Without add	ditional	l funct	tion																			0
esn	onse time da	mning	(for s	selecti	on se	e cont	trol)																
09 09	Without dar																						0
	Damping	1 0						and	EP!	5,6D	., HZ,	EZ, H	A wi	ith c	ounte	erbalan	ce valv	e BVD	/BV	E			1
						sided																	4
						sided)							7
etti	ng range for	disnla	cemei	nt ²⁾												-							•
10	$V_{\rm g\;max}$ -settir				V _{a mir}	-settir	ng sci	rew								060	085	11	5	150	170	215	
	Without set					(0-ad										•	•	•		•	•	•	Α
					medi											•	•	•	,	•	•	•	В
					long											•	•	•	,	•	•	•	С
					extra	long										-	-	•	,	•	•	•	D
	Short				short	(0-ad	justa	ble)								•	•	•	,	•	•	•	Е
					medi	um										•	•	•	,	•	•	•	F
					long											•	•	•	,	•	•	•	G
					extra	long										-	_	•	•	•	•	•	Н
	Medium				short	(0-ad	justa	ble)								•	•	•	,	•	•	•	J
					medi	um										•	•	•	·	•	•	•	K
					long											•	•	•	'	•	•	•	L
					extra	long										_	_	•	,	•	•	•	М
erie	s																						
11	Series 7, in	dex 1																					71
onf	guration of	ports a	nd fa	stenin	g thre	ads																	
12	Metric, port	t thread	ds wit	h O-rii	ng sea	ling a	ccord	ing 1	to IS	SO 6	149												М
irec	tion of rotat	ion																					
13	Viewed on o		naft, b	idirec	tional																		w
eali	ng material																						
14	FKM (fluoro	elastor	mer)																				V
	shaft bearin																						
15	Standard be				-																		0
	I	σαιτιτε																					
	ting flange				105	4										060	085			150	170	215	
16	ISO 3019-2				125-4											•	-	+-		-		-	M4
					140-4											_	•	_		-	<u>-</u>	-	N4 P4
	I				TOO-2	+										-	_	•	<u>'</u>			-	P4
					180-4	1										_	_		, 1	•	•	-	R4

2) The settings for the setting screws can be found in the table

(see pages 70 and 71).

4 **A6VM series 71** | Axial piston variable motor Ordering code

	01	02	03	04	05	06	07	80	09	10		11	12	13	14		L6 17	18	19	20	21
Α	V6V	М						0				71	M	W	V	0					·
Drive	shaft														060	085	115	150	170	215	
17	Spline	ed sha	ft			1 1/4	in 14	T 12/2	24 DP						•	-	-	-	-	_	S7
	ANSI	B92.1	a			1 12	4 in 17	T 12/:	24 DP						-	•	-	-	-	-	S9
						1 3/4	in 13	T 8/16	DP.						-	-	•	•	_	-	T1
						2 in :	15T 8/	16 DP							-	-	-	0	•	•	T2
	Spline	ed sha	ft			W35	×2×16	۷9g							•	-	-	_	_	_	Z8
	DIN 5	480				W40	×2×18	<9g							-	•	•	-	-	-	Z9
						W45	×2×21	<9g							-	-	-	•	•	-	A1
						W50	×2×24	<9g							-	-	-	-	-	•	A2
Vork	king Po	rt													060	085	115	150	170	215	
18	SAE v	vorkin	g port	A and	B at	rear									•	•	•	•	•	•	1
	SAE v	vorkin	g port	A and	B at	side, c	pposi	te							•	•	•	•	•	•	2
	Port p	olate v	vith 1-	stage	pressi	ure lim	itatior	ı	BV	D20					•	•	•	-	-	_	7
	valves	for m	ountii	ng a co	ounter	baland	ce valv	e ³⁾	BV	D25, B	VE25				-	-	•	•	•	•	8
/alve	see p	ages (64 to (68)											060	085	115	150	170	215	
19	Witho	ut val	ve												•	•	•	•	•	•	0
	With	counte	rbalaı	nce va	lve BV	/D/BVE	mour	ited ⁴⁾							•	•	•	•	•	•	w
					press	sure va	ılve, m	ounte	d Flu	shing	flow q	_{/v} [l/m	in]						•		
		ing on		sides					3.5						•	•	•	-	_	-	Α
		ing flo		bara	nd 21 -	10 mı	m ² /s		5						•	•	•	-	-	-	В
						e press			8						•	•	•	•	•	•	С
						s 1 and			10						•	•	•	•	•	•	D
									14						•	•	•	-	-	-	F
									17						-	-	-	•	•	•	G
									20						-	-	●5)	•	•	•	Н
									25						-	-	●5)	•	•	•	J
									30						-	-	●5)	•	•	•	К
									35						-	-	-	•	•	•	L
									40						_	_	 	•	•	•	м

^{• =} Available • = On request - = Not available

Bosch Rexroth AG, RE 91610/06.2016

³⁾ Only possible in conjunction with HP, EP and HA control. Note the restrictions described on page 66.

⁴⁾ State ordering code for counterbalance valve separately in accordance with data sheet 95522 – BVD or 95525 – BVE. Note the restrictions described on page 66.

⁵⁾ Not for EZ7, EZ8 and HZ7.

	01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17	18	19	20		21
Α	.6V	М						0			/	71	М	W	٧	0						- [
Spee	d sense	or (se	e page	69)											060	08	5 1	15	150	170	215		
20	Witho	ut spe	ed se	nsor											•	•		•	•	•	•		0
	Prepa	red w	ith sp	eed se	nsor [DSM/E	SA								•	•		•	•	•	•		U
	With s	peed	senso	r DSN	I/DSA	moun	ted ⁶⁾								•	•		•	•	•	•		v

Standard / special version

21	Standard version	0
	Standard version with installation variants, e.g. T ports against standard open and closed	Υ
	Special version	S

• = Available • = On request - = Not available

Notice

▶ Note the project planning notes on page 74.

⁶⁾ State ordering code for sensor separately in accordance with data sheet 95132 – DSM or 95133 – DSA and note the requirements relating to the electronics.

Hydraulic fluids

The variable motor A6VM is designed for operation with mineral oil HLP according to DIN 51524.

Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- ▶ 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally friendly hydraulic fluids
- ▶ 90222: Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)
- ▶ 90225: Axial piston units for operation with water-free and water-containing fire-resistant hydraulic fluids (HFDR, HFDU, HFB, HFC).

The variable motor A6VM is not suitable for operation with HFA fluids. If operating with HFB-, HFC- and HFD or environmentally acceptable hydraulic fluids, the limitations regarding technical data or other seals must be observed.

Notes on selection of hydraulic fluid

The hydraulic fluid should be selected such that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt} see selection diagram).

Notice

At no point of the component may the temperature be higher than 115 °C. The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend the use of a flushing and boost-pressure valve (see page 64).

Viscosity and temperature of hydraulic fluids

	Viscosity	Temperature	Comment
Cold start	$v_{\text{max}} \le 1600 \text{ mm}^2/\text{s}$	θ _{St} ≥ -40 °C	$t \le 3 \text{ min}, n \le 1000 \text{ rpm}, \text{ without load } p \le 50 \text{ bar}$
Permissible temper	rature difference	ΔT ≤ 25 K	between axial piston unit and hydraulic fluid in the system
Warm-up phase	$v = 1600 \text{ bis } 400 \text{ mm}^2/\text{s}$	θ = -40 °C bis -25 °C	at $p \le 0.7 \times p_{\text{nom}}$, $n \le 0.5 \times n_{\text{nom}}$ and $t \le 15$ min
Continuous operation	$v = 400 \text{ bis } 10 \text{ mm}^2/\text{s}$		This corresponds, for example on the VG 46, to a temperature range of +5 °C to +85 °C (see selection diagram)
		θ = -25 °C bis +103 °C	measured at port T Note the permissible temperature range of the shaft seal $(\Delta T = \text{approx. } 12 \text{ K between the bearing/shaft seal and port } \mathbf{T})$
	$v_{\rm opt} = 36 \text{ to } 16 \text{ mm}^2/\text{s}$		Range of optimum operating viscosity and efficiency
Short-term operation	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		$t < 3 \text{ min}, p < 0.3 \times p_{\text{nom}}$

▼ Selection diagram

Bosch Rexroth AG, RE 91610/06.2016

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.

At very high hydraulic fluid temperatures (90 °C to maximum 103 °C, measured at port **T**), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

Influence of case pressure on beginning of control

An increase in case pressure affects the beginning of control of the variable motor when using the following control options:

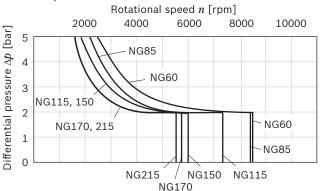
- ► HP, HA.T3: increase
- ▶ DA: decrease

With the following settings, an increase in case pressure will have no effect on the beginning of control:

HA.R and HA.U, EP, HA

The factory setting of the beginning of control is made at p_{abs} = 2 bar case pressure.

Flow direction

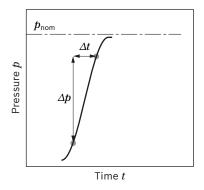

Direc	tion of rotation, viewed on drive shaft
CW	ccw
A to I	B to A

Shaft seal

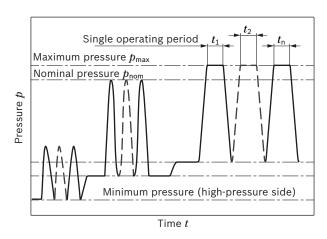
Permissible pressure loading

The service life of the shaft seal will be influenced by the speed of the axial piston unit and the leakage pressure in the housing (case pressure). Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. Case pressures of a continuous 2 bar maximum are permitted to be able to utilize the entire speed range. Higher case pressures are permissible at lower rotational speeds (see diagram). The service life of the shaft seal decreases with increasing frequency of pressure spikes and increasing mean differential pressure.

The case pressure must be equal to or higher than the ambient pressure.

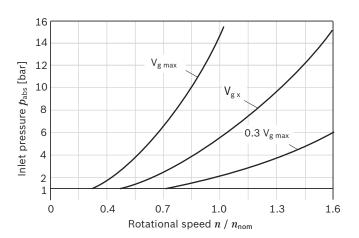


The FKM shaft seal may be used for leakage temperatures from -25 °C to +115 °C. For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).


Operating pressure range

Pressure at service line port A or B		Definition
Nominal pressure p_{nom}	450 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure $p_{\sf max}$	500 bar	The maximum pressure corresponds to the maximum operating pressure
Single operating period	10 s	within the single operating period. The sum of the single operating periods
Total operating period	300 h	must not exceed the total operating period.
Minimum pressure (high-pressure side)	25 bar absolute	Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.
Minimum pressure – pump operating mode (inlet)	See the diagram below	To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e.g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). This minimum pressure is dependent on the speed and displacement of the axial piston unit (see characteristic curve)
Summation pressure p_{Su} (pressure A + pressure B)	700 bar	The summation pressure is the sum of the pressures at both service line ports (A and B)
Rate of pressure change $R_{A\;max}$		Maximum permissible rate of pressure rise and reduction during a pressure
With integrated pressure-relief valve	9000 bar/s	change over the entire pressure range.
Without pressure-relief valve	16000 bar/s	-

▼ Rate of pressure change $R_{A \text{ max}}$



▼ Pressure definition

Total operating period = $t_1 + t_2 + ... + t_n$

▼ Minimum pressure – pump operating mode (inlet)

This diagram is valid only for the optimum viscosity range from v_{opt} = 36 to 16 mm²/s.

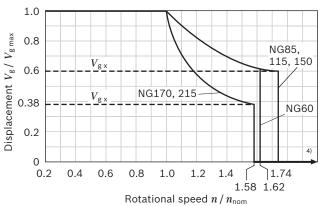
Please contact us if these conditions cannot be satisfied.

Notice

Working pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids, please contact us.

Technical data

Size		NG		60	85	115	150	170	215
Displacement geometric, per	revolution	$V_{g\;max}$	cm ³	62.0	85.2	115.6	152.1	171.8	216.5
		V_{gmin}	cm ³	0	0	0	0	0	0
		V_{gx}	cm ³	37	51	69	91	65	82
Maximum speed ¹⁾	at $V_{g\;max}$	n_{nom}	rpm	4450	3900	3550	3250	3100	2900
(complying with the maxi-	at $V_{\rm g}$ < $V_{\rm gx}$ (see diagram)	n_{max}	rpm	7200	6800	6150	5600	4900	4600
mum permissible inlet flow)	at $V_{ m g0}$	n_{max}	rpm	8400	8350	7350	6000	5750	5500
Inlet flow ²⁾	at n_{nom} and V_{gmax}	$q_{v\;max}$	l/min	275	332	410	494	533	628
Torque ³⁾	at $V_{\rm g\;max}$ and Δp = 450 bar	T	Nm	444	610	828	1089	1230	1550
Rotary stiffness	$V_{ m g\ max}$ to $V_{ m g}/2$	c_{min}	kNm/rad	15	22	37	44	52	70
	$V_{\rm g}/2$ to 0 (interpolated)	c_{min}	kNm/rad	45	68	104	124	156	196
Moment of inertia for rotary	group	J_{GR}	kgm²	0.0043	0.0072	0.0110	0.0181	0.0213	0.0303
Maximum angular acceleration	on	α	rad/s²	21000	17500	15500	11000	11000	10000
Case volume		V	I	0.8	1.0	1.5	1.7	2.3	2.8
Weight, approx.		m	kg	28	36	46	61	62	78


Speed range

The minimum rotational speed n_{\min} is not limited. For applications with requirements on the evenness of the rotation at low rotational speeds, please contact us.

Notice

- ► Theoretical values, without efficiency and tolerances; values rounded
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet 90261.

▼ Permissible displacement in relation to speed

Determining	the ope	rating characteristics	
Inlet flow	q_{v}	$= \frac{V_{\rm g} \times n}{1000 \times \eta_{\rm v}}$	[l/min]
Rotational speed	n	$= \frac{q_{\rm v} \times 1000 \times \eta_{\rm v}}{V_{\rm g}}$	[rpm]
Torque	Т	$= \frac{V_{\rm g} \times \Delta p \times \eta_{\rm mh}}{20 \times \pi}$	[Nm]
Power	P	$= \frac{2 \pi \times T \times n}{60000} = \frac{q_{v} \times \Delta p \times \eta_{t}}{600}$	- [kW]
Key			
V_{g}	=	Displacement per revolution [cm ³]]
Δp	=	Differential pressure [bar]	
n	=	Rotational speed [rpm]	
$\eta_{\scriptscriptstyle V}$	=	Volumetric efficiency	
η_mh	=	Mechanical-hydraulic efficiency	
η_{t}	=	Total efficiency $(\eta_t = \eta_v \cdot \eta_{mh})$	

¹⁾ The values are valid:

[–] For the optimum viscosity range from $v_{\rm opt}$ = 36 to 16 mm²/s

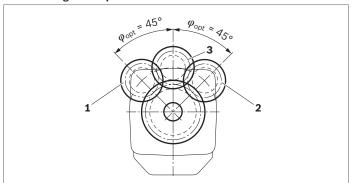
with hydraulic fluid on the basis of mineral oil

²⁾ Note inlet flow limitation due to counterbalance valve (see page 66)

³⁾ Torque without radial force, With radial force see page 10.

⁴⁾ Values in this range on request

Permissible radial and axial forces of the drive shafts


Size		NG		60	60	85	85	115	115	150	150	150
Drive shaft				1 1/4 in	W35	1 1/2 in	W40	1 3/4 in	W40	1 3/4 in	2 in	W45
Maximum radial force	ıF.	$F_{q\;max}$	N	7620	10266	12463	12323	14902	16727	15948	17424	19534
at distance a (from shaft collar)	a	a	mm	24.0	20.0	27.0	22.5	33.5	22.5	33.5	33.5	25.0
Maximum torque at $F_{q max}$		T _{q max}	Nm	310	444	595	610	828	828	890	1089	1089
Maximum differential press and $F_{\rm q\;max}$	sure at $V_{\sf gmax}$	$\Delta p_{q\;max}$	bar	315	450	440	450	450	450	370	450	450
Maximum axial force	E	+ F _{ax max}	N	0	0	0	0	0	0	0	0	0
at standstill or depressurized operation	$F_{ax} \pm \frac{1}{a}$	- F _{ax max}	N	500	500	710	710	900	900	1300	1300	1300
Permissible axial force per bar operating pressure		+ $F_{ m ax\ perm/bar}$	N/bar	7.5	7.5	9.6	9.6	11.3	11.3	13.3	13.3	13.3

Size		NG		170	170	215	215
Drive shaft				2 in	W45	2 in	W50
Maximum radial force	ıF.	$F_{q\;max}$	N	19370	21220	22602	25016
at distance a (from shaft collar)	a	a	mm	33.5	25.0	33.5	27.5
Maximum torque at $F_{q max}$		$T_{q\;max}$	Nm	1230	1200	1445	1550
Maximum differential press and $F_{q max}$	sure at $V_{\sf gmax}$	$\Delta p_{ extsf{q} ext{ max}}$	bar	450	440	420	450
Maximum axial force	rfh	+ F _{ax max}	N	0	0	0	0
at standstill or depressurized operation	r _{ax} ± = +	- F _{ax max}	N	1120	1120	1250	1250
Permissible axial force per bar operating pressure		+ $F_{ m ax\ perm/}$	N/bar	15.1	15.1	17.0	17.0

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force $F_{\rm q}$, the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

▼ Toothed gear output drive

- 1 Direction of rotation " counter-clockwise", pressure at port B
- ${\bf 2}$ Direction of rotation "clockwise", pressure at port ${\bf A}$
- 3 Bidirectional direction of rotation

Bosch Rexroth AG, RE 91610/06.2016

Notice

- ► The values given are maximum values and do not apply to continuous operation.
- ► The permissible axial force in direction -F_{ax} is to be avoided as the lifetime of the bearing is reduced.
- ► Special requirements apply in the case of belt drives. Please contact us.

HP - Proportional hydraulic control

The proportional hydraulic control provides infinite adjustment of the displacement. Control is proportional to the pilot pressure applied to port **X**.

HP1, HP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible speed at minimum pilot pressure)
- ► End of control at $V_{\rm g \ max}$ (maximum torque, minimum speed at maximum pilot pressure)

HP5, HP6 negative control

- Beginning of control at $V_{g max}$ (maximum torque, minimum speed at minimum pilot pressure)
- ▶ End of control at $V_{g min}$ (minimum torque, maximum permissible speed at maximum pilot pressure)

Notice

- ► Maximum permissible pilot pressure: p_{St} = 100 bar
- ► The control oil is internally taken from the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.</p>
 - Please note that pressures up to 500 bar can occur at port ${\bf G}$.
- ▶ Please state the desired beginning of control in plain text when ordering, e.g.: beginning of control at 10 bar.
- ► The beginning of control and the HP characteristic curve are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 7) and thus a parallel shift of the characteristic.
- ► A leakage flow of maximum 0.3 I/min can occur at port X due to internal leakage (working pressure > pilot pressure). The control is to be suitably configured to avoid an independent build-up of pilot pressure.

Response time damping

The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for sizes 60 to 215

HP without damping.

HP.D with throttle pin on both sides, symmetrical (see table)

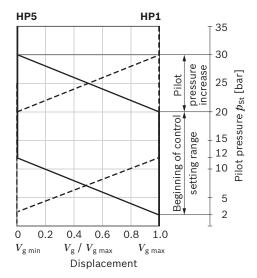
Optional for sizes 60 to 215

HP with throttle pin on both sides, symmetrical (see table)

▼ Throttle pin overview

Size	60	85	115	150	170	215
Groove size [mm]	0.45	0.45	0.55	0.55	0.55	0.65

HP1, HP5 pilot pressure increase $\Delta p_{\rm St}$ = 10 bar HP1 positive control


A pilot pressure increase of 10 bar at port **X** results in an increase in displacement from $V_{\rm g\,min}$ to $V_{\rm g\,max}$.

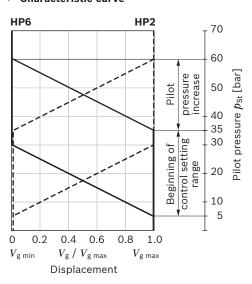
HP5 negative control

A pilot pressure increase of 10 bar at port **X** results in a decrease in displacement from $V_{\rm g\ max}$ to $V_{\rm g\ min}$.

- ▶ Beginning of control, setting range 2 to 20 bar
- Standard setting: beginning of control at 3 bar (end of control at 13 bar)

▼ Characteristic curve

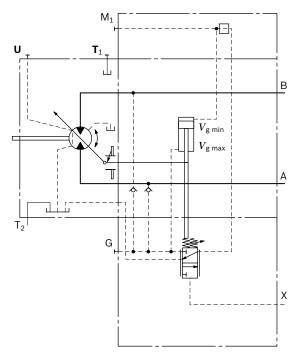
HP2, HP6 pilot pressure increase $\Delta p_{\rm St}$ = 25 bar HP2 positive control


A pilot pressure increase of 25 bar at port **X** results in an increase in displacement from $V_{\rm g\ min}$ to $V_{\rm g\ max}$.

HP6 negative control


A pilot pressure increase of 25 bar at port **X** results in a decrease in displacement from $V_{\rm g\ max}$ to $V_{\rm g\ min}$.

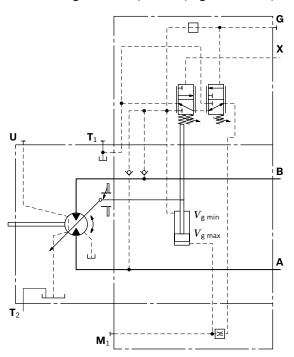
- ▶ Beginning of control, setting range 5 to 35 bar
- ► Standard setting: beginning of control at 10 bar (end of control at 35 bar)


▼ Characteristic curve

▼ Circuit diagram HP5, HP6 (negative control)

▼ Circuit diagram HP1, HP2 (positive control)

Bosch Rexroth AG, RE 91610/06.2016


HP5D1, HP6D1 Pressure control, fixed setting

The pressure control overrides the HP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger displacement.

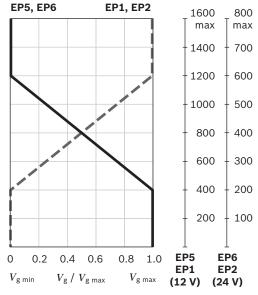
The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve 80 to 450 bar

▼ Circuit diagram HP5D1, HP6D1 (negative control)

EP - Proportional electric control

The proportional electric control, type EP, provides infinite adjustment of the displacement, proportional to the control current applied to the solenoid.


EP1, EP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible speed at minimum control current)
- ▶ End of control at $V_{g \text{ max}}$ (maximum torque, minimum speed at maximum control current)

EP5, EP6 negative control

- ▶ Beginning of control at $V_{g max}$ (maximum torque, minimum speed at minimum control current)
- ▶ End of control at $V_{g min}$ (minimum torque, maximum permissible speed at maximum control current)

▼ Characteristic curve

Notice

The control oil is internally taken from the high pressure side of the motor (**A** or **B**). For reliable control, an operating pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 500 bar can occur at port G.

Response time damping

The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for sizes 60 to 215

EP without damping.

EP.D with throttle pin on both sides, symmetrical (see table)

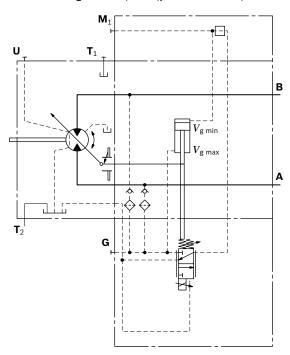
Optional for sizes 60 to 215

EP with throttle pin on both sides, symmetrical (see table)

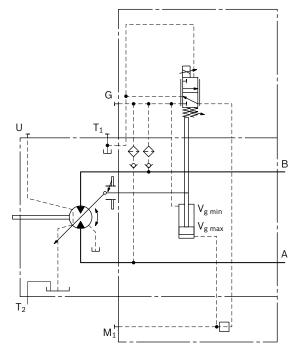
▼ Throttle pin overview

Nenngröße	60	85	115	150	170	215
Groove size [mm]	0.45	0.45	0.55	0.55	0.55	0.65

Technical data, solenoid, sizes	EP1, EP5	EP2, EP6				
Voltage	12 V (±20 %)	24 V (±20 %)				
Control current						
Beginning of control	400 mA	200 mA				
End of control	1200 mA	600 mA				
Current limit	1.54 A	0.77 A				
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω				
Dither						
Frequency	100 Hz	100 Hz				
Minimum oscillation range ¹⁾	240 mA	120 mA				
Duty cycle	100 %	100 %				
Type of protection, see connector version on page 62						


Type of protection: see connector version on page 62

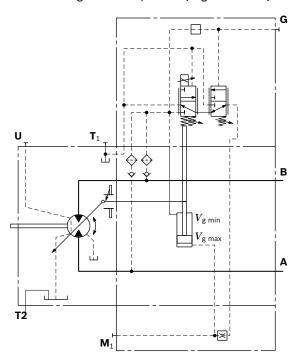
Various BODAS controllers with application software and amplifiers are available for controlling the proportional solenoids.


Further information can also be found on the internet at www.boschrexroth.com/mobile-electronics.

¹⁾ Minimum required oscillation range of the control current $\Delta I_{\mathrm{p-p}}$ (peak to peak) within the respective control range (start of control to end of control)

▼ Circuit diagram EP1, EP2 (positive control)

▼ Circuit diagram EP5, EP6 (negativ control)

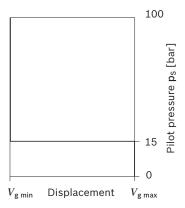


EP5D1, EP6D1 Pressure control, fixed setting

The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger displacement.

The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant. Setting range of the pressure control valve 80 to 450 bar

▼ Circuit diagram EP5D1, EP6D1 (negativ control)


HZ - Two-point hydraulic control

The two-point hydraulic control allows the displacement to be set to either $V_{\rm g\,min}$ or $V_{\rm g\,max}$ by switching the pilot pressure at port **X** on or off.

HZ5, HZ7 negative control

- Position at $V_{g max}$ (without pilot pressure, maximum torque, minimum speed)
- Position at V_{g min} (with pilot pressure > 15 bar activated, minimum torque, maximum permissible speed)

▼ Characteristic curve HZ5, HZ7

Notice

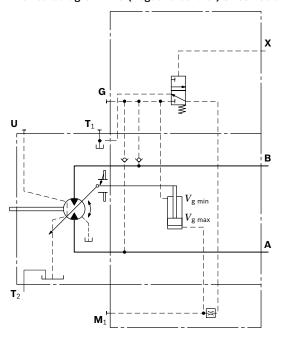
- ► Maximum permissible pilot pressure: 100 bar
- ► The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us. Please note that pressures up to 500 bar can occur at port G.</p>
- At port X a leakage flow of maximum 0.3 l/min occurs (working pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir.

Response time damping

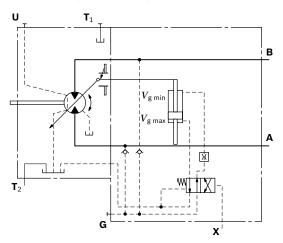
The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for szes 150 to 215

HZ5 with throttle pin on both sides, symmetrical (see table)


Standard for sizes 60 to 115

HZ7 (synchronous piston) with throttle pin on both sides, symmetrical (see table)


▼ Throttle pin overview

Sizes	60	85	115	150	170	215
Groove size [mm]	0.30	0.30	0.30	0.55	0.55	0.65

▼ Circuit diagram HZ5 (negative control) sizes 150 to 215

▼ Circuit diagram HZ7 (negative control) size 60 to 115

EZ - Two-point electric control

The two-point electric control allows the displacement to be set to either $V_{\rm g\;min}$ or $V_{\rm g\;max}$ by switching the electric current to a switching solenoid on or off.

Notice

The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, an operating pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 500 bar can occur at port G.

Response time damping

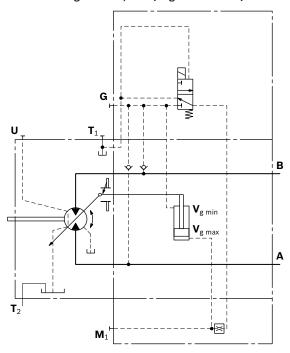
The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for sizes 150 to 215

EZ5, EZ6 with throttle pin on both sides, symmetrical (see table)

Standard for sizes 60 to 115

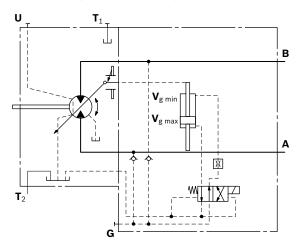
EZ7, EZ8 (synchronous piston) with throttle pin on both sides, symmetrical (see table)


▼ Throttle pin overview

Size	60	85	115	150	170	215
Groove size [mm]	0.30	0.30	0.30	0.55	0.55	0.65

Sizes 150 to 215

Technical data, solenoid with ø37	EZ5	EZ6			
Voltage	12 V (±20 %)	24 V (±20 %)			
Position $V_{g\;max}$	de-energized	de-energized			
Position V_{gmin}	energized	energized			
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω			
Nominal power	26.2 W	26.5 W			
Minimum required active current	1.32 A	0.67 A			
Duty cycle	100 %	100 %			
Type of protection: see connector version on page 62					


▼ Circuit diagram EZ5, EZ6 (negative control)

Sizes 60 to 115

T 1 1 1 1 1 1 4 4 4 1 1					
Technical data, solenoid with ø45	EZ7	EZ8			
Voltage	12 V (±20 %)	24 V (±20 %)			
Position $V_{ m g\ max}$	de-energized	de-energized			
Position V_{gmin}	energized	energized			
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω			
Nominal power	30 W	30 W			
Minimum required active current	1.5 A	0.75 A			
Duty cycle	100 %	100 %			
Type of protection: see connector version on page 62					

▼ Circuit diagram EZ7, EZ8 (negative control)

HA - Automatic high-pressure related control

The automatic high-pressure related control adjusts the displacement automatically depending on the operating pressure.

The displacement of the A6VM motor with HA control is $V_{\rm g\,min}$ (maximum speed and minimum torque). The control device measures internally the operating pressure at $\bf A$ or $\bf B$ (no control line required) and upon reaching the set beginning of control, the controller swivels the motor from $V_{\rm g\,min}$ to $V_{\rm g\,max}$ with increase of operating pressure. The displacement is modulated between $V_{\rm g\,min}$ and $V_{\rm g\,max}$, thereby depending on load conditions.

HA1, HA2 positive control

- ▶ Beginning of control at $V_{g \, min}$ (minimum torque, maximum speed)
- ▶ End of control at $V_{g \text{ max}}$ (maximum torque, minimum speed)

Notice

- For safety reasons, winch drives are not permissible with beginning of control at $V_{\rm g\ min}$ (standard for HA).
- ▶ The control oil is internally taken from the high pressure side of the motor (**A** or **B**). For reliable control, an operating pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** via an external check valve. For lower pressures, please contact us.
 - Please note that pressures up to 500 bar can occur at port ${\bf G}$.
- ► The beginning of control and the HA.T3 characteristic curve are influenced by case pressure. An increase in case pressure causes an increase in the beginning of control (see page 7) and thus a parallel shift of the characteristic.
- At port X a leakage flow of maximum 0.3 l/min occurs (working pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir. Only with HA.T control.

Response time damping

The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for sizes 60 to 215

HA1,2 with one-sided throttle pin, throttling occurs from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. (see table)

HA3 and HA3T3 with BVI and throttle pin on both sides, 0.30, symmetrical

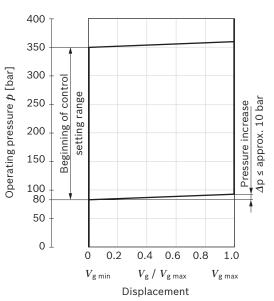
▼ Throttle pin overview

Size	60	85	115	150	170	215
Groove size [mm]	0.45	0.45	0.55	0.55	0.55	0.65

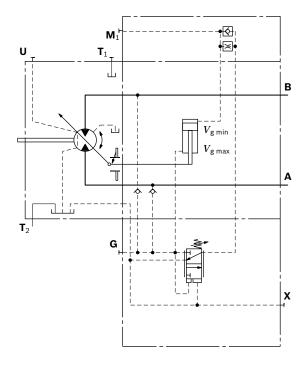
Standard for sizes 60 to 215

HA with BVD or BVE counterbalance valve, with throttle screw (see table)

▼ Throttle screw

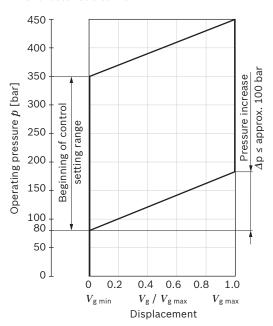

Size	60	85	115	150	170	215
Diameter [mm]	0.80	0.80	0.80	0.80	0.80	0.80

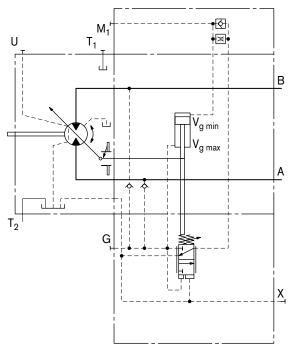
HA1 with minimum pressure increase, positive control


An operating pressure increase of $\Delta p \leq$ approx. 10 bar results in an increase in displacement from $V_{\rm g\ min}$ towards $V_{\rm g\ max}$.

Beginning of control, setting range 80 to 350 bar Please state the desired beginning of control in plain text when ordering, e.g.: beginning of control at 300 bar.

▼ Characteristic curve HA1


▼ Circuit diagram HA1

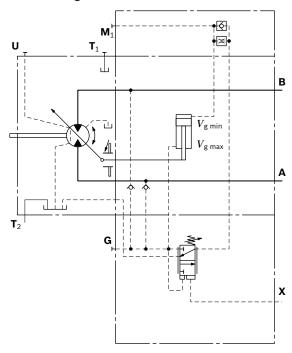

HA2 with pressure increase, positive control

An operating pressure increase of Δp approx. 100 bar results in an increase in displacement from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. Beginning of control, setting range 80 to 350 bar Please state the desired beginning of control in plain text when ordering, e.g.: beginning of control at 200 bar

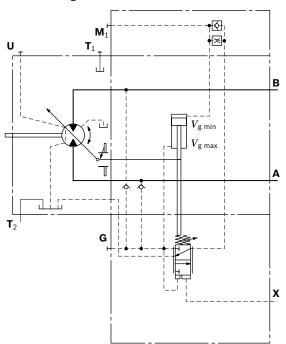
▼ Characteristic curve HA2

▼ Circuit diagram HA2

HA.T3 override, hydraulic, remote controlled, proportional


With the HA.T3 control, the beginning of control can be influenced by applying a pilot pressure to port **X**. For each 1 bar of pilot pressure increase, the beginning of control is reduced by 17 bar.

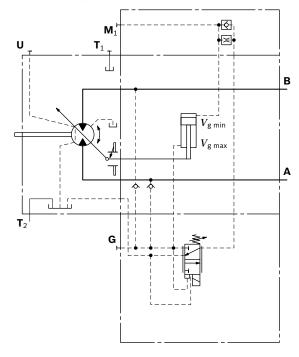
Beginning of control setting	300 bar	300 bar	
Pilot pressure at port X	0 bar	10 bar	
Beginning of control at	300 bar	130 bar	


Notice

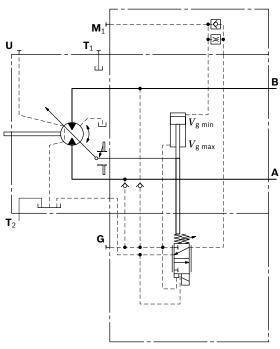
Maximum permissible pilot pressure 100 bar.

▼ Circuit diagram HA1T3

▼ Circuit diagram HA2T3


HA.U1, HA.U2 electric override, two-point

With the HA.U1 or HA.U2 control, the beginning of control can be overridden by an electric signal to a switching solenoid. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position.


The beginning of control can be set between 80 and 300 bar (specify required setting in plain text when ordering).

Technical data, solenoid with ø45	U1	U2			
Voltage	12 V (±20 %)	24 V (±20 %)			
No override	de-energized	de-energized			
Position $V_{g\;max}$	energized	energized			
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω			
Nominal power	30 W	30 W			
Minimum required active current	1.5 A	0.75 A			
Duty cycle	100 %	100 %			
Type of protection: see connector version on page 62					

▼ Circuit diagram HA1U1, HA1U2

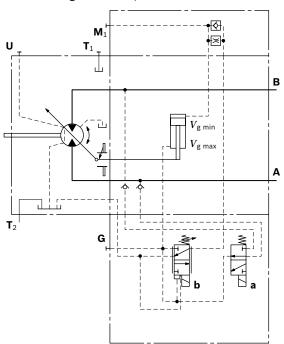
▼ Circuit diagram HA2U1, HA2U2

HA.R1, HA.R2 electric override, electric travel direction valve

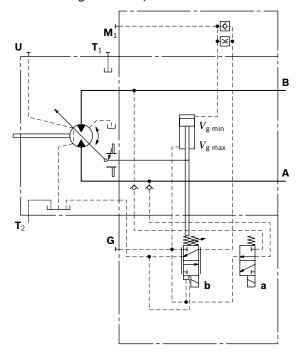
With the HA.R1 or HA.R2 control, the beginning of control can be overridden by an electric signal to switching solenoid **b**. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position.

The travel direction valve ensures that the preselected pressure side of the hydraulic motor (**A** or **B**) is always connected to the HA control, and thus determines the swivel angle, even if the high-pressure side changes (e.g. -travel drive during a downhill operation). This thereby prevents undesired jerky deceleration and/or braking characteristics.

The travel direction valve (see page 25) is either pressure spring or switched by energizing switching solenoid **a**, depending on the direction of rotation (travel direction).


Electric override

Technical data, solenoid b with ø45	R1	R2	
Voltage	12 V (±20 %)	24 V (±20 %)	
No override	de-energized	de-energized	
Position V_{gmax}	energized	energized	
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω	
Nominal power	30 W	30 W	
Minimum required active current	1.5 A	0.75 A	
Duty cycle	100 %	100 %	
Type of protection: see connector version on page 62			


Travel direction valve, electric

Technical data,	solenoid a with ø37	R1	R2	
Voltage		12 V (±20 %)	24 V (±20 %)	
Direction of rotation	Operating pressure in			
ccw	В	energized	energized	
cw	Α	de-energized	de-energized	
Nominal resista	nce (at 20 °C)	5.5 Ω	21.7 Ω	
Nominal power		26.2 W	26.5 W	
Minimum required active current		1.32 A	0.67 A	
Duty cycle		100 %	100 %	
Type of protection: see connector version on page 62				

▼ Circuit diagram HA1R1, HA1R2

▼ Circuit diagram HA2R1, HA2R2

DA - Automatic speed-related control

The variable motor A6VM with automatic speed-related control, type DA, is intended for use in hydrostatic travel drives in combination with the variable pump A4VG with DA control.

A drive-speed-related pilot pressure signal is generated by the A4VG variable pump, and that signal, together with the operating pressure, regulates the swivel angle of the hydraulic motor.

Increasing pump speed, i.e. increasing pilot pressure, causes the motor to swivel to a smaller displacement (lower torque, higher speed), depending on the operating pressure.

If the operating pressure exceeds the pressure setpoint set on the controller, the variable motor swivels to a larger displacement (higher torque, lower speed).

▶ Pressure ratio $p_{St}/p_{HD} = 5/100$

DA closed loop control is only suitable for certain types of drive systems and requires review of the engine and vehicle parameters to ensure that the motor is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Detailed information is available from our sales organization.

Notice

The beginning of control and the DA characteristic curve a influenced by case pressure. An increase in case pressure causes an decrease in the beginning of control (see page 7) and thus a parallel shift of the characteristic.

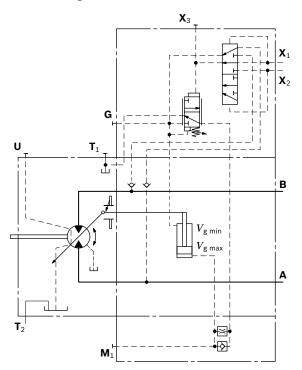
Response time damping

The response time damping impacts the swivel behavior of the motor and consequently the machine response speed.

Standard for sizes 60 to 215

DA with throttle pin on one side, throttling occurs from $V_{\rm g\,min}$ to $V_{\rm g\,max}$ (see table).

▼ Throttle pin overview


Size	60	85	115	150	170	215
Groove size [mm]	0.45	0.45	0.55	0.55	0.55	0.65

DAO hydraulic travel direction valve, negative control

Depending on the direction of rotation (travel direction), the travel direction valve is switched by using pilot pressures connections \mathbf{X}_1 or \mathbf{X}_2 .

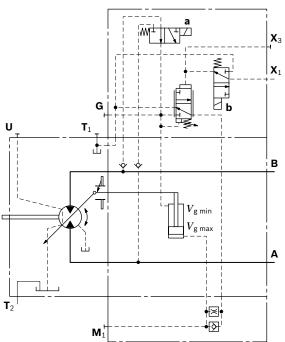
Direction of rotation	Operating pressure in	Pilot pressure in
CW	Α	X_1
ccw	В	X ₂

▼ Circuit diagram DA0

DA1, DA2 electric travel direction valve + electric $V_{\rm g\ max}$ circuit, negative control

The travel direction valve is either pressure spring offset or switched by energizing switching solenoid **a**, depending on the direction of rotation (travel direction).

When the switching solenoid ${\bf b}$ is energized, the DA control is overridden and the motor swivels to maximum displacement (high torque, lower speed) (electric $V_{\rm g\ max}$ -circuit).


Travel direction valve, electric

Technical data, solenoid a with ø37		DA1	DA2	
Voltage		12 V (±20 %)	24 V (±20 %)	
Direction	Operating			
of rotation	pressure in			
ccw	В	de-energized	de-energized	
cw	Α	energized	energized	
Nominal resista	nce (at 20 °C)	5.5 Ω	21.7 Ω	
Nominal power		26.2 W	26.5 W	
Minimum required active current		1.32 A	0.67 A	
Duty cycle		100 %	100 %	
Type of protection: see connector version on page 62				

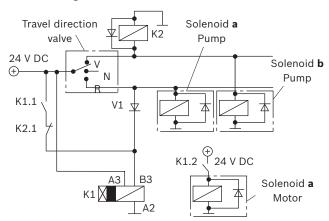
Electric override

Technical data, solenoid b with ø37	R1	R2	
Voltage	12 V (±20 %)	24 V (±20 %)	
No override	de-energized	de-energized	
Position V_{gmax}	energized	energized	
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω	
Nominal power	26.2 W	26.5 W	
Minimum required active current	1.32 A	0.67 A	
Duty cycle	100 %	100 %	
Type of protection: see connector version on page 62			

▼ Circuit diagram DA1, DA2

Electric travel direction valve (for DA, HA.R)

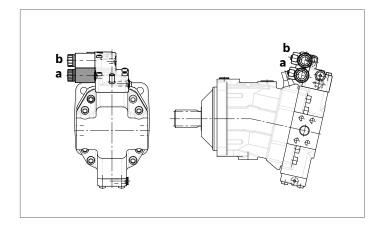
Application in travel drives in closed circuits. The travel direction valve of the motor is actuated by an electric signal that also switches the swivel direction of the travel drive pump (e.g. A4VG with DA control valve).

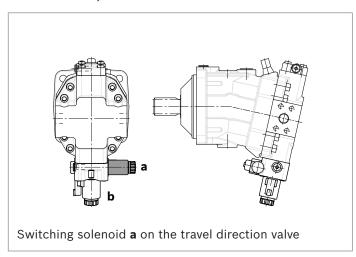

If the pump in the closed circuit is switched to the neutral position or into reverse, the vehicle may experience jerky deceleration or braking, depending on the vehicle's mass and current travel speed.

When the travel direction valve of the pump (e.g. 4/3-directional valve of the DA-control) is switched to

- the neutral position, the electric circuitry causes the previous signal on the travel direction valve on the motor to be retained.
- ► Reversing, the travel direction valve causes the travel direction valve of the motor to switch to the other travel direction following a time delay (approx. 0.8 s) with respect to the pump.

As a result, jerky deceleration or braking is prevented in both cases.

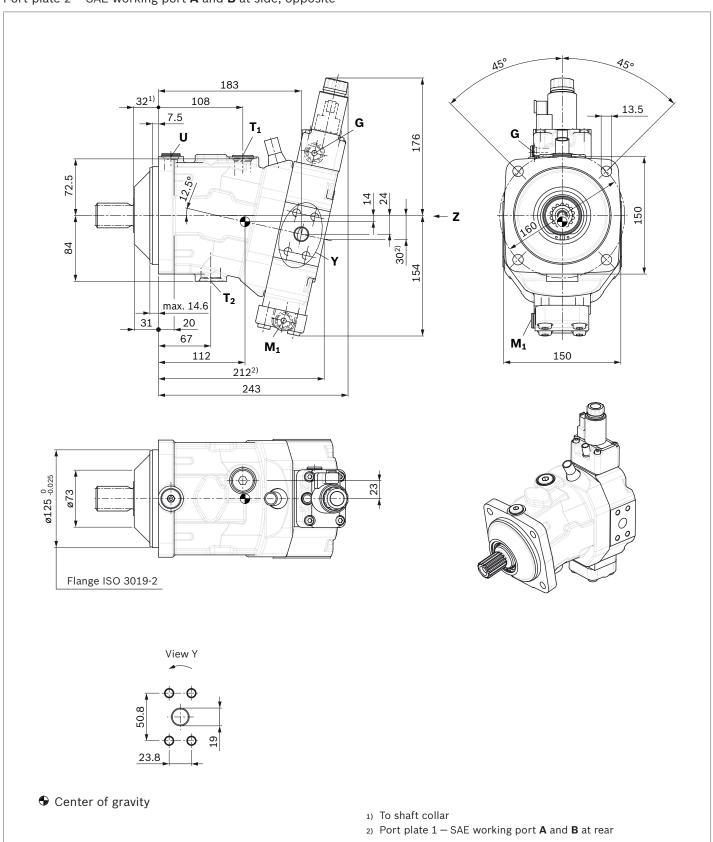

▼ Circuit diagram - electric travel direction valve


Notice

The shown diodes and relays are not included in the scope of delivery of the motor.

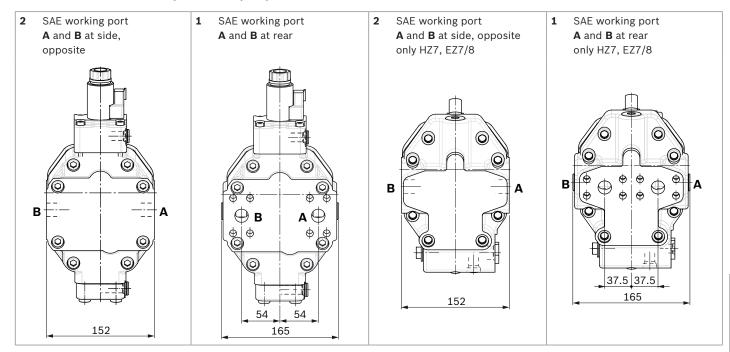
▼ Control DA1, DA

▼ Control HA1R., HA2R.

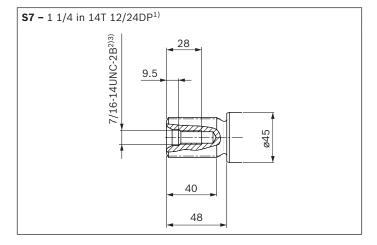


26

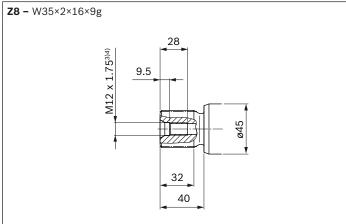
Dimensions size 60


EP5, EP6 - Proportional electric control, negative control

Port plate 2-SAE working port ${\bf A}$ and ${\bf B}$ at side, opposite



Bosch Rexroth AG, RE 91610/06.2016


▼ Location of the service line ports on the port plates (view Z)

▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

¹⁾ Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

³⁾ For notes on tightening torques, see instruction manual

⁴⁾ Center bore according to DIN 332 (thread according to DIN 13)

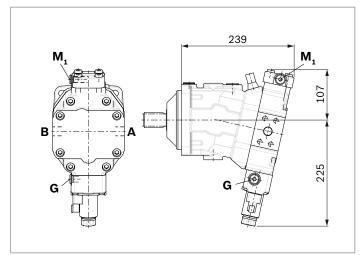
	Standard	Size ¹⁾	$p_{\sf max}$ [bar] $^{2)}$	Status ⁶⁾
Working port	SAE J518 ³⁾	3/4 in	500	0
Fastening thread A/B	DIN 13	M10 × 1.5; 17 deep		
Drain port	ISO 6149 ⁵⁾	M22 × 1.5; 15.5 deep	3	X ⁴⁾
Drain port	ISO 6149 ⁵⁾	M27 × 2; 19 deep	3	O ⁴⁾
Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	Х
Bearing flushing	ISO 6149 ⁵⁾	M18 × 1.5; 14.5 deep	3	Х
Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	Х
Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	Х
Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	Х
	Fastening thread A/B Drain port Drain port Synchronous control Bearing flushing Pilot signal (HP, HZ, HA1T/HA2T) Pilot signal (HA1, HA2) Pilot signal (DA0) Pilot signal (DA1, DA2) Pilot signal (DA1, DA2)	Working port SAE J518³) Fastening thread A/B DIN 13 Drain port ISO 6149⁵) Drain port ISO 6149⁵) Synchronous control ISO 6149⁵) Bearing flushing ISO 6149⁵) Pilot signal (HP, HZ, HA1T/HA2T) ISO 6149⁵) Pilot signal (HA1, HA2) ISO 6149⁵) Pilot signal (DA0) ISO 8434-1 Pilot signal (DA1, DA2) ISO 6149⁵) Pilot signal (DA1, DA2) ISO 6149⁵)	Working port SAE J518³) 3/4 in Fastening thread A/B DIN 13 M10 × 1.5; 17 deep Drain port ISO 6149⁵) M22 × 1.5; 15.5 deep Drain port ISO 6149⁵) M27 × 2; 19 deep Synchronous control ISO 6149⁵) M14 × 1.5; 11.5 deep Bearing flushing ISO 6149⁵) M18 × 1.5; 14.5 deep Pilot signal (HP, HZ, HA1T/HA2T) ISO 6149⁵) M14 × 1.5; 11.5 deep Pilot signal (HA1, HA2) ISO 6149⁵) M14 × 1.5; 11.5 deep Pilot signal (DA0) ISO 8434-1 SDSC-L8×M12-F Pilot signal (DA1, DA2) ISO 6149⁵) M14 × 1.5; 11.5 deep Pilot signal (DA1, DA2) ISO 6149⁵) M14 × 1.5; 11.5 deep	Working port SAE J518³) 3/4 in 500 Fastening thread A/B DIN 13 M10 × 1.5; 17 deep Drain port ISO 6149⁵) M22 × 1.5; 15.5 deep 3 Drain port ISO 6149⁵) M27 × 2; 19 deep 3 Synchronous control ISO 6149⁵) M14 × 1.5; 11.5 deep 500 Bearing flushing ISO 6149⁵) M18 × 1.5; 14.5 deep 3 Pilot signal (HP, HZ, HA1T/HA2T) ISO 6149⁵) M14 × 1.5; 11.5 deep 100 Pilot signal (HA1, HA2) ISO 6149⁵) M14 × 1.5; 11.5 deep 3 Pilot signal (DA0) ISO 8434-1 SDSC-L8×M12-F 40 Pilot signal (DA1, DA2) ISO 6149⁵) M14 × 1.5; 11.5 deep 40 Pilot signal (DA1, DA2) ISO 6149⁵) M14 × 1.5; 11.5 deep 40

Bosch Rexroth AG, RE 91610/06.2016

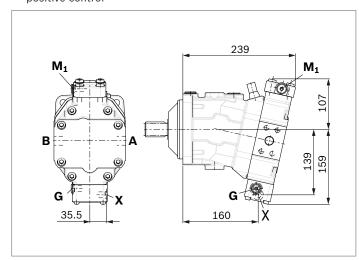
¹⁾ For notes on tightening torques, see instruction manual

²⁾ Depending on the application, momentary pressure peaks can occur.

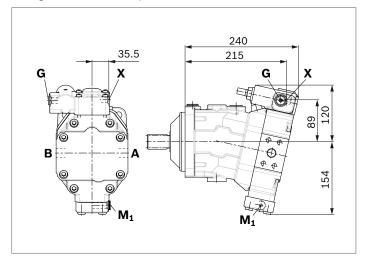
³⁾ Keep this in mind when selecting measuring devices and fittings.

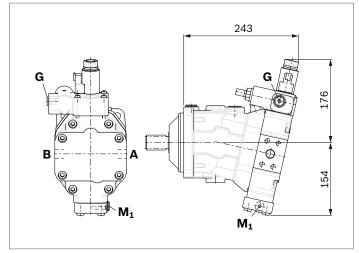

 $_{\rm 4)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

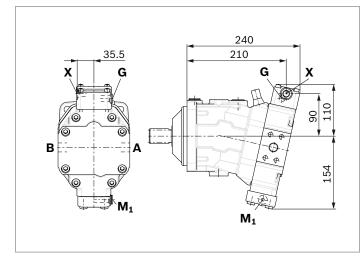
⁵⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 72).

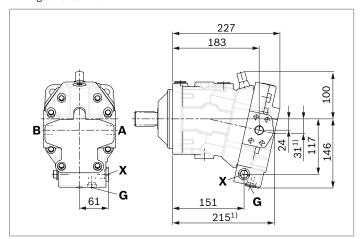

⁶⁾ The countersink can be deeper than as specified in the standard.

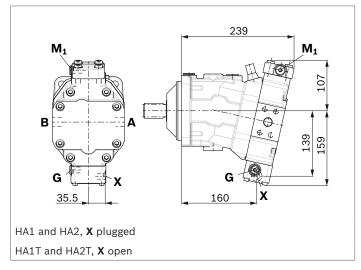
⁷⁾ O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

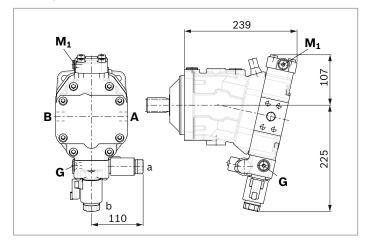

▼ EP1, EP2 - Electric proportional control, positive control


▼ HP1, HP2 - Hydraulic proportional control, positive control

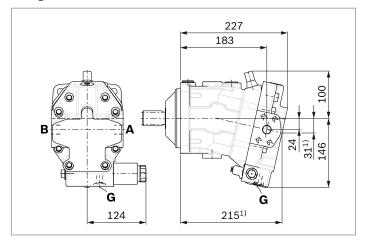

▼ HP5D1, HP6D1 – Hydraulic proportional control, negative control, with pressure control, fixed


▼ **EP5D1, EP6D1** – Electric proportional control, negative control, with pressure control, fixed

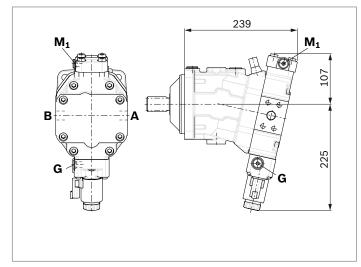

▼ **HP5, HP6** – Hydraulic proportional control, negative control


- 30
- ▼ **HZ7** Hydraulic two-point control, negative control

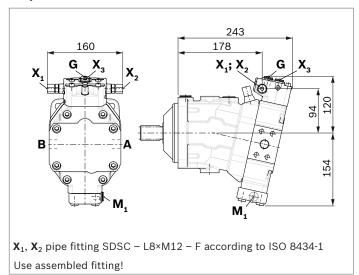
▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional

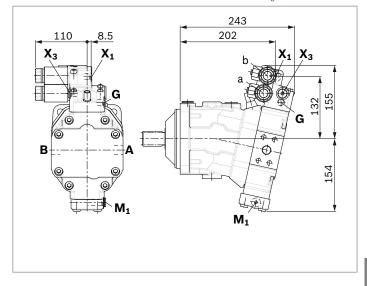


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric



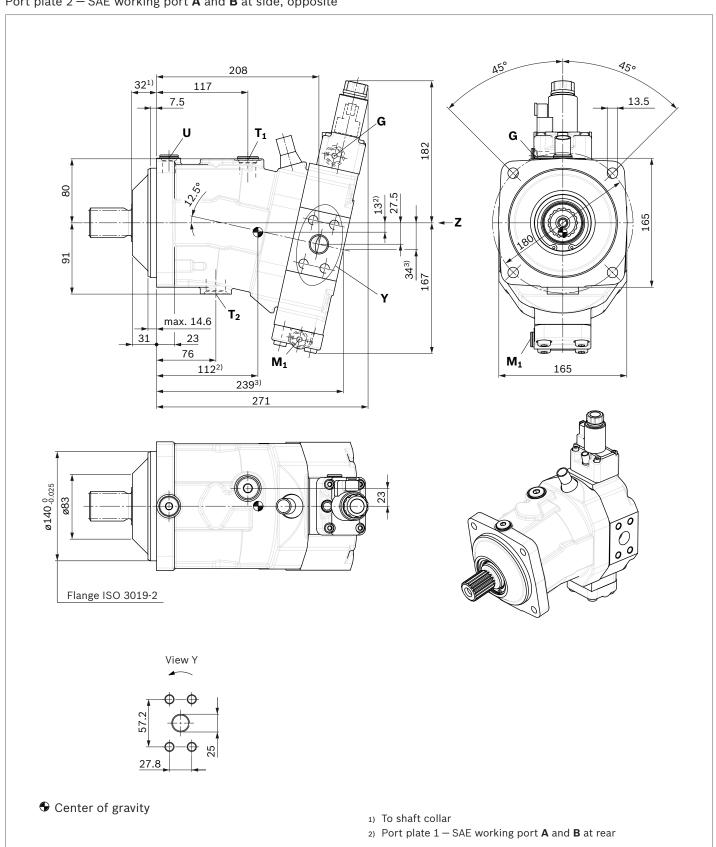
- 1) Port plate 1 SAE working port **A** and **B** at rear
- **Bosch Rexroth AG**, RE 91610/06.2016


▼ EZ7, EZ8 - Electric two-point control, negative control


▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point

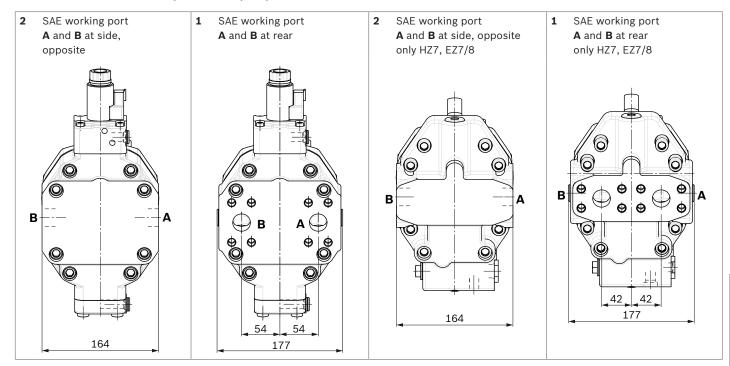
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve

 $label{eq:decomposition}
label{eq:decomposition}
label{eq:decomposi$

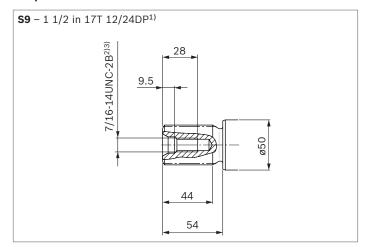


32

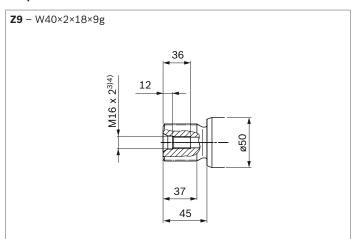
Dimensions size 85


EP5, EP6 - Proportional electric control, negative control

Port plate 2-SAE working port ${\bf A}$ and ${\bf B}$ at side, opposite



Bosch Rexroth AG, RE 91610/06.2016


▼ Location of the service line ports on the port plates (view Z)

▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

¹⁾ Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

³⁾ For notes on tightening torques, see instruction manual

⁴⁾ Center bore according to DIN 332 (thread according to DIN 13)

A6VM series 71 | Axial piston variable motor Dimensions size 85

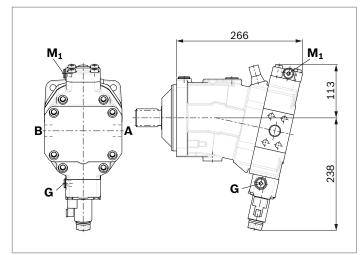
34

Ports		Standard	Size ¹⁾	p_{max} [bar] $^{2)}$	Status ⁶⁾
A, B	Working port	SAE J518 ³⁾	1 in	500	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	ISO 6149 ⁵⁾	M22 × 1.5; 15.5 deep	3	X ⁴⁾
T ₂	Drain port	ISO 6149 ⁵⁾	M27 × 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	X
U	Bearing flushing	ISO 6149 ⁵⁾	M18 × 1.5; 14.5 deep	3	X
Х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
X	Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	X
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	Х
M ₁	Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	Х

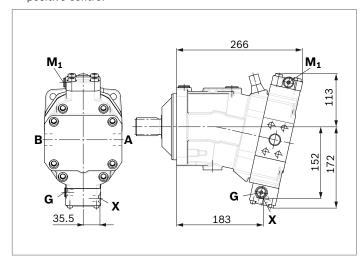
¹⁾ For notes on tightening torques, see instruction manual

 $_{\rm 2)}$ Depending on the application, momentary pressure peaks can occur.

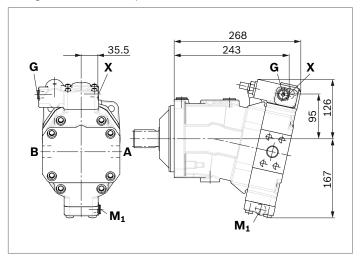
³⁾ Keep this in mind when selecting measuring devices and fittings.

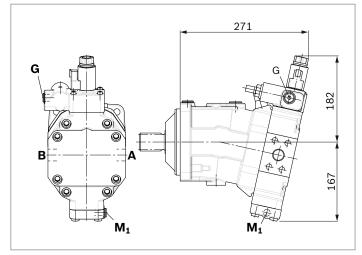

 $_{\rm 4)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

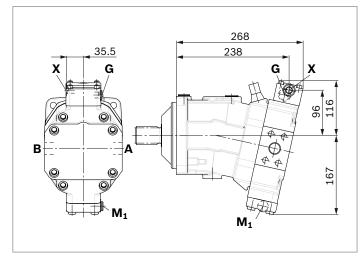
⁵⁾ Depending on installation position, **T**₁ or **T**₂ must be connected (see also installation instructions on page 72).

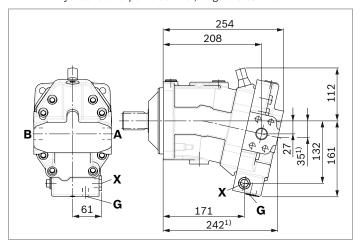

⁶⁾ The countersink can be deeper than as specified in the standard.

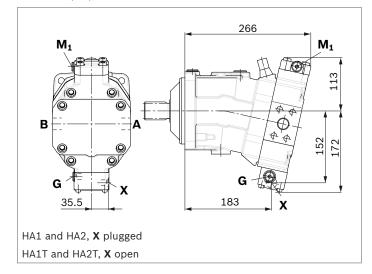
⁷⁾ O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

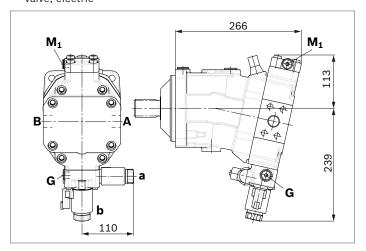

▼ EP1, EP2 - Electric proportional control, positive control


▼ HP1, HP2 - Hydraulic proportional control, positive control

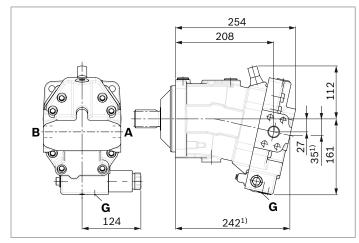

▼ HP5D1, HP6D1 – Hydraulic proportional control, negative control, with pressure control, fixed

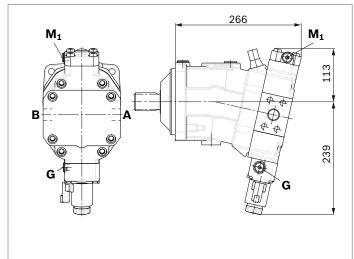

▼ **EP5D1, EP6D1** – Electric proportional control, negative control, with pressure control, fixed


▼ **HP5, HP6** – Hydraulic proportional control, negative control

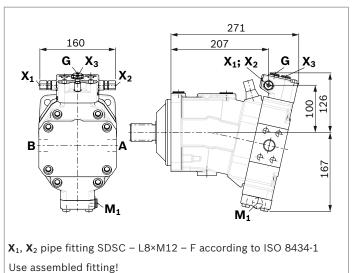

▼ HZ7 - Hydraulic two-point control, negative control

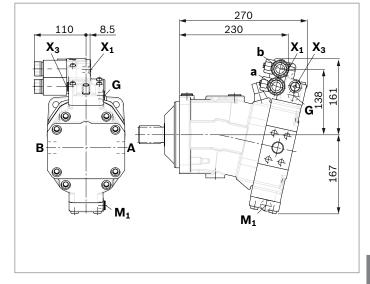
▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric

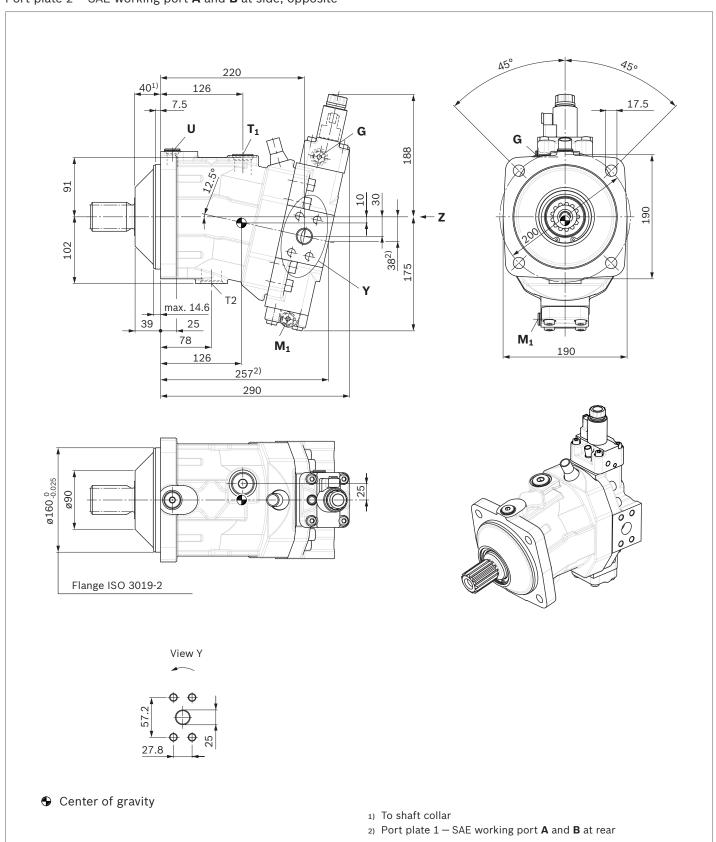

1) Port plate 1 – SAE working port **A** and **B** at rear

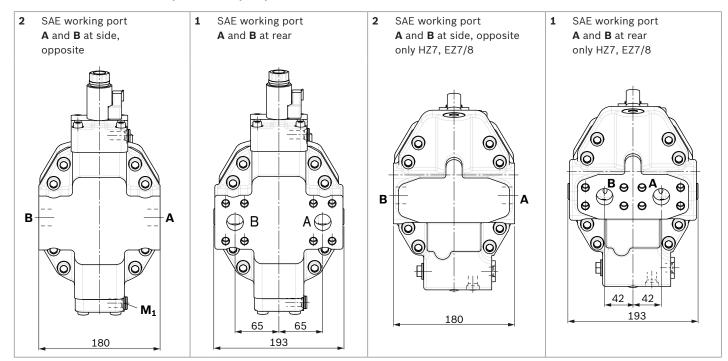
Bosch Rexroth AG, RE 91610/06.2016


▼ EZ7, EZ8 - Electric two-point control, negative control

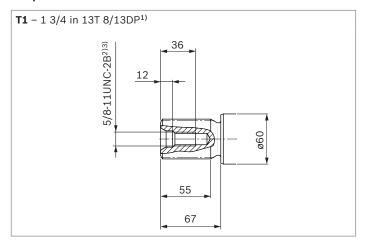

▼ HA1U1, HA2U2 - Automatic high-pressure-related control, positive control, with override, electric, two-point

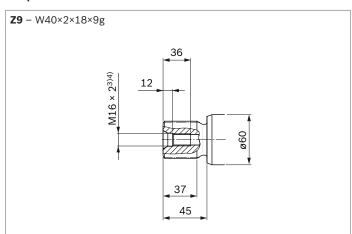
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve


ightharpoonup DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric $V_{\rm g\ max}$ circuit


Dimensions size 115

EP5, EP6 - Proportional electric control, negative control


Port plate 2-SAE working port ${\bf A}$ and ${\bf B}$ at side, opposite


▼ Location of the service line ports on the port plates (view Z)

▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

¹⁾ Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

³⁾ For notes on tightening torques, see instruction manual

⁴⁾ Center bore according to DIN 332 (thread according to DIN 13)

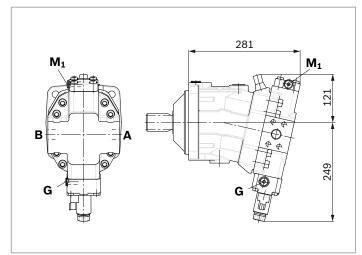
40 **A6VM series 71** | Axial piston variable motor Dimensions size 115

Ports		Standard	Size ¹⁾	$p_{\sf max}$ [bar] $^{2)}$	Status ⁶⁾
A, B	Working port	SAE J518 ³⁾	1 in	500	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	ISO 6149 ⁵⁾	M27 × 2; 19 deep	3	X ⁴⁾
T ₂	Drain port	ISO 6149 ⁵⁾	M33 × 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	X
U	Bearing flushing	ISO 6149 ⁵⁾	M18 × 1.5; 14.5 deep	3	X
Х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
Х	Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	X
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	Х
M_1	Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	Χ

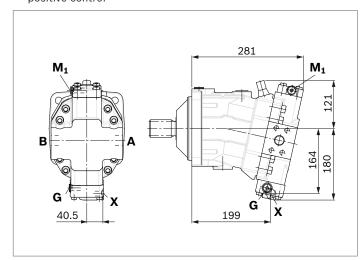
¹⁾ For notes on tightening torques, see instruction manual

²⁾ Depending on the application, momentary pressure peaks can occur.

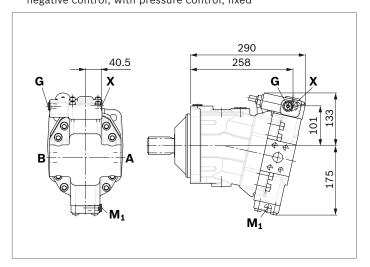
³⁾ Keep this in mind when selecting measuring devices and fittings.

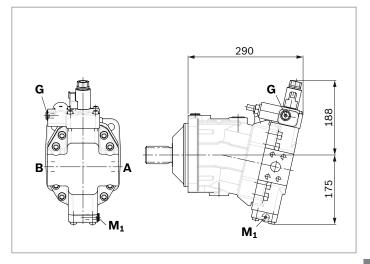

 $_{\rm 4)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

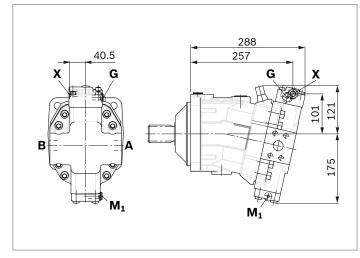
⁵⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 72).

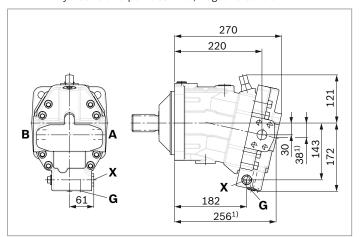

⁶⁾ The countersink can be deeper than as specified in the standard.

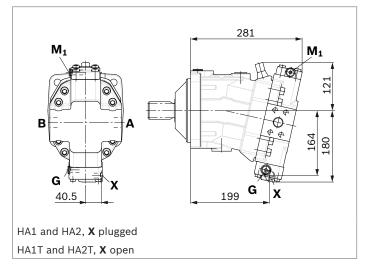
⁷⁾ O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

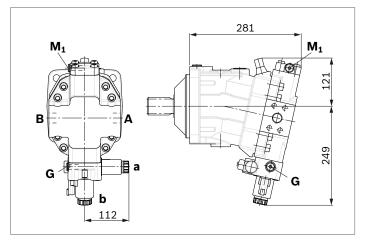

▼ EP1, EP2 - Electric proportional control, positive control

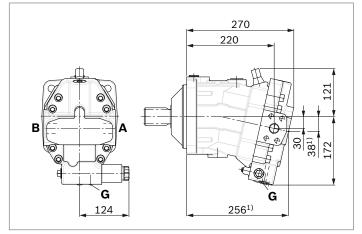

▼ HP1, HP2 - Hydraulic proportional control, positive control

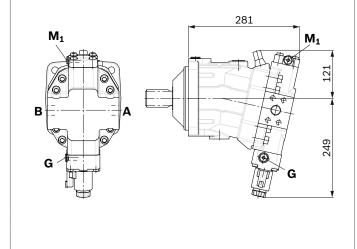

▼ **HP5D1, HP6D1** – Hydraulic proportional control, negative control, with pressure control, fixed


▼ **EP5D1, EP6D1** – Electric proportional control, negative control, with pressure control, fixed

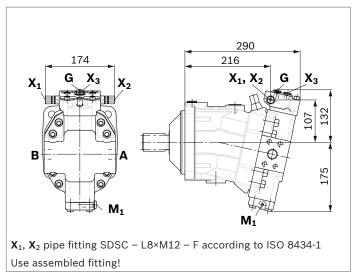

▼ **HP5, HP6** – Hydraulic proportional control, negative control


▼ HZ7 - Hydraulic two-point control, negative control

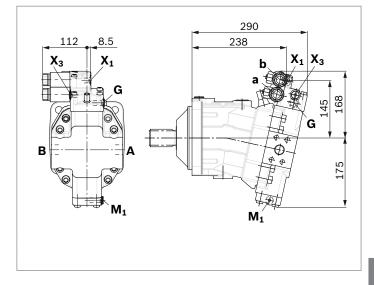

▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric

▼ EZ7, EZ8 - Electric two-point control, negative control

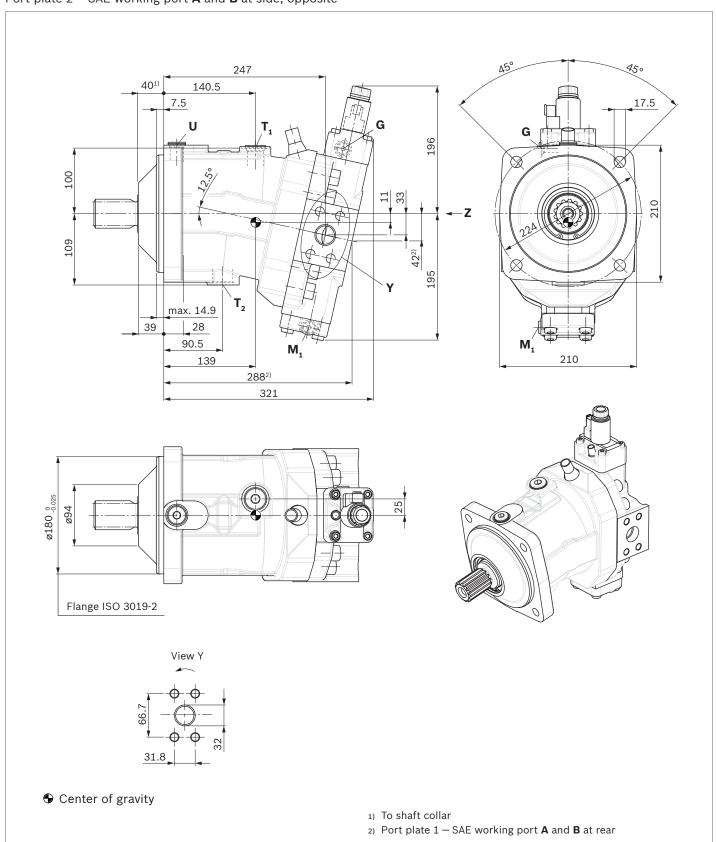


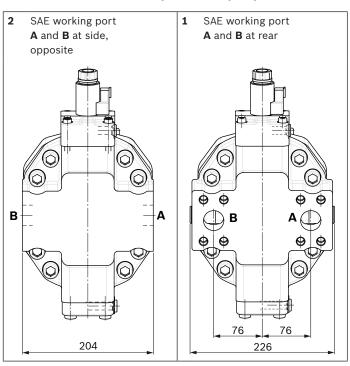
▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point



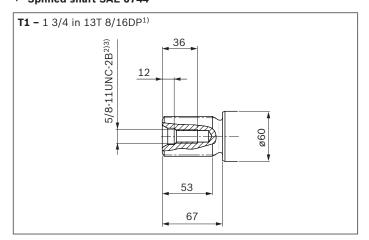
1) Port plate 1 – SAE working port ${\boldsymbol A}$ and ${\boldsymbol B}$ at rear

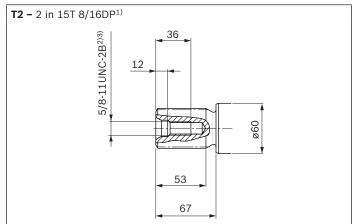
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve

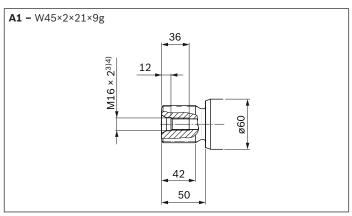

lacktriangledown DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric $V_{\rm g\ max}$ circuit


Dimensions size 150

EP5, EP6 - Proportional electric control, negative control


Port plate 2-SAE working port ${\bf A}$ and ${\bf B}$ at side, opposite


▼ Location of the service line ports on the port plates (view Z)


▼ Splined shaft SAE J744

▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

- 1) Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) For notes on tightening torques, see instruction manual
- 4) Center bore according to DIN 332 (thread according to DIN 13)

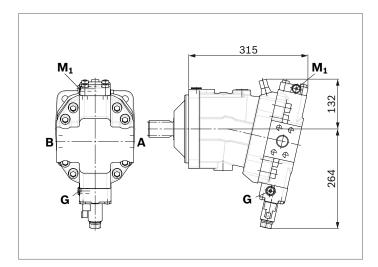
46 **A6VM series 71** | Axial piston variable motor Dimensions size 150

Ports		Standard	Size ¹⁾	$p_{\sf max}$ [bar] $^{2)}$	Status ⁶⁾
A, B	Working port	SAE J518 ³⁾	1 1/4 in	500	0
	Fastening thread A/B	DIN 13	M14 × 2; 19 deep		
T ₁	Drain port	ISO 6149 ⁵⁾	M27 × 2; 19 deep	3	X ⁴⁾
T ₂	Drain port	ISO 6149 ⁵⁾	M33 × 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	X
U	Bearing flushing	ISO 6149 ⁵⁾	M22 × 1.5; 15.5 deep	3	X
Х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
Х	Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	X
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	X
M_1	Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	Χ

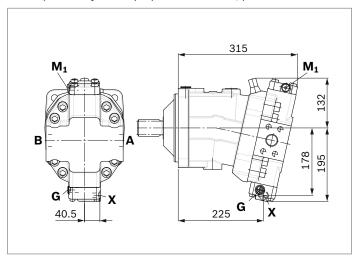
 $[\]ensuremath{\mathtt{1}}\xspace$ For notes on tightening torques, see instruction manual

²⁾ Depending on the application, momentary pressure peaks can occur.

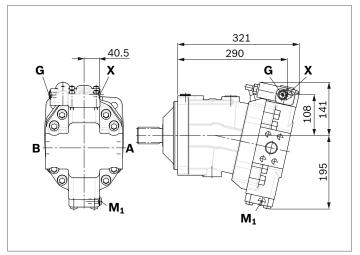
³⁾ Keep this in mind when selecting measuring devices and fittings.

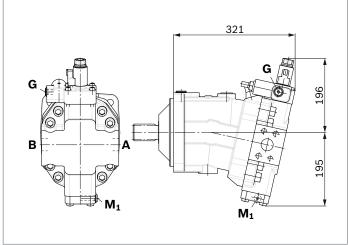

 $_{\rm 4)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

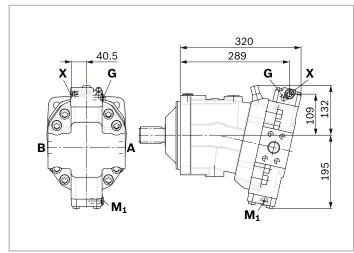
⁵⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 72).

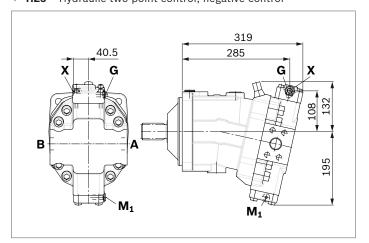

⁶⁾ The countersink can be deeper than as specified in the standard.

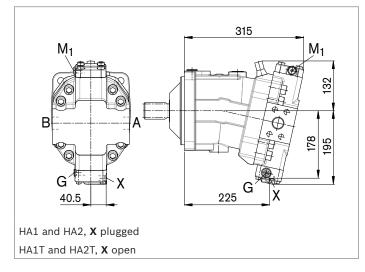
⁷⁾ O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

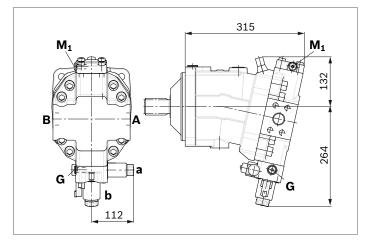

▼ EP1, EP2 - Electric proportional control, positive control

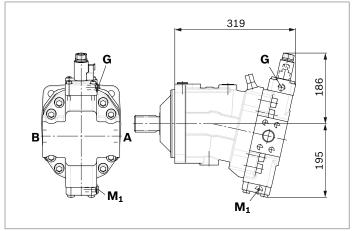

▼ **HP1, HP2** – Hydraulic proportional control, positive control


▼ **HP5D1, HP6D1** – Hydraulic proportional control, negative control, with pressure control, fixed

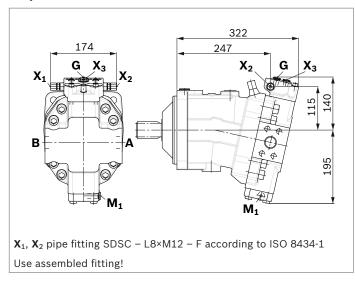

▼ EP5D1, EP6D1 - Electric proportional control, negative control, with pressure control, fixed

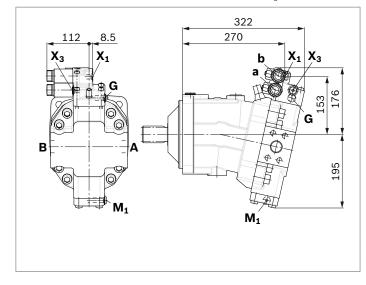

▼ HP5, HP6 - Hydraulic proportional control, negative control


▼ HZ5 - Hydraulic two-point control, negative control

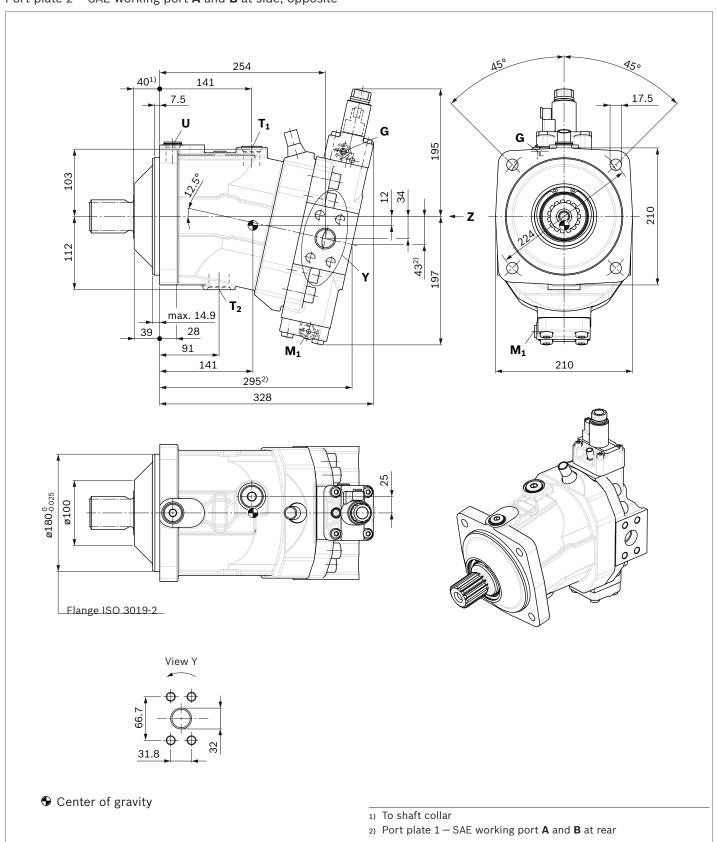

▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional

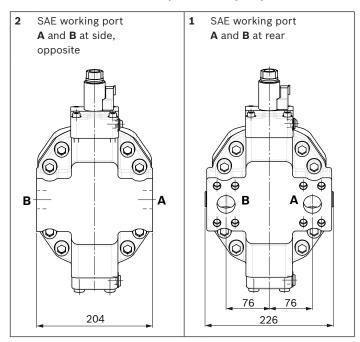
▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric


▼ EZ5, EZ6 - Electric two-point control, negative control

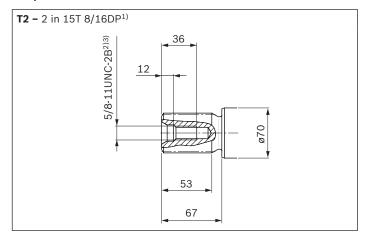

▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point

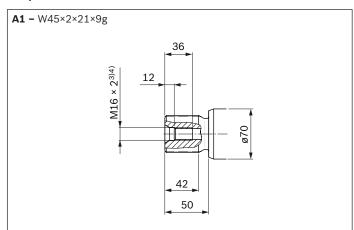
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve


lacktriangledown DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric $V_{\mathrm{g \ max}}$ circuit


Dimensions size 170

EP5, EP6 - Proportional electric control, negative control


Port plate 2-SAE working port ${\bf A}$ and ${\bf B}$ at side, opposite


▼ Location of the service line ports on the port plates (view Z)

▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

¹⁾ Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

³⁾ For notes on tightening torques, see instruction manual

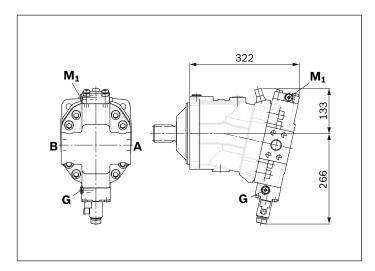
⁴⁾ Center bore according to DIN 332 (thread according to DIN 13)

Ports		Standard	Size ¹⁾	$p_{\sf max}$ [bar] $^{2)}$	Status ⁶⁾
A, B	Working port	SAE J518 ³⁾	1 1/4 in	500	0
	Fastening thread A/B	DIN 13	M14 × 2; 19 deep		
T ₁	Drain port	ISO 6149 ⁵⁾	M27 × 2; 19 deep	3	X ⁴⁾
T ₂	Drain port	ISO 6149 ⁵⁾	M33 × 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	Х
U	Bearing flushing	ISO 6149 ⁵⁾	M22 × 1.5; 15.5 deep	3	X
Х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
Х	Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	X
M_1	Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	X

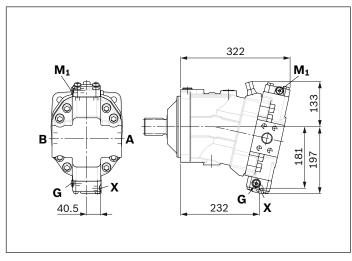
 $[\]ensuremath{\mathtt{1}}\xspace$ For notes on tightening torques, see instruction manual

²⁾ Depending on the application, momentary pressure peaks can occur.

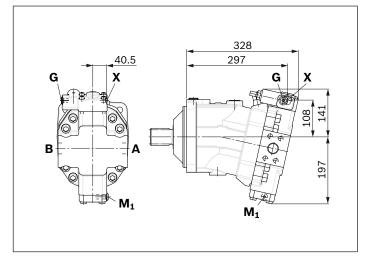
³⁾ Keep this in mind when selecting measuring devices and fittings.

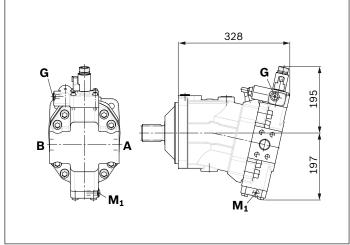

 $_{\rm 4)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

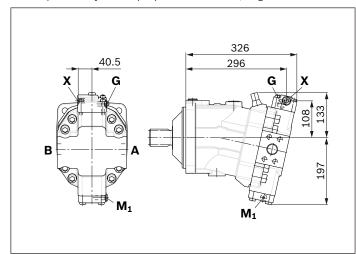
⁵⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 72).

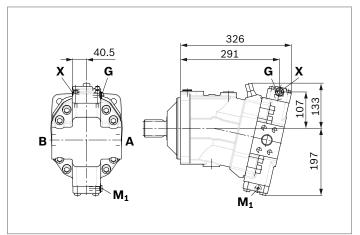

⁶⁾ The countersink can be deeper than as specified in the standard.

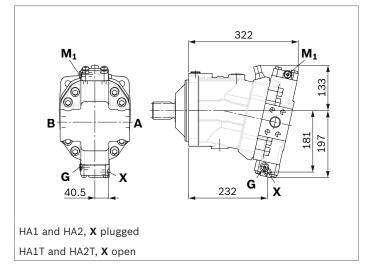
⁷⁾ O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

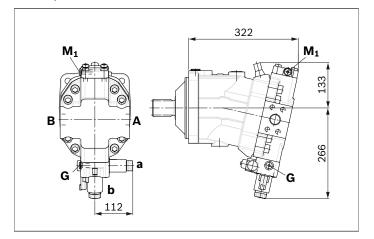

▼ EP1, EP2 - Electric proportional control, positive control

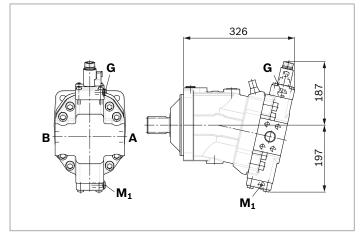

▼ **HP1, HP2** – Hydraulic proportional control, positive control

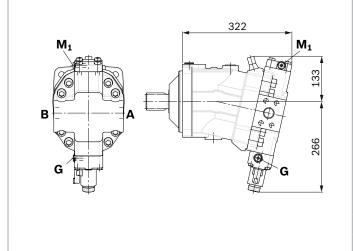

▼ **HP5D1, HP6D1** – Hydraulic proportional control, negative control, with pressure control, fixed

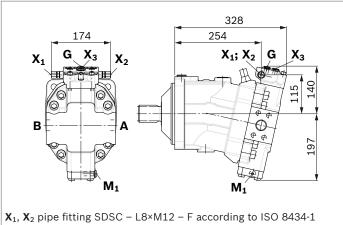

▼ EP5D1, EP6D1 - Electric proportional control, negative control, with pressure control, fixed


▼ HP5, HP6 - Hydraulic proportional control, negative control

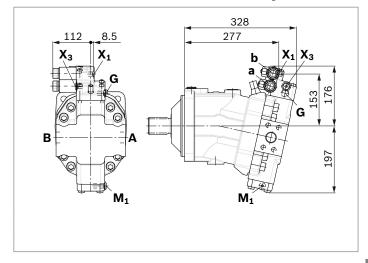

▼ HZ5 - Hydraulic two-point control, negative control


▼ HA1, HA2 / HA1T3, HA2T3 - Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional


▼ HA1R1, HA2R2 - Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric

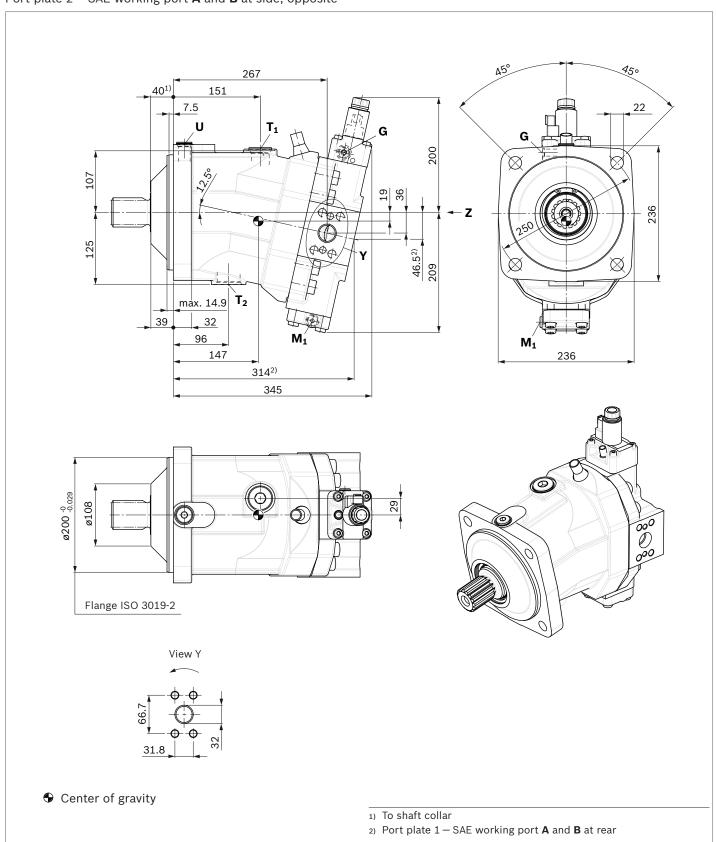

▼ EZ5, EZ6 - Electric two-point control, negative control

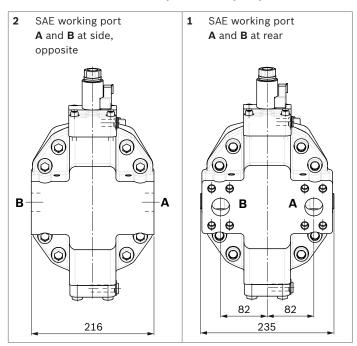
▼ HA1U1, HA2U2 - Automatic high-pressure-related control, positive control, with override, electric, two-point



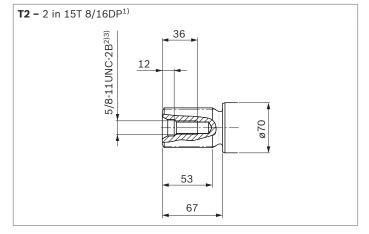
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve

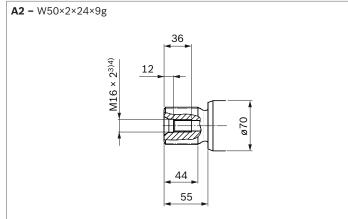
 \mathbf{X}_1 , \mathbf{X}_2 pipe fitting SDSC – L8×M12 – F according to ISO 8434-1 Use assembled fitting!


lacktriangledown DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric $V_{\rm g\ max}$ circuit


Dimensions size 215

EP5, EP6 - Proportional electric control, negative control


Port plate 2-SAE working port \boldsymbol{A} and \boldsymbol{B} at side, opposite


▼ Location of the service line ports on the port plates (view Z)

▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

¹⁾ Involute spline acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

³⁾ For notes on tightening torques, see instruction manual

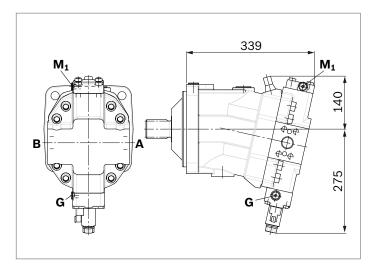
⁴⁾ Center bore according to DIN 332 (thread according to DIN 13)

Ports		Standard	Size ¹⁾	$p_{\sf max}$ [bar] $^{2)}$	Status ⁶⁾
A, B	Working port	SAE J518 ³⁾	1 1/4 in	500	0
	Fastening thread A/B	DIN 13	M14 × 2; 19 deep		
T ₁	Drai port	ISO 6149 ⁵⁾	M33 × 2; 19 deep	3	X ⁴⁾
T ₂	Drain port	ISO 6149 ⁵⁾	M42 × 2; 19.5 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	Х
U	Bearing flushing	ISO 6149 ⁵⁾	M22 × 1.5; 15.5 deep	3	X
х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	100	0
Х	Pilot signal (HA1, HA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	3	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	40	0
X ₁	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	0
X ₃	Pilot signal (DA1, DA2)	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	40	X
M_1	Stroking chamber measurement	ISO 6149 ⁵⁾	M14 × 1.5; 11.5 deep	500	X

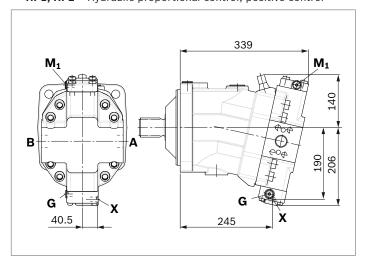
 $[\]ensuremath{\mathtt{1}}\xspace$ For notes on tightening torques, see instruction manual

²⁾ Depending on the application, momentary pressure peaks can occur.

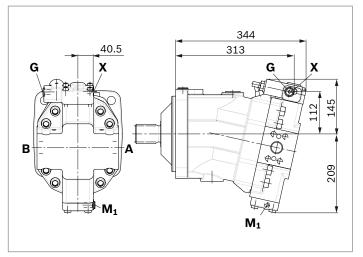
³⁾ Keep this in mind when selecting measuring devices and fittings.

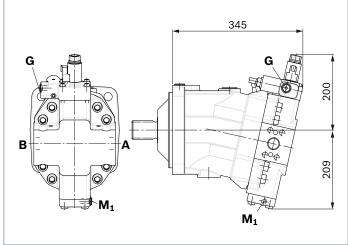

 $_{\rm 4)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

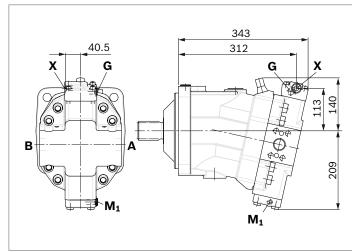
⁵⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 72).


⁶⁾ The countersink can be deeper than as specified in the standard.

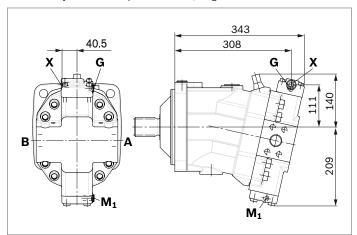
⁷⁾ O = Must be connected (plugged on delivery)X = Plugged (in normal operation)


▼ EP1, EP2 - Electric proportional control, positive control

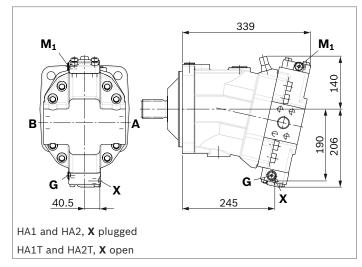

▼ **HP1, HP2** – Hydraulic proportional control, positive control


▼ **HP5D1, HP6D1** – Hydraulic proportional control, negative control, with pressure control, fixed

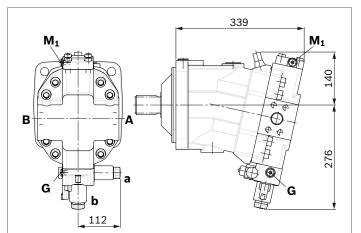
▼ EP5D1, EP6D1 - Electric proportional control, negative control, with pressure control, fixed

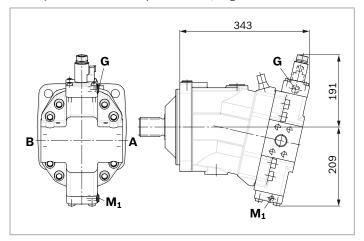


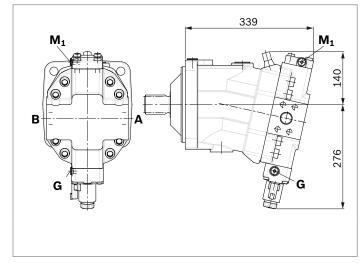
▼ HP5, HP6 - Hydraulic proportional control, negative control

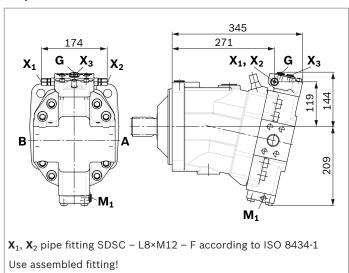


60


▼ HZ5 - Hydraulic two-point control, negative control


▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric


▼ EZ5, EZ6 - Electric two-point control, negative control

▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point

▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve

ightharpoonup DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric $V_{\rm g\ max}$ circuit

Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded connector, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

- ► IP67 (DIN/EN 60529) and
- ► IP69K (DIN 40050-9)

▼ Circuit symbol

▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation
1 housing	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902601804).

Notice

- ► If necessary, you can change the position of the connector by turning the solenoid.
- ▶ The procedure is defined in the instruction manual.

Neutral position switch

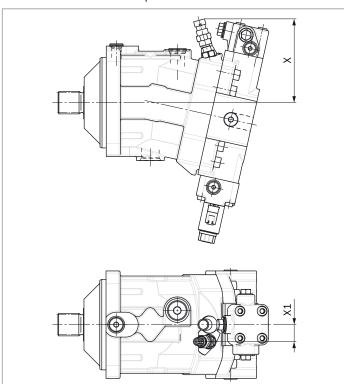
The neutral position switch NLS electronically detects the neutral position of the A6VM, thereby ensuring the torque freedom of the motor. The use of the NLS in a transmission control provides a faster switching cycle in the drive. In addition, the switch reliability is improved and thereby the service life of the drive is increased. Type code, technical data, dimensions and parameters for the connector, plus safety instructions about the sensor can be found in the relevant data sheet 95152 – NLS.

Technical data

Туре		NLS
Recommended opera	ting voltage	5 V
Maximum voltage	not actuated	32 V
	actuated	11.5 V
Minimum permissible	current	0 mA
Maximum permissible	current	10 mA
Maximum switching o	Maximum switching cycle number	
Contact type	Contact type	
Type of protection (w plugged)	ith mating connector	IP67/IP69K
Temperature range of sensor (medium and ambient temperature) ¹⁾		-40 °C 125 °C
Temperature range of thread seal ring FKM ¹⁾		-15 °C 125 °C
Pressure resistance	nominal	3 bar
maximum (momentary peaks)		10 bar ²⁾

Notice

The minimum swivel angle is dependent on the $V_{
m g\ min}$ -stop


▼ Mating Connector

Consisting of	Material number
1 housing	282080
1 socket contact	282403-1

The mating connector is not included in the scope of delivery. This mating connector can be ordered from AMP.

▼ Dimensions

Version "N" with neutral position switch mounted

Size	Adjustable angle		X [mm]		X1 [mm]
	min.	max.	at	at	
			min angle	max angle	
85	0°	2°	144.7	141.4	28.0
115	0°	4°	148.1	140.4	30.0
150	0°	1°	153.1	150.9	30.0
170	0°	0°		153.1	30.0
215	0°	0°		159.1	30.0

¹⁾ Observe the permissible temperature range of the axial piston motor.

²⁾ Observe the permissible viscosity range of the axial piston motor. At oil viscosities >1800 mm²/s, the switch may be unintentionally actuated by case pressure peaks of > 10 bar.

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In a closed circuit, it is used for flushing the case and safeguarding the minimum boost pressure.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the leakage. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

The valve is mounted onto the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

(observe when adjusting the primary valve)

► Sizes 60 to 215, fixed setting 16 bar

Switching pressure of flushing spool Δp

- ▶ Sizes 60 to 115 (small flushing valve) 8±1 bar
- ➤ Sizes 115 to 215 (medium and large flushing valve) 17.5±1.5 bar

Flushing flow q_{v}

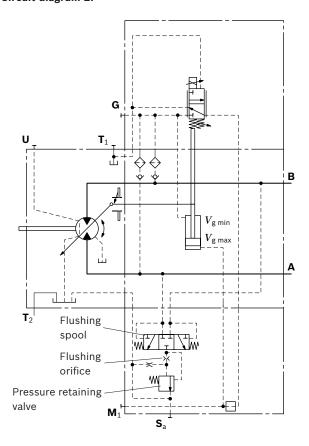
Orifices can be used to adjust the flushing flows as required. The following information is based on:

$$\Delta p_{\rm ND}$$
 = $p_{\rm ND}$ - $p_{\rm G}$ = 25 bar and v = 10 mm²/s

 $(p_{ND} = low pressure, p_G = case pressure)$

Small flushing valve for sizes 60 to 115

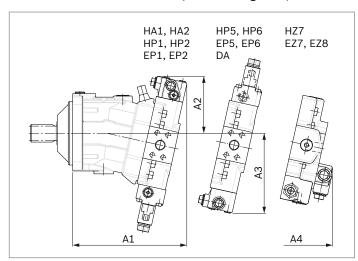
Material number of orifice	ø [mm]	$q_{\scriptscriptstyle m V}$ [l/min]	Code
R909651766	1.2	3.5	А
R909419695	1.4	5	В
R909419696	1.8	8	С
R909419697	2.0	10	D
R909444361	2.4	14	F


Medium flushing valve for size 115

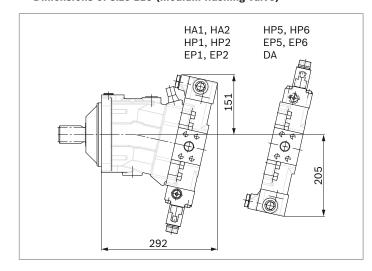
Material number of orifice	ø [mm]	$q_{\scriptscriptstyle extsf{V}}$ [l/min]	Code
R909431310	2.8	18	1
R909435172	3.5	27	K
R909449967	5.0	31	L

Large flushing valve for sizes 150 to 215

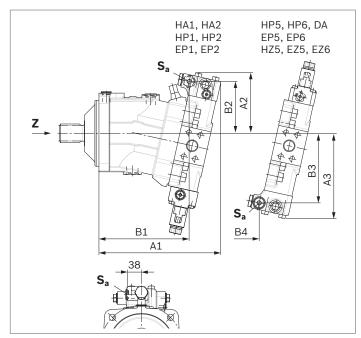
ø [mm]	$q_{\scriptscriptstyle \sf V}$ [l/min]	Code
1.8	8	С
2.0	10	D
2.5	15	G
2.8	18	I
3.1	21	J
3.5	27	K
4.0	31	L
5.0	37	М
	1.8 2.0 2.5 2.8 3.1 3.5 4.0	1.8 8 2.0 10 2.5 15 2.8 18 3.1 21 3.5 27 4.0 31


▼ Circuit diagram EP

Notice


- ▶ Port **S**a only for sizes 150 to 215
- ► For a flushing flow of 35 l/min, it is recommended that port **S**_a be connected in order to prevent an increase in case pressure. An increased case pressure reduces the flushing flow.

▼ Dimensions of sizes 60 to 115 (small flushing valve)



NG	A1	A2	А3	A4	
60	245	137	183	236	
85	273	142	194	254	
115	287	143	202	269	

▼ Dimensions of size 115 (medium flushing valve)

▼ Dimensions for sizes 115 to 215 (large flushing valve)

NG	A1	B1	A2	B2	А3	В3	В4	Sa ¹⁾
150	325	239	165	142	230	187	166	M22 × 1.5; 15.5 deep
170	332	246	165	142	233	190	172	M22 × 1.5; 15.5 deep
215	349	263	172	148	244	201	185	M22 × 1.5; 15.5 deep

ISO 6149, ports plugged (in normal operation)
 For notes on tightening torques, see instruction manual.
 The spot face may be deeper than that specified in the standard.

Counterbalance valve BVD and BVE

Function

Counterbalance valves for travel drives and winches operations are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if, during braking, when driving downhill or during the load-lowering process, the motor speed is greater than it should be for the given inlet flow and thus the supply pressure collapses.

If the supply pressure falls below the level specified for the relevant counterbalance valve, the counterbalance valve piston moves into the closed position.

The cross-sectional area of the counterbalance valve return duct is thenreduced, creating a bottleneck in the return flow of the hydraulic fluid. The pressure increases and brakes the motor until the rotational speed of the motor is again as it should be for the given inlet flow.

Notice

- ▶ BVD available for sizes 60 to 215 and BVE available for sizes 115 to 215.
- ► The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set.

Ordering example: A6VM085HA1T30004A/71MWV0N4S 97W0-0 + BVD20F27S/41B-V03K16D0400S12

- For safety reasons, controls with beginning of control at $V_{\rm g\ min}$ (e.g. HA) are not permissible for winch drives!
- Counterbalance valves must be optimized during prototype commissioning to prevent unacceptable operating conditions and compliance with the specification must be verified.
- ► The counterbalance valve does not replace the mechanical service brake and holding brake.
- ▶ Observe the detailed notes on the counterbalance valve in data sheet 95522 – BVD and in data sheet 95525 – BVE!
- For the design of the brake release valve, we require the following data for the mechanical holding brake:
 - the cracking pressure
 - the volume of the counterbalance spool between minimum travel (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Permissible inlet flow or pressure when using DBV and BVD/BVE

	Without va	lve	Limited valu	Limited values when using DBV and BVD/BVE								
Motor			DBV ¹⁾				BVD ²⁾ /BVE ³)				
NG	p_{nom}/p_{max} [bar]	$q_{ m Vmax}$ [l/min]	NG	$p_{\sf nom}/p_{\sf max}$ [bar]	q_{ee} [l/min]	Code	NG	$p_{\sf nom}/p_{\sf max}$ [bar]	q_{ee} [l/min]	Code		
60	450/500	276	22	350/420	240	7	20	350/420	220	7W		
85		332					(BVD)					
115		410	32		400							
115		410				8	25		320	8W		
150		494					(BVD/BVE)					
170		533										
215		628	On request		•				<u>'</u>			

Mounting of the counterbalance valve

When delivered, the counterbalance valve is fastened to the motor with two tacking screws (transport lock). The tacking screws may not be removed while mounting the working lines! If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be fastened to the motor port plate using the provided tacking screws.

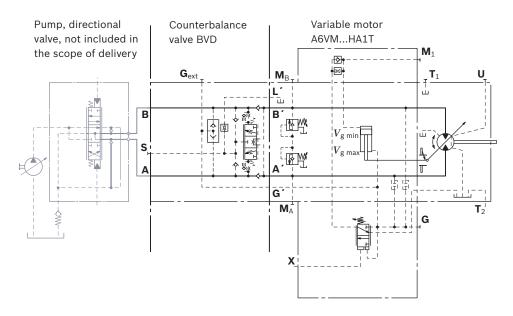
The counterbalance valve is finally mounted to the motor by fitting the SAE flange

The screws to be used and the instructions for mounting can be found in the instruction manual.

¹⁾ Pressure-relief valve

²⁾ Counterbalance valve, double-acting

³⁾ Counterbalance valve, one-sided

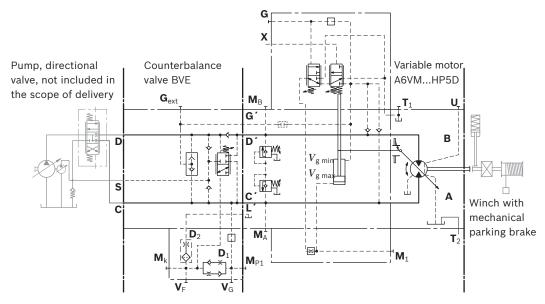

Counterbalance valve for travel drive BVD...F

Application option

► Travel drive for wheeled excavators (BVD and BVE)

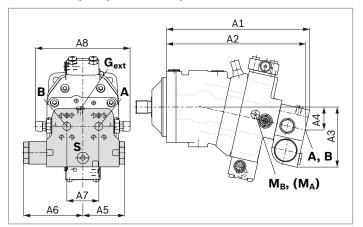
▼ Example circuit diagram for travel drive on wheeled excavators

A6VM085HA1T30004A/71MWV0N4S97W0-0 + BVD20F27S/41B-V03K16D0400S12

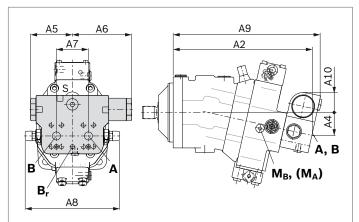

Counterbalance valve for winches and track drives BVD...W and BVE

Application option

- Winch drives in cranes (BVD and BVE)
- ► Track drive in excavator crawlers (BVD)


▼ Example circuit diagram for winch drive in cranes

A6VM085HP5D10001A/71MWV0N4S97W0-0 + BVE25W38S/51ND-V100K00D4599T30S00-0



Dimensions

▼ A6VM...HA, HP1, HP2 and EP1, EP2

▼ A6VM...HP5, HP6 and EP5, EP6¹)

A6VM	Counterbaland	e valve										
NGplate	Туре	Ports Dimensions										
		A, B	A1	A2	А3	Α4	A5	A6	A7	A8	Α9	A10
607	BVD2017	3/4 in	311	302	143	50	98	139	75	222	326	50
857	BVD2027	1 in	340	331	148	55	98	139	75	222	355	46
1157	BVD2028	1 in	362	353	152	59	98	139	84	234	377	41
1158	BVD2538	1 1/4 in	380	370	165	63	120.5	175	84	238	395	56
1508	BVD2538	1 1/4 in	411	401	168	67	120.5	175	84	238	426	53
1708	BVD2538	1 1/4 in	417	407	170	68	120.5	175	84	238	432	51
2158	BVD2538	1 1/4 in	448	438	176	74	120.5	175	84	299	463	46
1158	BVE2538	1 1/4 in	380	370	171	63	137	214	84	238	397	63
1508	BVE2538	1 1/4 in	411	401	175	67	137	214	84	238	423	59
1708	BVE2538	1 1/4 in	417	407	176	68	137	214	84	238	432	59
2158	BVE2538	1 1/4 in	448	438	182	74	137	214	84	299	463	52

Ports		Version	A6VM plate	Standard	Size ²⁾	P _{max} [bar] ³⁾	Status ⁵⁾
A, B	Working port		'	SAE J518	see table above	420	0
S	Infeed	BVD20		DIN 3852 ⁴⁾	M22 × 1.5; 14 deep	30	Х
		BVD25, BVE25		DIN 3852 ⁴⁾	M27 × 2; 16 deep	30	Χ
Br	Brake release,	L	7	DIN 3852 ⁴⁾	M12 × 1.5; 12.5 deep	30	0
	reduced high pressure		8	DIN 3852 ⁴⁾	M12 × 1.5; 12 deep	30	0
G _{ext}	Brake release, high pressure	S		DIN 3852 ⁴⁾	M12 × 1.5; 12.5 deep	420	X
M _A , M _B	Pressure measurement A and B			ISO 6149 ⁴⁾	M18 × 1.5; 14.5 deep	420	X

¹⁾ At the mounting version for the controls HP5, HP6 and EP5, EP6, the cast-in port designations A and B on the BVD counterbalance valve do not correspond with the port designation of the A6VM motor.

The designation of the ports on the installation drawing of the motor is binding!

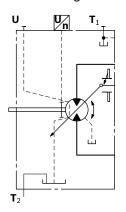
2) For notes on tightening torques, see instruction manual

³⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

⁴⁾ The countersink can be deeper than as specified in the standard.

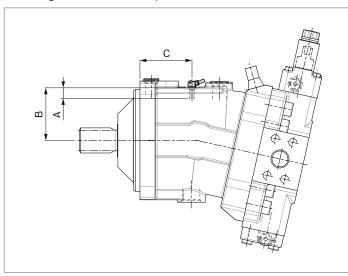
⁵⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


Speed sensor

Version A6VM...U ("prepared for speed sensor", i.e. without sensor) is equipped with a spline on the rotary group. A signal proportional to motor speed can be generated with the fitted DSA/DSM speed sensor. The DSA/DSM sensor registers the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety instructions about the sensor can be found in the relevant data sheet (95132 – DSM, 95133 – DSA).


The sensor is mounted on the port provided for this purpose with a mounting bolt. On deliveries without sensor, the port is plugged with a pressure-resistant cover. We recommend ordering the A6VM variable motor complete with mounted sensor.

▼ Circuit diagram EP

▼ Dimensions

"V" design with mounted speed sensor

_							
5	Size	60	85	115	150	170	215
_	lumber of teeth	54	58	67	72	75	80
1	Insertion depth (tolerance -0.25)	18.4	18.4	18.4	18.4	18.4	18.4
E	3 Contact surface	75	79	88	93	96	101
(66.2	75.2	77.2	91.2	91.7	95.2

Setting range for displacement

		60				8	35			1:	15		
	$V_{ m g\ max}\ ({ m cm^3/re}$	v) V	V _{g min} (c	m ³ /rev)	$V_{ m g\ max}$ (c	:m ³ /rev)	$V_{g\;min}$ (c	m³/rev)	V_{gmax} (c	cm ³ /rev)	$V_{\mathrm{g\;min}}$ (c	m³/rev)	
	from to	from	n	to	from	to	from	to	from	to	from	to	
Α	62.0 62	.0 0	0.0	15.0	85.2	85.2	0.0	9.0	115.6	115.6	0.0	24.0	
without screw			M10 × 60 R909154690		without screw		M12 × 60 R909083530		without screw		M12 R90908		
В	62.0 62	.0 > 1	15.0	30.5	85.2	85.2	> 9.0	28.0	115.6	115.6	> 24.0	47.5	
	without screw		M10 × 70 R909153779		without screw			M12 × 70 R909085976		t screw	M12 × 80 R909153075		
С	62.0 62	.0 > 3	30.5	43.0	85.2	85.2	> 28.0	47.0	115.6	115.6	> 47.5	71.0	
	without screv		M10 R9091		without	screw	M12 R9091		withou	t screw	M12 × 90 R909154041		
D	х		Х		85.2	85.2	> 47.0	59.0	115.6	115.6	> 71.0	80.0	
					without	screw	M12 × 90 R909154041		withou	t screw	M12 × 100 R909153975		
E	< 62.0 47	.5 0	0.0	15.0	< 85.2	77.0	0.0	9.0	< 115.6	93.5	0.0	24.0	
	M10 × 60 R909154690		M10 × 60 R909154690		M12 × 60 R909083530		M12 R9090		M12 × 70 R909085976		M12 × 70 R909085976		
F	< 62.0 47	.5 > 1	15.0	30.5	< 85.2	77.0	> 9.0	28.0	< 115.6	93.5	> 24.0	47.5	
	M10 × 60 R909154690		M10 × 70 R909153779		M12 × 60 R909083530		M12 R9090		M12 × 70 R909085976		M12 × 80 R909085976		
G	< 62.0 47	.5 > 3	30.5	43.0	< 85.2	77.0	> 28.0	47.0	< 115.6	93.5	> 47.5	71	
	M10 × 60 R909154690		M10 × 80 R909154058		M12 × 60 R909083530		M12 × 80 R909153075		M12 × 70 R909085976		M12 × 90 R909154041		
Н	х		Х		< 85.2	77.0	> 47.0	59.0	< 115.6	93.5	> 71.0	80.0	
					M12 × 60 R909083530		M12 × 90 R909154041		M12 × 70 R909085976		M12 × 100 R909153975		
J	< 47.5 33	.0 0	0.0	15.0	< 77.0	58.0	0.0	9.0	< 93.5	71.0	0.0	24.0	
	M10 × 70 R909153779		M10 R9091	× 60 54690	M12 R9090	× 70 85976	M12 R9090			× 80 53075	M12 R90908		
K	< 47.5 33	.0 > 1	15.0	30.5	< 77.0	58.0	> 9.0	28.0	< 93.5	71.0	> 24.0	47.5	
	M10 × 70 R909153779		M10 R9091		M12 R9090		M12 R9090		M12 R9091		M12 R9091		
L	< 47.5 33	.0 > 3	30.5	43.0	< 77.0	58.0	> 28.0	47.0	< 93.5	71.0	> 47.5	71.0	
	M10 × 70 R909153779		M10 × 80 R909154058		M12 × 70 R909085976		M12 × 80 R909153075		M12 × 80 R909153075		M12 × 90 R90915404		
М	х		Х		< 77.0	58.0	> 47.0	59.0	< 93.5	71.0	> 71.0	80.0	
	^				M12 R9090	x70 85976	M12 R9091		M12 × 80 R909153075		M12 × 100 R909153975		

Specify exact settings for $V_{\rm g\,min}$ and $V_{\rm g\,max}$ in plain text when ordering:

► $V_{\rm g \; min} = ... \; {\rm cm^3}, \; V_{\rm g \; max} = ... \; {\rm cm^3}$

Theoretical, maximum setting:

- ▶ for $V_{\rm g\;min}$ = 0.7 × $V_{\rm g\;max}$
- ▶ for $V_{\rm g~max}$ = 0.3 × $V_{\rm g~max}$

Settings that are not listed in the table may lead to damage.

Please contact us.

Bosch Rexroth AG, RE 91610/06.2016

		1	.50			11	70			2	15		
	V _{g max} (c		$V_{ m gmin}$ (c	m³/rev)	V _{g max} (V _{g min} (c	cm ³ /LI)	V _{g max} ($V_{\rm gmin}$ (cm ³ /U)	
	from	to	from	to	from	to	from	to	from	to	from	to	
Α	152.1	152.1	0.0	44.0	171.8	171.8	0.0	35.0	216.5	216.5	0.0	44.5	
	without screw		M12 × 80 R909153075		without screw		M12 × 80 R909153075		withou	t screw	M12 R9091		
В	152.1	152.1	> 44.0	69.0	171.8	171.8	> 35.0	63.5	216.5	216.5	> 44.5	80.0	
	without screw		M12 R9091		without	screw	M12 R9091		without screw		M12 × 90 R909154041		
С	152.1	152.1	> 69.0	99.0	171.8	171.8	> 63.5	98.0	216.5	216.5	> 80.0	115.0	
	withou	t screw	M12 ×		without screw		M12 × 100 R909153975		withou	t screw	M12 : R9091		
D	152.1	152.1	> 99.0	106.0	171.8	171.8	> 98.0	120.0	216.5	216.5	> 115.0	150.0	
	without screw		M12 >		without screw		M12 × 110 R909154212		without screw		M12 × 110 R909154212		
E	< 152.1	111.0	0.0	44.0	< 171.8	139.0	0.0	35.0	< 216.5	175.0	0.0	44.5	
	M12 × 80 R909153075			M12 × 80 R909153075		M12 × 80 R909153075		× 80 53075	M12 R9091		M12 × 80 R909153075		
F	< 152.1	111.0	> 44.0	69.0	< 171.8	139.0	> 35.0	63.5	< 216.5	175.0	> 44.5	80.0	
	M12 R9091		M12 × 90 R909085976		M12 R9091		M12 R9091		M12 R9091		M12 × 90 R909154041		
G	< 152.1	111.0	> 69.0	99.0	< 171.8	139.0	> 63.5	98.0	< 216.5	175.0	> 80.0	115.0	
	M12 R9091		M12 × 100 R909153975		M12 × 80 R909153075		M12 × 100 R909153975		M12 × 80 R909153075		M12 × 100 R909153975		
Н	< 152.1	111.0	> 99.0	106.0	< 171.8	139.0	> 98.0	120.0	< 216.5	175.0	> 115.0	150.0	
	M12 R9091		M12 > R9091			M12 × 80 R909153075		M12 × 110 R909154212		× 80 53075	M12 × 110 R909154212		
J	< 111.0	87.0	0.0	44.0	< 139.0	112.0	0.0	35.0	< 175.0	141.0	0.0	44.5	
	M12 R9091		M12 R9091		M12 R9091		M12 R9091		M12 R9091		M12 R9091		
K	< 111.0	87.0	> 44.0	69.0	< 139.0	112.0	> 35.0	63.5	< 175.0	141.0	> 44.5	80.0	
	M12 R9091		M12 R9091		M12 R9091		M12 R9091		M12 R9091		M12 R9091		
L	< 111.0	87.0	> 69.0	99.0	< 139.0	112.0	> 63.5	98.0	< 175.0	141.0	> 80.0	115.0	
		M12 × 90 M12 × 100 R909154041 R909153975		M12 × 90 R909154041		M12 × 100 R909153975		M12 × 90 R909154041		M12 × 100 R909153975			
М	< 111.0	87.0	> 99.0	106.0	< 139.0	112.0	> 98.0	120.0	< 175.0	141.0	> 115.0	150.0	
	M12 R9091		M12 >		M12 R9091		M12 ×		M12 R9091		M12 : R9091		

Specify exact settings for $V_{\rm g\,min}$ and $V_{\rm g\,max}$ in plain text when ordering:

 $\qquad \qquad V_{\rm g\;min} = ...\; {\rm cm^3},\; V_{\rm g\;max} = ...\; {\rm cm^3}$

Theoretical, maximum setting:

- for $V_{\rm g\,min}$ = 0.7 × $V_{\rm g\,max}$
- ▶ for $V_{\rm g~max}$ = 0.3 × $V_{\rm g~max}$

Settings that are not listed in the table may lead to damage.

Please contact us.

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the fluid from the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running. The leakage in the motor housing must be directed to the reservoir via the highest available drain port $(\mathbf{T}_1, \mathbf{T}_2)$. For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the maximum permissible case pressure of all connected units is not exceeded at any operational conditions. If this is not possible, separate drain lines must be laid.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Notice

In certain installation positions, an influence on the control characteristic can be expected. Gravity, dead weight and case pressure can cause minor characteristic shifts and changes in response time.

Key	
F	Filling / air bleeding
U	Bearing flushing / air bleed port
T ₁ , T ₂	Drain port
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required spacing to reservoir bottom (100 mm)

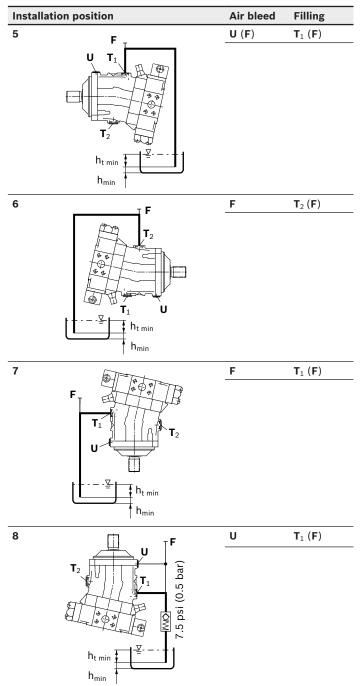
Installation position

See examples 1 to 8 below.

Additional installation positions are available upon request. Recommended installation position: **1** and **2**

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level


nstallation position	Air bleed	Filling
h _{t min} h _{min} T ₁ T ₂		T ₁
h _{t min} h _{min} T ₂ T ₄ T ₁ U		T ₂
$h_{t min}$ h_{min} T_1 T_2		T ₁
h _{t min}	U	T ₁

Bosch Rexroth AG, RE 91610/06.2016

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. Recommendation for installation position 8 (drive shaft upward):

A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the motor housing.

Notice

Port **F** is part of the external piping and must be provided on the customer side to make filling and air bleeding easier.

Project planning notes

- ► The motor A6VM is designed to be used in open and closed circuits.
- ► The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified skilled personnel.
- ▶ Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- ► Before finalizing your design, please request a binding installation drawing.
- ► The specified data and notes contained herein must be observed
- For safety reasons, controls with beginning of control at $V_{\rm g\ min}$ (e.g. HA) are not permissible for winch drives, e.g. anchor winches.
- ▶ Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- ▶ Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the instruction manual.
- ▶ Not all versions of the product are approved for use in a safety function according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- ▶ Depending on the type of control used, electromagnetic effects can be produced when using solenoids. When a direct current is applied, solenoids do not cause electromagnetic interference nor is their operation impaired by electromagnetic interference.
 - Other behavior can result when a modulated direct current (e.g. PWM signal) is applied. Potential electromagnetic interference for persons (e.g. persons with a pacemaker) and other components must be tested by the machine manufacturer.
- ▶ Please note the details regarding the tightening torques of port threads and other threaded joints in the instruction manual.

► Working ports:

- The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
- The working ports and function ports are only intended to accommodate hydraulic lines.

Safety instructions

- During and shortly after operation, there is a risk of getting burnt on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- ▶ Moving parts in control equipment (e.g. valve pistons) can, under certain circumstances get stuck in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filter) will not rule out a fault but merely reduce the risk.
 - The machine/system manufacturer must test whether remedial measures are needed on the machine for the application concerned in order to set the consumer being driven to a safe position (e.g. safe stop) and if necessary to ensure it is properly implemented.
- Moving parts in high-pressure relief valves may in certain circumstances become stuck in an undefined position due to contamination (e.g. contaminated hydraulic fluid). This can result in restriction or loss of the load holding function in lifting winches. The machine/system manufacturer must check whether
 - The machine/system manufacturer must check whether additional measures are required on the machine for the relevant application in order to keep the load in a safe position and ensure they are properly implemented.
- ▶ When using the axial piston motor in winch drives, make certain that the technical limit values are not exceeded under all operating conditions. If the axial piston motor is extremely overloaded (e.g. if the maximum permissible rotational speeds are exceeded during weighing of the anchor while the ship is in motion), the rotary group may be damaged and, in the worst case, the axial piston motor may burst. The machine manufacturer / system manufacturer is to undertake additional measures, up to and including encapsulation.

Bosch Rexroth AG

Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel.: +49-7308-82-0 info.ma@boschrexroth.de www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 91610/06.2016

Axial piston variable motor A6VM

RE 91611/03.14 1/26

Data sheet

Series 71 Size 280 Nominal pressure 450 bar Maximum pressure 500 bar Open and closed circuits

_		1	_		1	_
 n	n	т	0	n	т	c

Ordering code for standard program	2
Technical data	4
HP – Proportional hydraulic control	9
EP – Proportional electric control	11
HZ – Two-point hydraulic control	13
EZ – Two-point electric control	14
HA - Automatic high-pressure related control	15
DA - Automatic speed-related control	17
Dimensions, size 280	18
Connector for solenoids	21
Flushing and boost pressure valve	22
Setting range for displacement	23
Speed sensor	24
Installation instructions	25
General instructions	26

Features

- Variable motor with axial tapered piston rotary group of bentaxis design, for hydrostatic drives in open and closed circuit
- For use in mobile and stationary applications
- The wide control range enables the variable motor to satisfy the requirement for high speed and high torque.
- The displacement can be infinitely changed from $V_{g\;max}$ to $V_{g\;min}=0$.
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high and low-pressure side and with increasing displacement.
- Wide control range with hydrostatic transmissions
- Wide selection of control devices
- Cost savings through elimination of gear shifts and possibility of using smaller pumps
- Compact, robust motor with long service life
- High power density
- Good starting efficiency
- Version with 9-piston rotary group
- Good low speed characteristics
- High uniformity

Ordering code for standard program

A6V	M					0	0			/	71	M	W	٧	0	S4					ı	
01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17	18	19	20		21

A: - I	-:	:4
AXIAI	piston	unit

	11 Pont avia docian variable naminal	pressure 450 bar, maximum pressure 500 bar	A6V
- 10	n i bent-axis design, variable, nominai r	pressure 450 bar, maximum pressure 500 bar	AOV

Operating mode

C	2 Motor	r	M	١
'	2 IVIOLOI		IV	

Size (NG)

03	Geometric displacement, see table of values on page 7	280	l

Control devices

	Control devices				
	Proportional control hydraulic	positive control	$\Delta p_{St} = 10 \text{ bar}$	•	HP1
	,		$\Delta p_{St} = 25 \text{ bar}$	•	HP2
		negative control	$\Delta p_{St} = 10 \text{ bar}$	•	HP5
			$\Delta p_{St} = 25 \text{ bar}$	•	HP6
	Proportional control electric	positive control	U = 12 V DC	•	EP1
			U = 24 V DC	•	EP2
		negative control	U = 12 V DC	•	EP5
			U = 24 V DC	•	EP6
04	Two-point control hydraulic	negative control		•	HZ5
	Two-point control electric	negative control	U = 12 V DC	0	EZ5
			U = 24 V DC	0	EZ6
	Automatic control high-pressure related,	with minimum pressure increase	∆p ≤ approx. 10 bar	•	HA1
	positive control	with pressure increase	$\Delta p = 100 \text{ bar}$	•	HA2
	Automatic control speed-related, negative control ps/p _{HD} = 5/100	hydr. travel direction valve		0	DA0

Pressure control/overrides

	Without pressure control/override	00
05	Pressure control fixed setting, only for HP5, HP6, EP5 and EP6	D1
	Override of the HA1 and HA2 controls, hydraulic remote control, proportional	Т3

Connector for solenoids¹⁾ (see page 21)

			_
	Without connector (without solenoid, only for hydraulic control)	0	
06	DEUTSCH - molded connector. 2-pin - without suppressor diode	Р	1

Additional function 1

07 Without additional function

Additional function 2

		$\overline{}$	_
10	08 Without additional function	0	, '

Response time damping (for selection, see control)

	Without damping (standa	ard with HP and EP)	0
09	Damping	HP, EP, HP5,6D. and EP5,6D., HZ, EZ	1
		One-sided in inlet to large stroking chamber (HA)	4
		One-sided in outlet from large stroking chamber (DA)	7

ullet = Available \bigcirc = On request - = Not available

¹⁾ Connectors for other electric components can deviate.

Ordering code for standard program

A6V	М					0	0			/	7 1	M	W	V	0	S4					ı	
01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17	18	19	20		21

Setting	ranges	for	dien	lacement2)
Settilla	ranues	101	นเรม	iaceillelli-

	V _{g max} setting screw	V _{g min} setting screw	
	Short	short (0-adjustable)	E
		medium	F
		long	G
10		extra long	Н
	Medium	short (0-adjustable)	J
		medium	K
		long	L
		extra long	М

Series

11	Series 7, index 1	71	

Configuration of ports and fastening threads

12 Metric, port threads with O-ring seal according to ISO 6149

Direction of rotation

1	3 Viewed on drive shaft, bidirectional	W	1
---	--	---	---

Seals

	1	14	FKM (fluor-caoutchouc)	٧	
--	---	----	------------------------	---	--

Drive shaft bearing

15 Standard bearing 0	0
-----------------------	---

Mounting flange

16 13	SO 3019-2	200-4	54

Drive shafts

477	Splined shaft ANSI B92.1a	2 1/4 in 17T 8/16DP	Т3	
17	Splined shaft DIN 5480	W60x2x28x9g	A 4	

Port plates for service lines

10		SAE flange ports A and B at rear	1	
'	8	SAE flange ports A and B at side, opposite	2	

Valves (see page 22)

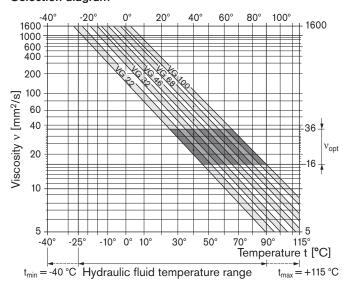
10	Without valve	0	
19	With flushing and boost pressure valve mounted; flushing on both sides; flushing flow q _v , adjustable 0 to 60 l/min ³⁾	٧	1

Speed sensors

	Without speed sensor	0
20	Prepared for HDD speed sensor	F
	HDD speed sensor mounted ⁴⁾	Н

Standard / special version

		Standard version	0
:	21	Standard version with installation variants, e. g. T ports against standard open or closed	Υ
		Special version	S


- 2) The adjustment values for the setting screws can be found in the table (page 23).
- 3) Specify the required flushing flow at $\Delta p = p_{ND} p_{G}$ and at v = 10 mm²/s in plain text when ordering $(p_{ND} = low pressure, p_{G} = case pressure, standard 25 bar).$
- 4) Specify ordering code of sensor according to data sheet (HDD RE 95135) separately and observe the requirements on the electronics.

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90222 (HFD hydraulic fluids) for detailed information regarding the selection of hydraulic fluid and application conditions.

The variable motor A6VM is not suitable for operation with HFA hydraulic fluid. If HFB, HFC, or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data must be observed or other seals used. Please contact us.

Selection diagram

Details regarding the selection of hydraulic fluid

Choosing the correct hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: the circuit temperature in a closed circuit, the reservoir temperature in an open circuit.

The hydraulic fluid should be selected so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt}) see shaded area of the selection diagram. We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum viscosity range (v_{opt.}, shaded area) this corresponds to the viscosity classes VG 46 and VG 68. To be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port U or using a flushing and boost pressure valve (see page 22).

Viscosity and temperature of hydraulic fluid

tions, and tomperature of hydraumo hala					
	Viscosity [mm ² /s]	Temperature	Comment		
Transport and storage at ambient temperature		$T_{min} \ge -50 \text{ °C}$ $T_{opt} = +5 \text{ °C to } +20 \text{ °C}$	factory preservation: up to 12 months with standard, up to 24 months with long-term		
(Cold) start-up ¹⁾	$v_{\text{max}} = 1600$	$T_{St} \ge -40 ^{\circ}C$	$t{}^{\underline{<}}3$ min, without load (p $\underline{<}50$ bar), n $\underline{<}1000$ rpm		
Permissible temperatu	re difference	$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid in the system		
Warm-up phase	v < 1600 to 400	T = -40 °C to -25 °C	at $p \leq 0.7$ • $p_{nom}, n \leq 0.5$ • n_{nom} and $t \leq 15 min$		
Operating phase					
Temperature difference		$\Delta T = approx. 12 K$	Between hydraulic fluid in the bearing and at port T. The bearing temperature can be reduced by flushing via port U.		
Maximum temperature		115 °C	in the bearing		
		103 °C	measured at port T		
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data		
Short-term operation ²⁾	$\nu_{min} \geq 7$	T _{max} = +103 °C	measured at port T, t < 3 min, p < 0.3 • p _{nom}		
FKM shaft seal ¹⁾		T ≤ +115 °C see page 5			

¹⁾ At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

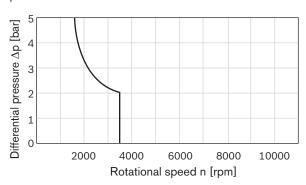
²⁾ Please contact us.

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


If the above classes cannot be achieved, please contact us.

Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

The values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Influence of case pressure on beginning of control

An increase in case pressure affects the beginning of control of the variable motor when using the following control options:

HP, HA.T3 ______increase DA ______decrease

With the following settings, an increase in case pressure will have no effect on the beginning of control: EP, HA

The factory setting of the beginning of control is made at $p_{abs} = 2$ bar case pressure.

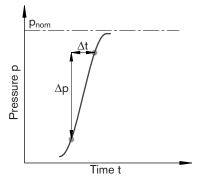
Flow direction

Direction of rotation, viewed on drive shaft				
clockwise counter-clockwise				
A to B	B to A			

Operating pressure range

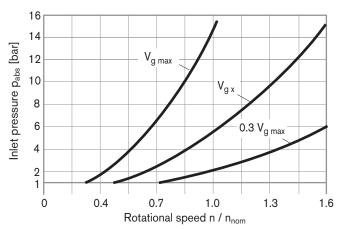
(operating with mineral oil)

Pressure at service line port A or B


Nominal pressure p_{nom} _____ 450 bar absolute Maximum pressure p_{max} _____ 500 bar absolute Single operating period at $V_{g max}$ and $n_{max} = n_{nom}/2$ _____ 10 s Total operating period _____ 300 h

Minimum pressure (high-pressure side) ___25 bar absolute

Summation pressure (pressure A + pressure B) p_{Su} 700 bar


Rate of pressure change R_{A max}

with integrated pressure-relief valve _____9000 bar/s without pressure-relief valve _____9000 bar/s

Minimum pressure - pump operation (inlet)

To prevent damage to the axial piston motor in pump operation mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). This minimum pressure is dependent on the speed and displacement of the axial piston unit (see characteristic curve below).

This diagram is only valid for the optimum viscosity range from $\nu_{\text{opt}} = 36$ to 16 $\text{mm}^2/\text{s}.$

Please contact us if the above conditions cannot be guaranteed.

Note

Values for other hydraulic fluids, please contact us.

Definition

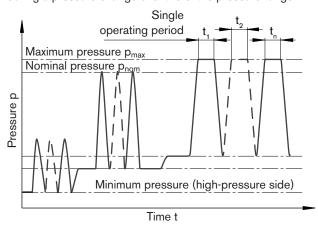
Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

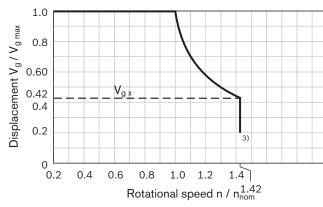
Summation pressure p_{Su}

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

Maximum permissible rate of pressure build-up and reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t_n$


Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size	NG		280
Displacement geometric,	$V_{g max}$	cm ³	280.1
per revolution	$V_{g min}$	cm ³	0
	V_{gx}	cm ³	118 (see diagram below)
Maximum speed ¹⁾ (while adhering to the maximum permissible input flow)			
at V _{g max}	n _{nom}	rpm	2500
At $V_g < V_{gx}$ (see diagram below)	n _{max}	rpm	3550
at V _{g 0}	n _{max}	rpm	following consultation
Input flow at n_{nom} and $V_{\text{g max}}$	q _{V max}	l/min	700
Torque ²⁾ at $V_{g max}$ and $\Delta p = 450$ bar	Т	Nm	2006
Rotary stiffness			
$V_{g max}$ to $V_{g}/2$	C _{min}	kNm/rad	72
V _g /2 to 0 (interpolated)	C _{max}	kNm/rad	209
Moment of inertia for rotary group	J_GR	kgm ²	0.0479
Maximum angular acceleration	α	rad/s ²	7000
Case volume	V	L	3.4
Weight (approx.)	m	kg	101

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible displacement in relation to speed

- 1) The following values apply:
 - For the optimum viscosity range from $\nu_{\text{opt}}\!=\!36$ to 16 $\text{mm}^2\text{/s}$
 - With hydraulic fluid based on mineral oils
- 2) Torque without radial force, with radial force see page 8
- 3) Values in this range on request

Determining the operating characteristics

Input flow
$$q_v = \frac{v_g \cdot n}{1000 \cdot \eta_v}$$
 [L/min]

$$\begin{array}{ccc} \text{Rotational} & & & \\ \text{speed} & & & \\ \end{array} \quad n \; = \; \frac{q_V \bullet 1000 \bullet \eta_V}{V_g} \qquad \qquad \text{[rpm]}$$

Torque
$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}$$
 [Nm]

Power
$$P = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600} \quad [kW]$$

I_q = Displacement per revolution in cm³

 Δp = Differential pressure in bar

n = Speed in rpm

 η_v = Volumetric efficiency

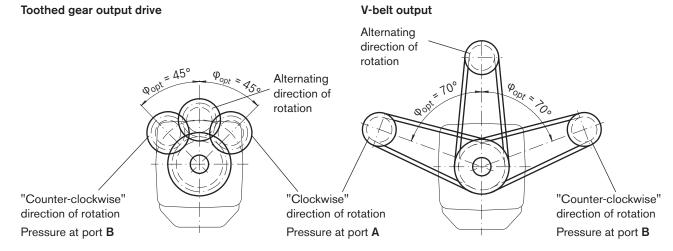
η_{mh} = Mechanical-hydraulic efficiency

 $\eta_t = \text{Total efficiency } (\eta_t = \eta_v \cdot \eta_{mh})$

Permissible radial and axial forces of the drive shafts

Size		NG		280	280
Drive shaft				2 1/4	W60
Maximum radial force ¹⁾	Fq	F _{q max}	N	26821	26913
at distance a(from shaft collar)	a	a	mm	40	35
with permissible torque		T _{max}	Nm	1916	2005
	max	p _{nom perm.}	bar	430	450
Maximum axial force ²⁾	Fax ±	+ F _{ax max}	N	1575	1575
	'ax	- F _{ax max}	N	03)	O ³⁾
Permissible axial force per bar ope	erating pressure	F _{ax perm./bar}	N/bar	19.4	19.4

- 1) With intermittent operation.
- 2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.
- 3) Please contact us.


Note

Influence of the direction of the permissible axial force:

- + F_{ax max} = Increase in service life of bearings
- F_{ax max} = Reduction in service life of bearings (avoid)

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

HP - Proportional hydraulic control

The proportional hydraulic control, type HP, provides infinite adjustment of the displacement, proportional to the pilot pressure applied to port X.

HP1, HP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible speed at minimum pilot pressure)
- End of control at $V_{g max}$ (maximum torque, minimum speed at maximum pilot pressure)

HP5, HP6 negative control

- Beginning of control at $V_{g\ max}$ (maximum torque, minimum speed at minimum pilot pressure)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum pilot pressure)

Note

- Maximum permissible pilot pressure: $p_{St} = 100$ bar
- The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 500 bar can occur at port G.

- Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 10 bar.
- The beginning of control and the HP characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic.

HP1, HP5 pilot pressure increase $\Delta p_{St} = 10$ bar

HP1 positive control

A pilot pressure increase of 10 bar at port X results in an increase in displacement from $V_{q\,min}$ to $V_{q\,max}$.

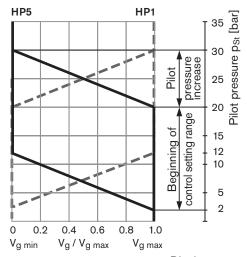
HP5 negative control

A pilot pressure increase of 10 bar at port X results in a decrease in displacement from $V_{g\ max}$ to $V_{g\ min}$.

Beginning of control, setting range _____2 to 20 bar

Standard setting:

Beginning of control at 3 bar (end of control at 13 bar)


Note

The spring feedback feature in the control part is not a safety device

The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, control of the axial piston motor will no longer respond correctly to the operator's commands.

Check whether the application on your machine requires additional safety measures, in order to bring the driven consumer into a safe position (immediate stop). If necessary, make sure that these are properly implemented.

Characteristic

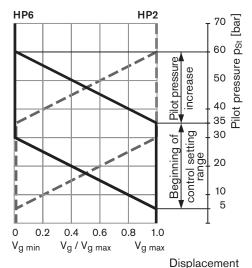
Displacement

HP2, HP6 pilot pressure increase $\Delta p_{St} = 25$ bar

HP2 positive control

A pilot pressure increase of 25 bar at port X results in an increase in displacement from $V_{g\,min}$ to $V_{g\,max}$.

HP6 negative control


A pilot pressure increase of 25 bar at port X results in a decrease in displacement from $V_{q\ max}$ to $V_{q\ min}$.

Beginning of control, setting range ______5 to 35 bar

Standard setting:

Beginning of control at 10 bar (end of control at 35 bar)

Characteristic

Schematic HP1, HP2: positive control on request. Schematic HP5, HP6: negative control on request.

HP - Proportional hydraulic control

HP5D1, HP6D1 Pressure control, fixed setting

The pressure control overrides the HP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger displacement.

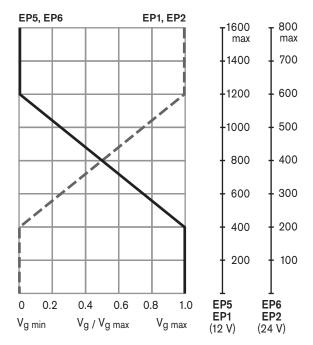
The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve_____ 80 to 450 bar

Schematic HP5D1, HP6D1: negative control on request.

EP - Proportional electric control

The proportional electric control, type EP, provides infinite adjustment of the displacement, proportional to the control current applied to the solenoid.


EP1, EP2 positive control

- Beginning of control at $V_{g\,min}$ (minimum torque, maximum permissible speed at minimum control current)
- End of control at V_{g max} (maximum torque, minimum speed at maximum control current)

EP5, EP6 negative control

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum control current)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum control current)

Characteristic

Note

The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 500 bar can occur at port G.

Technical data, solenoid

	EP1, EP5	EP2, EP6			
Voltage	12 V (±20 %)	24 V (±20 %)			
Control current					
Beginning of control	400 mA	200 mA			
End of control	1200 mA	600 mA			
Current limit	1.54 A	0.77 A			
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω			
Dither frequency	100 Hz	100 Hz			
Duty cycle	100 %	100 %			
Type of protection see connector version page 21					

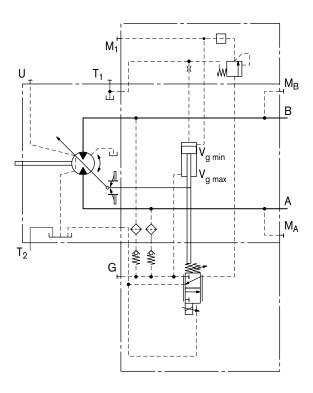
The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

- BODAS R	C controller		
Series 20			RE 95200
Series 21_			RE 95201
Series 22			RE 95202
Series 30		RE 95203,	RE 95204
and applica	ation software		

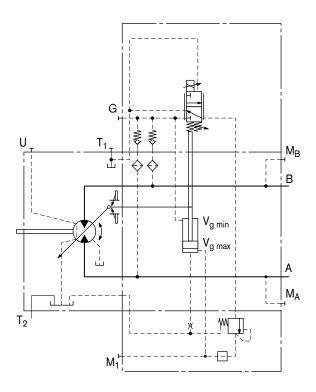
- Analog amplifier RA _____ RE 95230
- Electric amplifier VT 2000, series 5X (see RE 29904) (for stationary application)

Further information can also be found on the internet at www.boschrexroth.com/mobile-electronics

Note


The spring feedback feature in the control part is not a safety device

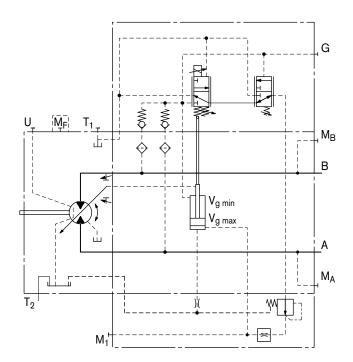
The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, control of the axial piston motor will no longer respond correctly to the operator's commands.


Check whether the application on your machine requires additional safety measures, in order to bring the driven consumer into a safe position (immediate stop). If necessary, make sure that these are properly implemented.

EP - Proportional electric control

Schematic EP1, EP2: positive control

Schematic EP1, EP2: negative control


EP5D1, EP6D1 Pressure control, fixed setting

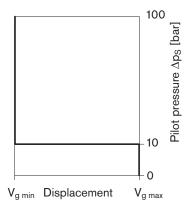
The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger displacement.

The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve _____ 80 to 450 bar

Schematic EP5D1, EP6D1: negative control

13/26


HZ - Two-point hydraulic control

The two-point hydraulic control, type HZ, allows the displacement to be set to either $V_{\text{g min}}$ or $V_{\text{g max}}$ by switching the pilot pressure at port X on or off.

HZ5 negative control

- Position at V_{g max} (without pilot pressure, maximum torque, minimum speed)
- Position at V_{g min} (with pilot pressure > 10 bar activated, minimum torque, maximum permissible speed)

Characteristic HZ5

Note

- Maximum permissible pilot pressure: 100 bar
- The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please

Please note that pressures up to 500 bar can occur at port

Schematic HZ5: negative control on request.

EZ - Two-point electric control

The two-point electric control, type EZ, allows the displacement to be set to either $V_{g\ min}$ or $V_{g\ max}$ by switching the electric current to a switching solenoid on or off.

Note

The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 500 bar can occur at port G.

Technical data, solenoid with Ø37 Size 280

EZ6 Voltage 12 V (±20 %) 24 V (±20 %) Position $V_{g max}$ de-energized de-energized Position $V_{q min}$ energized energized Nominal resistance (at 20 °C) $5.5~\Omega$ 21.7 Ω Nominal power 26.2 W 26.5 W Minimum required active cur-1.32 A 0.67 A 100 % Duty cycle 100 % Type of protection see connector version page 21

Schematic EZ5, EZ6: negative control on request.

HA - Automatic high-pressure related control

The automatic high-pressure related control, type HA, adjusts the displacement automatically depending on the operating pressure.

The displacement of the A6VM motor with HA control is $V_{g\,min}$ (maximum speed and minimum torque). The control device measures internally the operating pressure at A or B (no control line required) and upon reaching the beginning of control , the controller swivels the motor from $V_{g\,min}$ to $V_{g\,max}$ with increase of pressure. The displacement is modulated between $V_{g\,min}$ and $V_{g\,max}$, thereby depending on load conditions.

HA1, HA2 positive control

- Beginning of control at $V_{\text{g min}}$ (minimum torque, maximum speed)
- End of control at V_{g max} (maximum torque, minimum speed)

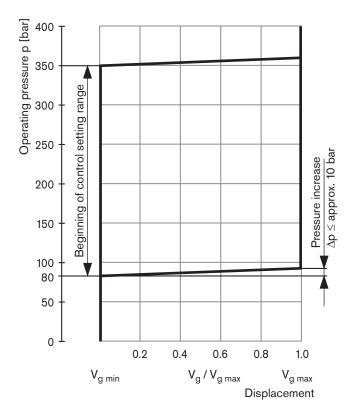
Note

- For safety reasons, winch drives are not permissible with beginning of control at $V_{g\,\text{min}}$ (standard for HA).
- The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 500 bar can occur at port G.

 The beginning of control and the HA.T3 characteristic are influenced by case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic.

HA₁


With minimum pressure increase, positive control

An operating pressure increase of $\Delta p \leq$ approx. 10 bar results in an increase in displacement from $V_{g \, min}$ towards $V_{g \, max}$.

Beginning of control, setting range ______ 80 to 350 bar

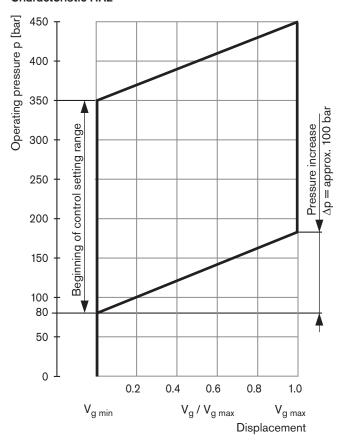
Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 300 bar.

Characteristic HA1

Schematic HA1 on request.

HA - Automatic high-pressure related control

HA₂


With pressure increase, positive control

An operating pressure increase of $\Delta p = approx$. 100 bar results in an increase in displacement from $V_{g \, min}$ towards $V_{g \, max}$.

Beginning of control, setting range ______ 80 to 350 bar

Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 200 bar.

Characteristic HA2

Schematic HA2 on request.

HA.T3 Override, hydraulic remote control, proportional

With the HA.T3 control, the beginning of control can be influenced by applying a pilot pressure to port X.

For each 1 bar of pilot pressure increase, the beginning of control is reduced by 23 bar.

Beginning of control setting	300 bar	300 bar
Pilot pressure at port X	0 bar	10 bar
Beginning of control at	300 bar	70 bar

Note

Maximum permissible pilot pressure 100 bar.

Schematic HA.T3 on request.

17/26

DA - Automatic speed-related control

The variable motor A6VM with automatic speed-related control, type DA, is intended for use in hydrostatic travel drives in combination with the variable pump A4VG with DA control.

A pilot pressure generated by the variable pump regulates, together with the operating pressure, the swivel angle of the hydraulic motor.

Increasing pilot pressure causes the motor to swivel to a smaller displacement (lower torque, higher rotational speed), depending on the operating pressure.

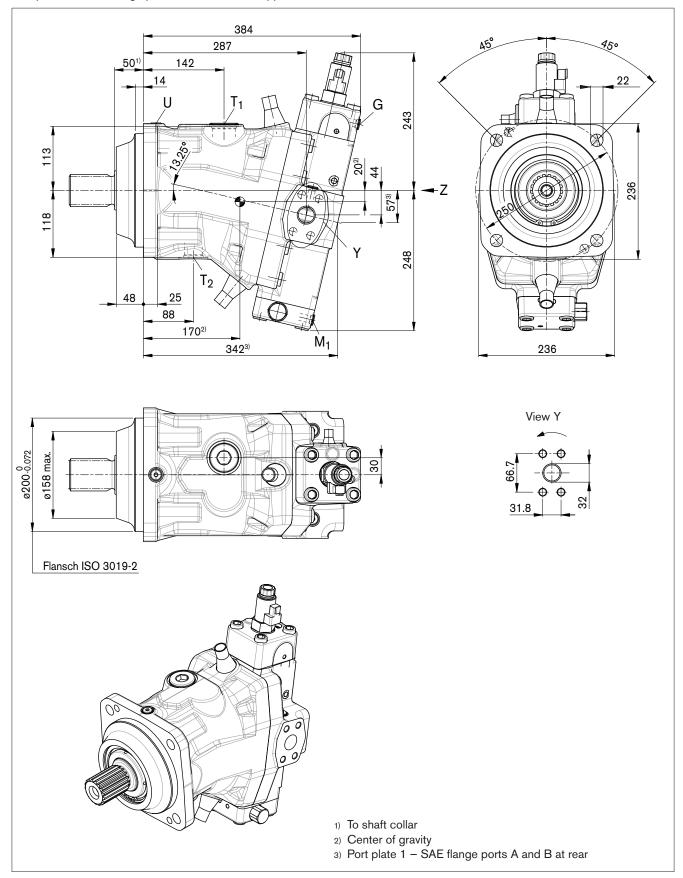
If the operating pressure exceeds the pressure setpoint value set on the controller, the variable motor swivels to a larger displacement (higher torque, lower speed).

Pressure ratio p_{St}/p_{HD}

DA closed loop control is only suitable for certain types of drive systems and requires review of the engine and vehicle parameters to ensure that the motor is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Detailed information is available from our sales department and on our website www.boschrexroth.com/da-control.

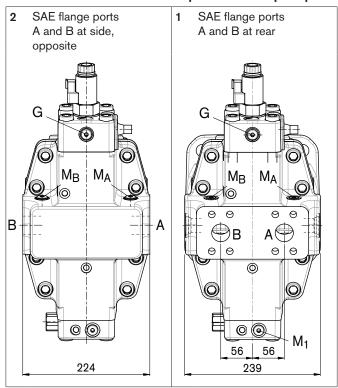
The beginning of control and the DA characteristic are influenced by case pressure. An increase in case pressure causes a decrease in the beginning of control (see page 5) and thus a parallel shift of the characteristic.

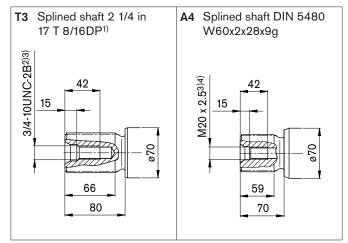

Hydraulic travel direction valve, negative control

Dimensions size 280

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

EP5, EP6 - Proportional electric control, negative control


Port plate 2 - SAE flange ports A and B at side, opposite


Dimensions size 280

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

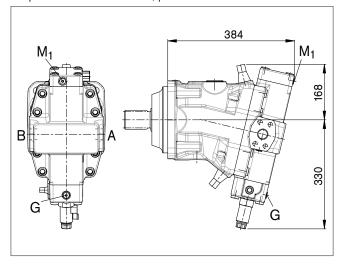
Location of the service line ports on the port plates (view Z)

Drive shafts

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) Observe the general instructions on page 26 for the maximum tightening torques
- 4) Center bore according to DIN 332 (thread according to DIN 13)

Dimensions size 280

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Ports

Designation	Port for	Standard	Size ¹⁾	p_{max} [bar] ²⁾	State ⁶⁾
A, B	Service line	SAE J518 ³⁾	1 1/4 in	500	0
	fastening thread A/B	DIN 13	M14 x 2; 19 deep		
T ₁	Drain line	ISO 6149 ⁵⁾	M42 x 2; 19.5 deep	3	X ⁴⁾
T ₂	Drain line	ISO 6149 ⁵⁾	M33 x 2; 19 deep	3	O ⁴⁾
G	Synchronous control	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
U	Bearing flushing	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	3	Χ
M ₁	Measuring stroking chamber	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
M _A	Measuring pressure A	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ
M_B	Measuring pressure B	ISO 6149 ⁵⁾	M14 x 1.5; 11.5 deep	500	Χ

- 1) Observe the general instructions on page 26 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 24).
- 5) The spot face can be deeper than specified in the appropriate standard.
- $_{6)}$ O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

EP1, EP2

Proportional electric control, positive control

Before finalizing your design, request a bind-

ing installation drawing. Dimensions in mm.

Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded connector, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

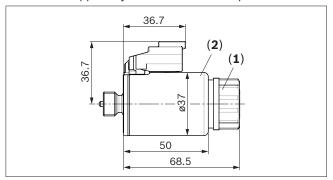
IP67 ______DIN/EN 60529 and IP69K DIN 40050-9

Circuit symbol

Mating connector

DEUTSCH DT06-2S-EP04

Bosch Rexroth material number R902601804


 Consisting of:
 DT designation

 - 1 housing
 DT06-2S-EP04

 - 1 wedge
 W2S

 - 2 sockets
 0462-201-16141

The mating connector is not included in the scope of supply. This can be supplied by Bosch Rexroth on request.

Changing connector orientation

If necessary, you can change the connector orientation by turning the solenoid housing.

To do this, proceed as follows:

- 1. Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one turn counter-clockwise.
- 2. Turn the solenoid body (2) to the desired orientation.
- 3. Retighten the mounting nut. Tightening torque: 5+1 Nm. (size WAF 26, 12 kt DIN 3124)

On delivery, the connector orientation may differ from that shown in the brochure or drawing.

Flushing and boost pressure valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

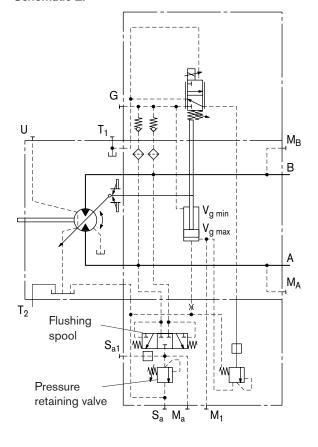
In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

The valve is mounted onto the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

(observe when adjusting the primary valve) adjustable 15 to 35 bar

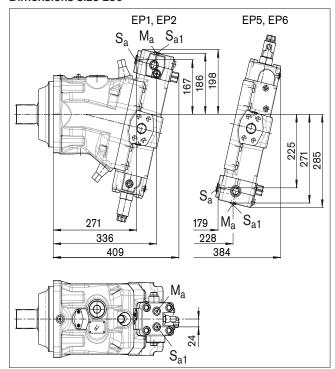

Switching pressure of flushing spool Δp _____ on request

Flushing flow q_v

(Flushing flow up to 60 L/min possible, please contact us)

For a flushing flow greater than 35 l/min, it is recommended that port S_a be connected in order to prevent an increase in the case pressure. An increased case pressure reduces the flushing flow.

Schematic EP


NG S_a¹⁾ S_{a1}¹⁾ M_a¹⁾
280 M22 x 1.5; 15.5 deep M14 x 1.5; 11.5 deep M14 x 1.5; 11.5 deep

1) ISO 6149, ports plugged (in normal operation)

Observe the general instructions on page 26 for the maximum tightening torques.

The spot face can be deeper than specified in the appropriate standard.

Dimensions size 280

Setting range for displacement

		2	80				
	V _{g max} (c	m ³ /rev)	V _{g min} (c	m³/rev)			
	from	to	from	to			
	280.1	230.0	0.0	55.0			
Е	M16 > R9109		M16 : R9109				
	280.1	230.0	> 55.0	98.0			
F	M16 >		M16 R9109				
	280.1	230.0	> 98.0	141.0			
G	M16 >		M16 x 120 R910909477				
	280.1	230.0	> 141.0	184.0			
Н	M16 >		M16 x 130 R910900271				
	< 230.0	188.0	0.0	55.0			
J	M16 : R9109		M16 x 100 R910909811				
	< 230.0	188.0	> 55.0	98.0			
K	M16 : R9109		M16 R9109				
	< 230.0	188.0	> 98.0	141.0			
L	M16 : R9109		M16 : R9109				
	< 230.0	188.0	> 141.0	184.0			
M	M16 : R9109		M16 : R9109				

Specify exact settings for $V_{g\;min}$ and $V_{g\;max}$ in plain text when ordering: $V_{g\;min}$ = ... cm³, $V_{g\;max}$ = ... cm³

Theoretical, maximum setting:

for $V_{g min} = 0.7 \cdot V_{g max}$ for $V_{g max} = 0.3 \cdot V_{g max}$

Settings that are not listed in the table may lead to damage. Please contact us.

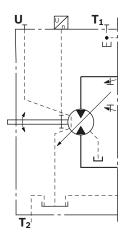
Speed sensor

Version A6VM...F ("prepared for speed sensor", i.e. without sensor) is equipped with a spline on the rotary group.

On the version "prepared for speed sensor", the port is plugged with a pressure-resistant cover.

A signal proportional to motor rotational speed can be generated with the mounted HDD speed sensor. The sensors register the speed and direction of rotation.

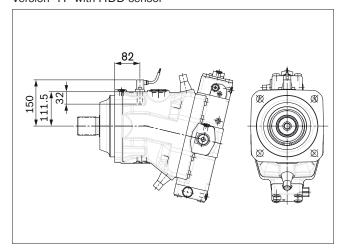
Ordering code, technical data, dimensions and details on the connector, plus safety instructions about the sensor can be found in the relevant data sheet.


HDD RE 95135

Version "H"

Suitable for mounting the HDD speed sensor. The sensor is flanged onto the port provided for this purpose with two mounting bolts.

We recommend ordering the A6VM variable motor complete with installed sensor.


Schematic

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

Version "H" with HDD sensor

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding via flushing port U must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 8. Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

Note

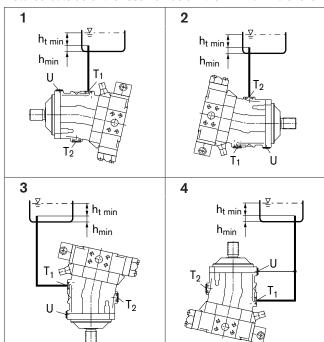
In certain installation positions, an influence on the control characteristics can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristics and changes in response time.

Installation position	Air bleed	Filling
1	_	T ₁
2	_	T ₂
3	_	T ₁
4	U	T ₁
5	U (L₁)	T ₁ (L ₁)
6	L ₁	T ₂ (L ₁)
7	L ₁	T ₁ (L ₁)
8	U	T ₁ (L ₁)

L₁ Filling / air bleed

U Bearing flushing / air bleed port

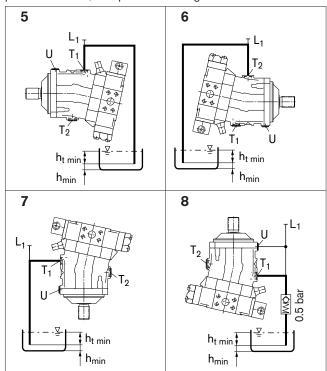
T₁, T₂ Drain port


h_{t min} Minimum required immersion depth (200 mm)

h_{min} Minimum required distance to reservoir bot-

tom (100 mm)

Below-reservoir installation (standard)


Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Recommendation for installation position 8 (drive shaft upward): A check valve in the reservoir line (cracking pressure 0.5 bar) can prevent draining of the case interior.

General instructions

- The motor A6VM is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of skilled person.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- Not all variants of the product are approved for use in safety functions according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's specifications regarding the tightening torques of the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13 or with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases as per VDI 2230.

- Female threads of the axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.
- Threaded plugs:
 For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports Standard	Thread size	Maximum permissible tightening torque of the female threads M _{G max}	Required tightening torque of the threaded plugs M _V	WAF hexagon socket for the threaded plugs
ISO 6149	M14 x 1.5	80 Nm	45 Nm	6 mm
	M22 x 1.5	210 Nm	100 Nm	10 mm
	M33 x 2	540 Nm	310 Nm	17 mm
	M42 x 2	720 Nm	330 Nm	22 mm

Bosch Rexroth AG

Mobile Applications
An den Kelterwiesen 14
72160 Horb a.N., Germany
Phone +49 74 51 92-0
info.ma@boschrexroth.de
www.boschrexroth.com

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Variable Plug-in Motor A6VE

RE 91606/06.12

1/40

Replaces: 10.07

Data sheet

Series 63

Size Nominal pressure/Maximum pressure

28 to 160 400 bar/450 bar 250 350 bar/400 bar Open and closed circuits

Contents

Ordering code for standard program 2 Technical data 4 HD - Proportional control hydraulic 9 EP - Proportional control electric 12 HZ - Two-point control hydraulic 15 EZ - Two-point control electric 16 HA - Automatic control high-pressure related 17 DA - Automatic control speed-related 91 Electric travel direction valve (for DA) 23 Dimensions 28 to 250 24 Connector for solenoids 28 Flushing and boost pressure valve 29 Counterbalance valve BVD and BVE 31 Counterbalance valve integrated BVI 35 Speed sensor 38 Installation instructions 39 General instructions 40

Features

- Variable plug-in motor with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in open and closed circuits
- Far-reaching integration in mechanical gearbox due to a recessed mounting flange located on the center of the case (extremely space-saving construction)
- Easy to install, simply plug into the mechanical gearbox (no configuration specifications to be observed)
- Tested unit ready to install
- For use especially in mobile applications
- The displacement can be infinitely changed from $V_{g \text{ max}}$ to $V_{g \text{ min}}$ = 0.
- The wide control range enables the variable motor to satisfy the requirement for high speed and high torque.
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high-pressure and low-pressure side and with increasing displacement.

Ordering code for standard program

46V	Е					/	63	W		-	V								
01	02	03	04	05	06		07	08	09		10	11	12	13	14	15	16	17	18

Axial piston unit

01 Bent-axis design, variable A6V

Operating mode

02 Motor, plug-in version Ε

Sizes (NG)

03 Geometric displacement, see table of values on page 7 28 80 107 160 250

	Control devices			28	55	80	107	160	250	
	Proportional control hydraulic	Δ	np = 10 bar	•	•	•	•	•	•	HD1
		Δ	np = 25 bar		•	•	•	•	•	HD2
	Two-point control hydraulic			_	_	_	_	_	•	HZ
				•	_	_	_	•	_	HZ1
				_	•	•	•	1)	_	HZ3
	Proportional control electric		12 V	•	•	•	•	•	•	EP1
			24 V	•	•	•	•	•	•	EP2
	Two-point control electric	12 V	•	_	_	_	•	•	EZ1	
04			24 V	•	_	_	_	•	•	EZ2
			12 V	_	•	•	•	_	_	EZ3
			24 V	-	•	•	•	_	-	EZ4
	Automatic control	with minimum pressure increase /	∆p ≤ 10 bar	•	•	•	•	•	•	HA1
	high-pressure related	with pressure increase $\Delta p = 100$	bar	•	•	•	•	•	•	HA2
		with minimum pressure increase /	∆p ≤ 10 bar	_	•	•	•	•	-	HA3 ¹⁾
	Automatic control speed related								DA	
	p _{St} /p _{HD} = 3/100, hydraulic t	ravel direction valve			_	_	_	_		DA
	p _{St} /p _{HD} = 5/100, electric tra	vel direction valve + electric V _{g max} -ci	ircuit 24 V	•	•	•	•	•	-	DA3

Pressure control (only for HD, EP)

	· · · · · · · · · · · · · · · · · · ·	
0	Without pressure control (without code)	
10	Pressure control, fixed setting	D

Override of controls HA

0.6	Without override (without code)		
06	Hydraulic override, remote control, proportional	Т	

Series

Direction of rotation

08 Viewed on drive shaft, bidirectional

	Setting ranges for displacement	2)	28	55	80	107	160	250	
	$V_{g \text{ min}} = 0 \text{ to } 0.7 V_{g \text{ max}}$ (without co	de)	•	•	•	•	•	_	
09	$V_{g min} = 0 \text{ to } 0.4 V_{g max}$	$V_{g max} = V_{g max}$ to 0.8 $V_{g max}$	_	_	_	_	_	•	1
	$V_{g min} > 0.4 V_{g max}$ to 0.8 $V_{g max}$	$V_{g max} = V_{g max}$ to 0.8 $V_{g max}$		_	-	_	-	•	2

	Seals	28	55	80	107	160	250	
10	FKM (fluor-caoutchouc)	•	•	•	•	•	•	٧

- O = On request1) Only possible in combination with port plate 22 (integrated
- 2) Specify exact settings for Vg min and Vg max in plain text when ordering: Vg min = ... cm³, Vg max = ... cm³

= Preferred program

counterbalance valve).

-= Not available

● = Available

Ordering code for standard program

		1	1	_	1	1		_	1	1	_				1	1	1	_	_	
#	46V	E					/	63	W		-	V								
	01	02	03	04	05	06	j	07	08	09		10	11	12	13	14	15	16	17	18
	Drive :	shafts												28	55	80	107	160	250	
	Spline			5480)									•	_	•		•	_	Α
11	'													_	•	_	•	_	•	Z
	N41													- 00			407	100	250	
	Mount			10.0								-hole		28	55	80	107	160	250	L
12	Sillilla	11 10 13	30	19-2							_	-hole		_	_			_	•	M
12	Modif	ied ad	anter f	lange								-hole			_	_	_		_	U
												TIOLE								
	Port p			rvice l	ines ³⁾									28	55	80	107	160	250	•
	SAE f			nnoci	to						0	2	0	•	•	•	•	•	•	020
				pposi									7	•	•	•	•	•	•	027
	SAE f			only	with in	tegrate	d cour	nterhal	ance v	alve B		2	1	_	•	•	•	•	_	221
13													2	_	•	•	•	•	_	222
	moun	olate w ting a	rith I-le Counte	evei p erbalai	ressure nce va	e-relief v lve ⁵⁾⁷⁾	vaives	TOr	В	VD	3	1	0	-	_	-	•	_	_	370 378
	Imoun	ung u	oodiii	or Daira	1100 10	•••					3	8	8	_	•	•	•	•	9 9)	380
									В	VE		8		_	_	_	•	•	_9)	388
		,			0.57								A							
	Valves	s (see out valv		29 to	37)								0	1						
				o into	grated	int	ornal	ducting	~				1							
14					releas			piping					2							
1-7	Flushi	ng and	d hoos	t nres	sure v	alve mo							7							
					ounte		diffed						8							
													1 -	J						
	Speed				e 38)									28	55	80	107	160	250	
45			ed se											•	•	0	•	•	0	0
15	Prepa					or								0	0	0	0	0	0	U
	DSA :	speea	senso	r mou	inted ⁸⁾									0	0	0	0	0	0	V
	Conne	ector f	or sol	enoid	s (see	page 2	(8)									28 to	160	2	50	
	Without connector (without solenoid, only with hydraulic controls)										-	_	0							
16			ithout														_			
	DEUTSCH – molded connector, 2-pin – without suppressor diode									•		-	-	Р						
	HIRS	CHM	ANN c	onne	ctor – v	without	suppr	essor	diode	(withou	ut code	e)					_			
	Begin	ning o	f cont	rol										28	55	80	107	160	250	
	Port p					at V _a	_{min} (sta	andard	for H	A)				•	•	•	•	•	•	Α
	1															 	1			

Standard / special version

	Standard version (without code)	
18	Standard version with installation variants (e. g. T ports against standard open or closed)	-Y
	Special version	-S

at $V_{q max}$ (standard for HD, HZ, EP, EZ, DA)

- = Available
- O = On request
- -= Not available

at $V_{g min}$ (standard for HA3)

at $V_{g max}$ (standard for HZ3)

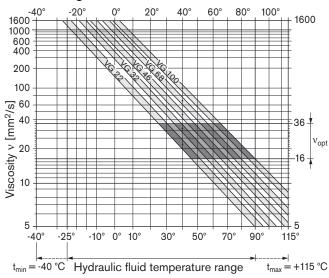
= Preferred program

3) Metric fastening thread

Port plate 22

- 4) Only for HZ3 and HA3. Add specification of integrated counterbalance valve BVI, see separate ordering code on page 35. Note the restrictions on page 36.
- 5) Only possible in conjunction with HD, EP and HA1 and HA2 control
- 6) Specify ordering code of counterbalance valve according to
- data sheet (BVD RE 95522, BVE RE 95525) separately.
- 7) Note the restrictions on page 32.
- 8) Specify ordering code of sensor according to data sheet (DSA – RE 95133) separately and observe the requirements on the electronics.
- 9) Counterbalance valve MHB32, please contact us.

В


В

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The variable motor A6VE is not suitable for operation with HFA hydraulic fluid. If HFB, HFC, or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum viscosity range (v_{opt.}, shaded area) this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case with a flushing and boost pressure valve (see page 29).

Viscosity and temperature of hydraulic fluid

	Viscosity [mm²/s]	Temperature	Comment
Transport and storage at ambient temperature		$T_{min} \ge -50 \text{ °C}$ $T_{opt} = +5 \text{ °C to } +20 \text{ °C}$	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾	$v_{\text{max}} = 1600$	$T_{St} \ge -40 ^{\circ}\text{C}$	$t \le 3$ min, without load (p ≤ 50 bar), n ≤ 1000 rpm (sizes 28 to 160), n $\le 0.25 \cdot n_{nom}$ (size 250)
Permissible temperature	difference	$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid
Warm-up phase	v < 1600 to 400	$T = -40 ^{\circ}\text{C}$ to $-25 ^{\circ}\text{C}$	At $p \leq 0.7$ • $p_{nom}, n \leq 0.5$ • n_{nom} and $t \leq 15$ min
Operating phase			
Temperature difference		$\Delta T = approx. 12 K$	between hydraulic fluid in the bearing and at port T.
Maximum temperature		115 °C	in the bearing
		103 °C	measured at port T
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data
Short-term operation ²⁾	$v_{min} \geq 7$	T _{max} = +103 °C	measured at port T, t < 3 min, p < 0.3 • p _{nom}
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 5

¹⁾ At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

²⁾ Size 250, please contact us.

5/40

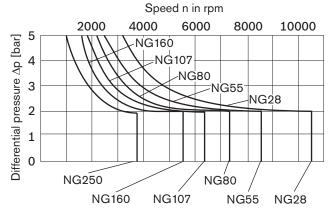
Technical data

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


If the above classes cannot be achieved, please contact us.

Shaft seal

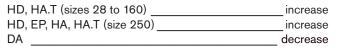
Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

The values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range


The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Influence of case pressure on beginning of control

An increase in case pressure affects the beginning of control of the variable motor when using the following control options:

With the following controls, an increase in the case pressure has no influence on the beginning of control:

EP, HA (sizes 28 to 160)

The factory settings for the beginning of control are made at $p_{abs} = 2$ bar (sizes 28 to 160) or $p_{abs} = 1$ bar (size 250) case pressure.

Direction of flow

Direction of rotation, viewed on drive shaft				
cw	ccw			
A to B	B to A			

Operating pressure range

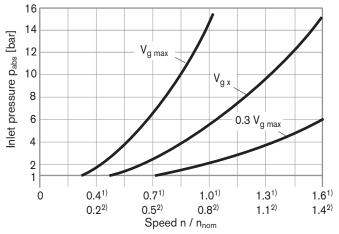
(operating with mineral oil)

Pressure at service line port A or B

Sizes 28 to 160

Nominal pressure pnom	400 bar absolute
Maximum pressure p _{max} Single operating period	450 bar absolute 10 s
Total operating period	300 h
Size 250	

Nominal pressure pnom	_ 350 bar absolute
Maximum pressure p _{max}	400 bar absolute
Single operating period	10 s
Total operating period	300 h
Minimum pressure (high-pressure side)	25 bar absolute


Rate of pressure change RA max

with integrated pressure-relief valve 9000 bar/s without pressure-relief valve ___ 16000 bar/s

Summation pressure (pressure A + pressure B) p_{Su} _ 700 bar

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operation mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). This minimum pressure is dependent on the speed and displacement of the axial piston unit (see characteristic curve below).

¹⁾ For sizes 28 to 160

This diagram is valid only for the optimum viscosity range from $v_{opt} = 36 \text{ to } 16 \text{ mm}^2/\text{s}.$

Please contact us if the above conditions cannot be satisfied.

Values for other hydraulic fluids, please contact us.

Definition

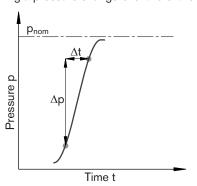
Nominal pressure pnom

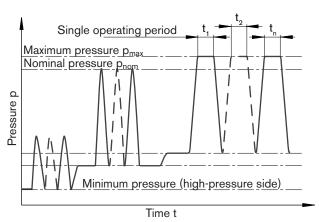
The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.


Summation pressure p_{Su}

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

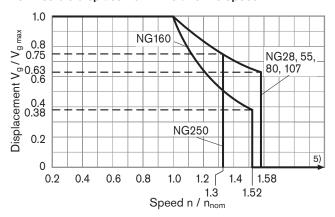
Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t_n$

²⁾ For size 250

Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size		NG	28	55	80	107	160	250
Displacement geometric ¹⁾ ,	$V_{g max}$	cm ³	28.1	54.8	80	107	160	250
per revolution	$V_{g min}$	cm ³	0	0	0	0	0	0
	V _{g x}	cm ³	18	35	51	68	61	188
Speed maximum ²⁾ (while adhering to the maximum permissible input flow)								
at V _{g max}	n_{nom}	rpm	5550	4450	3900	3550	3100	2700
At $V_g < V_{gx}$ (see diagram below)	n_{max}	rpm	8750	7000	6150	5600	4900	3600
at V _{g 0}	n _{max}	rpm	10450	8350	7350	6300	5500	3600
Input flow ³⁾								
at n_{nom} and $V_{\text{g max}}$	q _{V max}	L/min	156	244	312	380	496	675
Torque ⁴⁾								
At $V_{g max}$ and $\Delta p = 400$ bar	T	Nm	179	349	509	681	1019	_
At $V_{g max}$ and $\Delta p = 350$ bar	T	Nm	157	305	446	596	891	1391
Rotary stiffness								
$V_{ m g\ max}$ to $V_{ m g/2}$	C _{min}	KNm/rad	6	10	16	21	35	60
$V_{g/2}$ to 0 (interpolated)	C _{max}	KNm/rad	18	32	48	65	105	181
Moment of inertia for rotary group	J_{GR}	kgm ²	0.0014	0.0042	0.008	0.0127	0.0253	0.061
Maximum angular acceleration	α	rad/s ²	47000	31500	24000	19000	11000	10000
Case volume	V	L	0.5	0.75	1.2	1.5	2.4	3.0
Mass (approx.)								
Port plate 02, 37, 38	m	kg	16	26	34	47	64	90
Port plate 22	m	kg	_	35	43	53	72	_


¹⁾ The minimum and maximum displacement are infinitely adjustable, see ordering code, page 2. (standard setting for size 250 if not specified in the order: $V_{g min} = 0.2 \cdot V_{g max}$, $V_{g max} = V_{g max}$).

- 2) The values are valid:
 - for the optimum viscosity range from $v_{\text{opt}} = 36$ to 16 mm²/s
 - with hydraulic fluid based on mineral oils
- 3) Restriction of input flow with counterbalance valve, see page 32
- 4) Torque without radial force, with radial force see page 8

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible startup angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible displacement in relation to speed

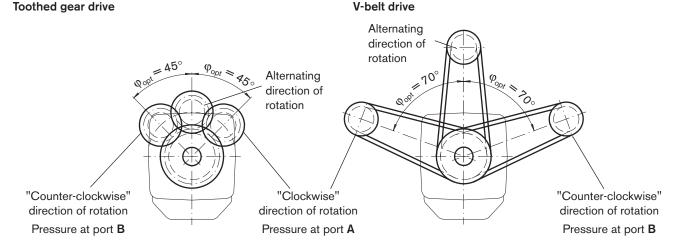
5) Values in this range on request

Permissible radial and axial forces of the drive shafts

Size		NG		28	55	80	107	160	250
Drive shaft		Ø	mm	30	30	40	40	50	50
Waxiiiiaiii raalal foroo	Fq	F _{q max}	N	4838	7581	10283	13758	16435	1200 ³⁾
at distance a (from shaft collar)		a	mm	17.5	17.5	22.5	22.5	27.5	41
with permissible torque		T _{max}	Nm	179	281	509	681	1019	4)
≜ Permissible pressure Δp at	$V_{g max}$	p _{nom perm.}	bar	400	322	400	400	400	4)
Maximum axial force ²⁾		+F _{ax max}	N	315	500	710	900	1120	1200
ı ax		-F _{ax max}	N	0	0	0	0	0	0
Permissible axial force per bar operating pressure		F _{ax perm./bar}	N/bar	4.6	7.5	9.6	11.3	15.1	4)

- 1) With intermittent operation.
- 2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.
- 3) When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.
- 4) Please contact us.

Note


Influence of the direction of the permissible axial force:

 $+F_{ax max}$ = Increase in service life of bearings

-F_{ax max} = Reduction in service life of bearings (avoid)

Effect of radial force F_{q} on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

Determining the operating characteristics

9/40

HD - Proportional control hydraulic

The proportional hydraulic control provides infinite setting of the displacement, proportional to the pilot pressure applied to

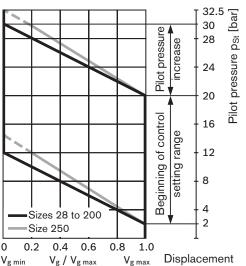
- Beginning of control at $V_{g max}$ (maximum torque, minimum speed at minimum pilot pressure)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum pilot pressure)

- Maximum permissible pilot pressure: p_{St} = 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

- Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 10 bar.
- The beginning of control and the HD characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic.
- A leakage flow of maximum 0.3 L/min can escape at port X due to internal leakage (operating pressure > pilot pressure). The control is to be suitably configured to avoid an independent build-up of pilot pressure.

HD1 Pilot pressure increase $\Delta p_{St} = 10$ bar


A pilot pressure increase of 10 bar at port X results in a decrease in displacement from $V_{g max}$ to 0 cm³ (sizes 28 to 160) or from $V_{g max}$ to 0.2 $V_{g max}$ (size 250).

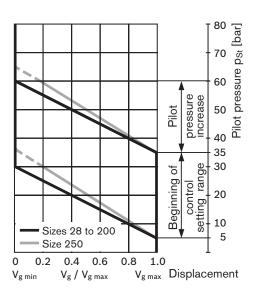
Beginning of control, setting range _____2 to 20 bar

Standard setting:

Beginning of control at 3 bar (end of control at 13 bar)

HD1 characteristic

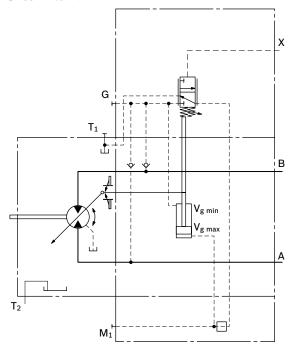
Pilot pressure increase $\Delta p_{St} = 25$ bar


A pilot pressure increase of 25 bar at port X results in a decrease in displacement from $V_{g\ max}$ to 0 cm³ (sizes 28 to 160) or from $V_{g max}$ to 0.2 $V_{g max}$ (size 250).

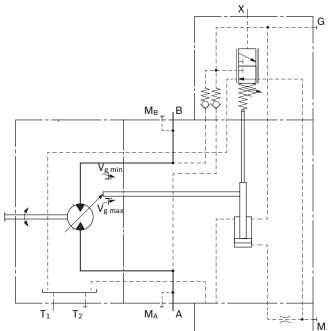
Beginning of control, setting range _____ _5 to 35 bar

Standard setting:

Beginning of control at 10 bar (end of control at 35 bar)


HD2 characteristic

HD - Proportional control hydraulic


Schematic HD1, HD2

Sizes 28 to 160

Schematic HD1, HD2

Size 250

Note

The spring return feature in the control part is not a safety device

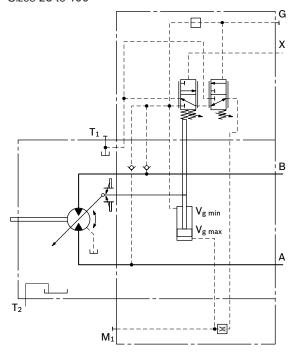
The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

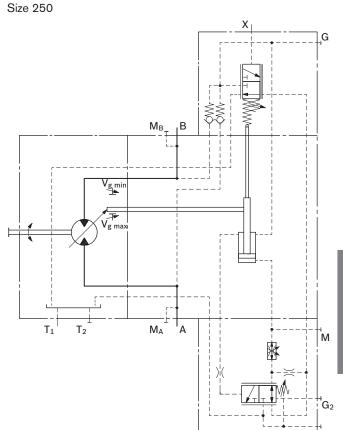
HD - Proportional control hydraulic

HD.D Pressure control, fixed setting

The pressure control overrides the HD control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.


The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

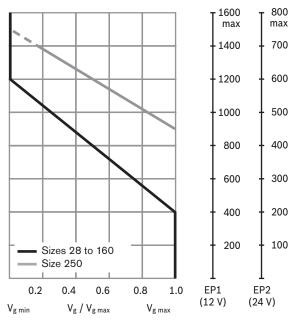
Setting range of the pressure control valve


Sizes 28 to 160 ______ 80 to 400 bar Size 250 80 to 350 to bar

Schematic HD.D

Sizes 28 to 160

Schematic HD.D


EP - Proportional control electric

The proportional electric control provides infinite setting of the displacement, proportional to the control current applied to the solenoid (sizes 28 to 200) or proportional valve (sizes 250).

For size 250, the pilot oil supply at port P requires an external pressure of $p_{min} = 30$ bar ($p_{max} = 100$ bar).

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum control current)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum control current)

Characteristic

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

The following only needs to be noted for size 250:

The beginning of control and the EP characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic.

Technical data, solenoid

Sizes 28 to 160

	EP1	EP2
Voltage	12 V (±20 %)	24 V (±20 %)
Control current		
Beginning of control	400 mA	200 mA
End of control	1200 mA	600 mA
Limiting current	1.54 A	0.77 A
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω
Dither frequency	100 Hz	100 Hz
Duty cycle	100 %	100 %
Type of protection see connect	tor design page	28

The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

 BODAS controller RC 	
Series 20	RE 95200
Series 21	RE 95201
Series 22	RE 95202
Series 30	RE 95203, RE 95204
and application software	
- Analog amplifier RA	RE 95230

 Electric amplifier VT 2000, series 5X (see RE 29904) (for stationary application)

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics

Technical data, proportional valve Size 250

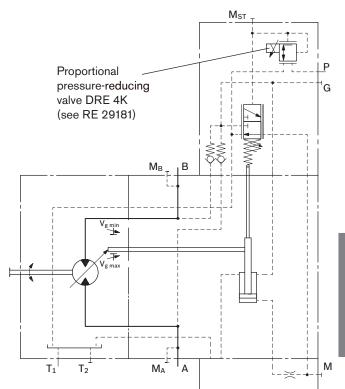
	EP1	EP2			
Voltage	12 V (±20 %)	24 V (±20 %)			
Beginning of control at V _{g max}	900 mA	450 mA			
End of control at V _{g min}	1400 mA	700 mA			
Limiting current	2.2 A	1.0 A			
Nominal resistance (at 20 °C)	2.4 Ω	12 Ω			
Duty cycle	100 %	100 %			
Type of protection see connector design page 28					

See also proportional pressure-reducing valve DRE 4K (RE 29181).

Note

The spring return feature in the control part is not a safety device

The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands

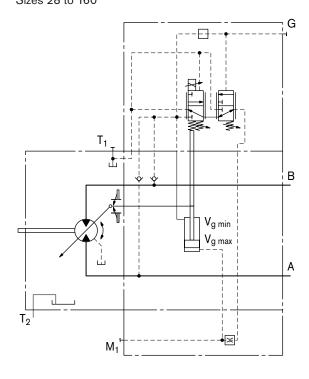

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

EP - Proportional control electric

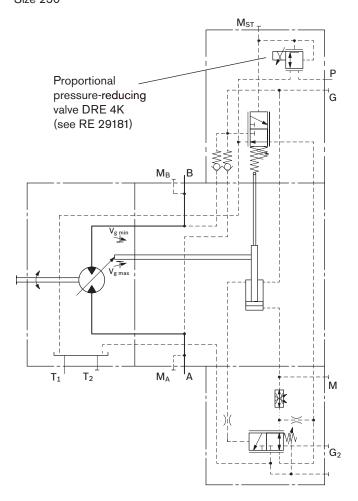
Schematic EP1, EP2 Sizes 28 to 160

Schematic EP1, EP2 Size 250

EP - Proportional control electric


EP.D Pressure control, fixed setting

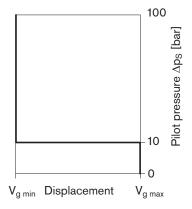
The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.


The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve
Sizes 28 to 160 ______ 80 to 400 bar
Size 250 80 to 350 to bar

Schematic EP.D Sizes 28 to 160

Schematic EP.D Size 250



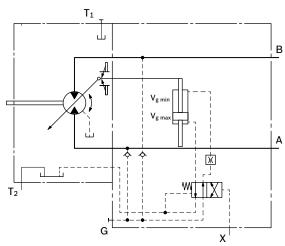
HZ - Two-point control hydraulic

The two-point hydraulic control allows the displacement to be set to either $V_{g\ min}$ or $V_{g\ max}$ by switching the pilot pressure at port X on or off.

- Position at $V_{g max}$ (without pilot pressure, maximum torque, minimum speed)
- Position at V_{g min} (with pilot pressure > 10 bar activated, minimum torque, maximum permissible speed)

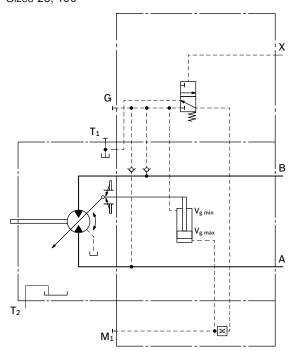
Characteristic HZ

Note

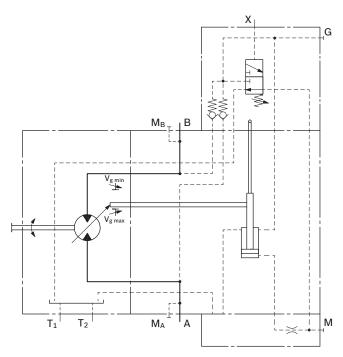

- Maximum permissible pilot pressure: 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

A leakage flow of maximum 0.3 L/min is present at port X (operating pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir.


Schematic HZ3

Sizes 55 to 107


Size 160 With integrated counterbalance valve BVI, see page 37

Schematic HZ1 Sizes 28, 160

Schematic HZ

Size 250

EZ - Two-point control electric

The two-point electric control with switching solenoid (sizes 28 to 160) or control valve (size 250) allows the displacement to be set to either $V_{g\;\text{min}}$ or $V_{g\;\text{max}}$ by switching the electric current at the switching solenoid or control valve on or off.

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

Technical data, solenoid with Ø37

Sizes 28, 160

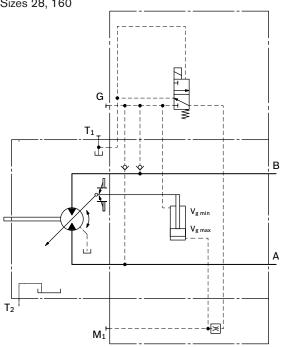
EZ1	EZ2
12 V (±20 %)	24 V (±20 %)
de-energized	de-energized
energized	energized
5.5 Ω	21.7 Ω
26.2 W	26.5 W
1.32 A	0.67 A
100 %	100 %
	12 V (±20 %) de-energized energized 5.5 Ω 26.2 W 1.32 A

Type of protection see connector design page 28

Technical data, solenoid with Ø45

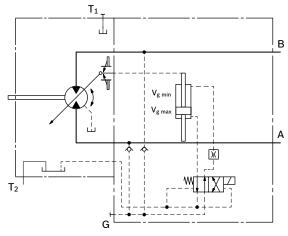
Sizes 55 to 107

	EZ3	EZ4						
Voltage	12 V (±20 %)	24 V (±20 %)						
Displacement V _{g max}	de-energized	de-energized						
Displacement V _{g min}	energized	energized						
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω						
Nominal power	30 W	30W						
Minimum required current	1.5 A	0.75 A						
Duty cycle	100 %	100 %						
Type of protection see connector design page 28								

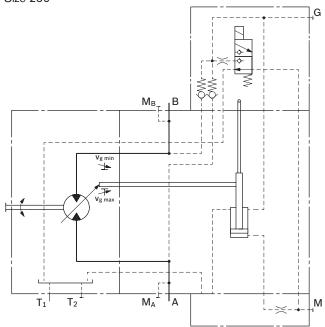

Technical data, control valve

Size 250

	EZ1	EZ2					
Voltage	12 V (±20 %)	24 V (±20 %)					
Displacement V _{g max}	de-energized	de-energized					
Displacement V _{g min}	energized	energized					
Nominal resistance (at 20 °C)	6 Ω	23 Ω					
Nominal power	26 W	26W					
Minimum required current	2 A	1.04 A					
Duty cycle	100 %	100 %					
Type of protection see connector design page 28							


Schematic EZ1, EZ2

Sizes 28, 160


Schematic EZ3, EZ4

Sizes 55 to 107

Schematic EZ1, EZ2

Size 250

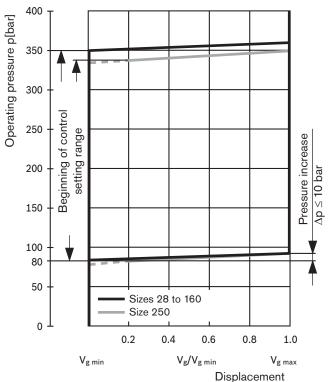
The automatic high-pressure related control adjusts the displacement automatically depending on the operating pressure.

The displacement of the A6VE motor with HA control is $V_{g\ min}$ (maximum speed and minimum torque). The control unit measures internally the operating pressure at A or B (no control line required) and upon reaching the beginning of control, the controller swivels the motor from $V_{q min}$ to $V_{q max}$ with increase of pressure. The displacement is modulated between V_{q min} and V_{g max}, thereby depending on load conditions.

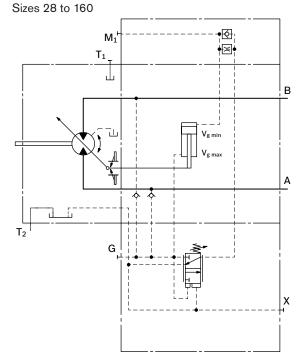
- Beginning of control at $V_{g\,min}$ (minimum torque, maximum
- End of control at V_{g max} (maximum torque, minimum speed)

- For safety reasons, winch drives are not permissible with beginning of control at V_{g min} (standard for HA).
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.
 - Please note that pressures up to 450 bar can occur at port G.
- The beginning of control and the HA characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic. Only for HA1T (sizes 28 to 160) and HA1, HA2, HA3, HA.T, (size 250).
- A leakage flow of maximum 0.3 L/min is present at port X (operating pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir. Only for control HA.T.

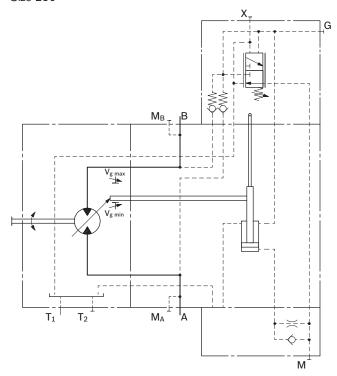
HA1, HA3 With minimum pressure increase


An operating pressure increase of $\Delta p \leq$ approx. 10 bar results in an increase in displacement from 0 cm³ to $V_{g max}$ (sizes 28 to 160) or from 0.2 $V_{g max}$ to $V_{g max}$ (size 250).

Beginning of control, setting range


Sizes 28 to 160 _______ 80 to 350 bar Size 250 80 to 340 bar

Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 300 bar.


Characteristic HA1, HA3

Schematic HA1

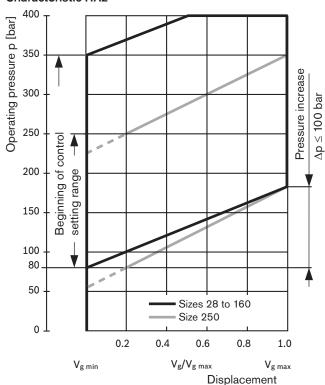
Size 250

Schematic HA3

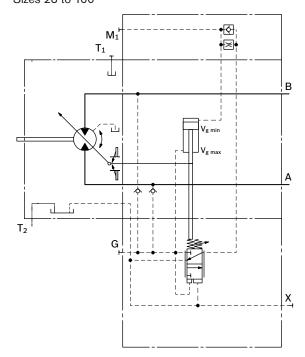
Sizes 55 to 160

With integrated counterbalance valve BVI, see page 37

HA2 With pressure increase


An operating pressure increase of $\Delta p=$ approx. 100 bar results in an increase in displacement from 0 cm³ to $V_{g max}$ (sizes 28 to 160) or from 0.2 $V_{g max}$ to $V_{g max}$ (size 250).

Beginning of control, setting range


Sizes 28 to 160 _______ 80 to 350 bar Size 250 80 to 250 bar

Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 200 bar.


Characteristic HA2

Schematic HA2 Sizes 28 to 160

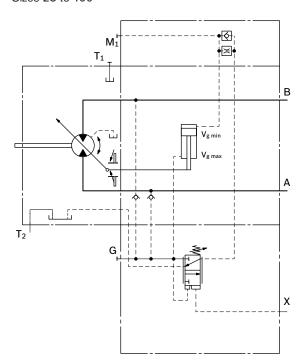
Size 250

HA.T Override hydraulic remove control, proportional

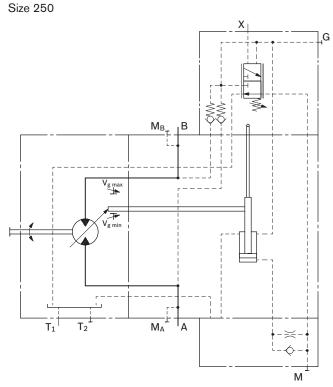
With the HA.T control, the beginning of control can be influenced by applying a pilot pressure to port X.

For each 1 bar of pilot pressure increase, the beginning of control is reduced by 17 bar (sizes 28 to 160) or 8 bar (size 250).

Example (sizes 28 to 160):

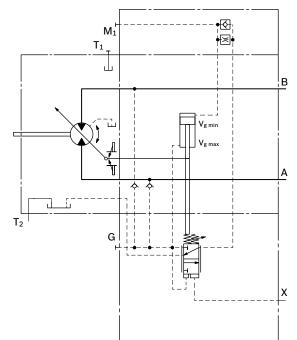

Beginning of control setting	300 bar	300 bar
Pilot pressure at port X	0 bar	10 bar
Beginning of control at	300 bar	130 bar

Note


Maximum permissible pilot pressure 100 bar.

Schematic HA1.T

Sizes 28 to 160



Schematic HA1.T

Schematic HA2.T

Sizes 28 to 160

DA - Automatic control speed-related

The variable motor A6VE with automatic speed-related control, is intended for use in hydrostatic travel drives in combination with the variable pump A4VG with DA control.

A drive-speed-related pilot pressure signal is generated by the A4VG variable pump, and that signal, together with the operating pressure, regulates the swivel angle of the hydraulic motor.

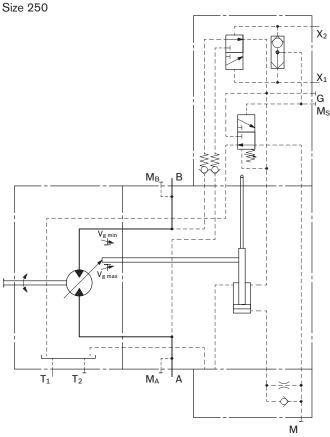
Increasing pump speed, i.e. increasing pilot pressure, causes the motor to swivel to a smaller displacement (lower torque, higher speed), depending on the operating pressure.

If the operating pressure exceeds the pressure setpoint set on the controller, the variable motor swivels to a larger displacement (higher torque, lower speed).

Pressure ratio p_{St}/p_{HD}: 3/100, 5/100

DA closed loop control is only suitable for certain types of drive systems and requires review of the engine and vehicle parameters to ensure that the motor is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Detailed information is available from our sales department and on the Internet at www.boschrexroth.com/da-control.


The beginning of control and the DA characteristic are influenced by case pressure. An increase in case pressure causes a decrease in the beginning of control (see page 5) and thus a parallel shift of the characteristic.

Hydraulic travel direction valve

Dependent on the direction of rotation (travel direction), the travel direction valve is switched by using pilot pressures connections X_1 or X_2 .

Direction of rotation	Operating pressure in	Pilot pressure in
cw	Α	X_1
CCW	В	X ₂

Schematic DA

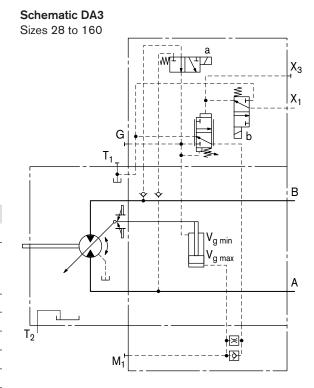
DA - Automatic control speed-related

DA3 Electric travel direction valve + electric V_{g max}-circuit

The travel direction valve is either spring offset or switched by energizing switching solenoid a, depending on the direction of rotation (travel direction).

When the switching solenoid b is energized, the DA control is overridden and the motor swivels to maximum displacement (high torque, lower speed) (electric $V_{g\ max}$ -circuit).

Technical data, solenoid a with Ø37


(travel direction valve)

		DA3					
Voltage		24 V (±20 %)					
Direction of rotation	Operating pressure in						
ccw	В	de-energized					
cw	Α	energized					
Nominal resist	tance (at 20 °C)	21.7 Ω					
Nominal power	er	26.5 W					
Minimum requ	ired current	0.67 A					
Duty cycle		100 %					
Type of protect	ction see connecto	or design page 28					

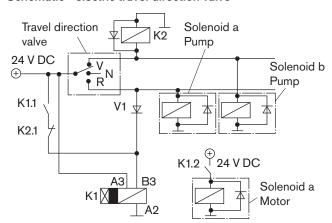
Technical data, solenoid b with Ø37

(electric override)

	DA3,						
Voltage	24 V (±20 %)						
No override	de-energized						
Displacement V _{g max}	energized						
Nominal resistance (at 20 °C)	21.7 Ω						
Nominal power	26.5 W						
Minimum required current	0.67 A						
Duty cycle	100 %						
Type of protection see connector design page 28							

Electric travel direction valve (for DA)

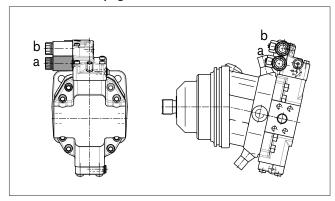
Application in travel drives in closed circuits. The travel direction valve of the motor is actuated by an electric signal that also switches the swivel direction of the travel drive pump (e. g. A4VG with DA control valve).


If the pump in the closed circuit is switched to the neutral position or into reverse, the vehicle may experience jerky deceleration or braking, depending on the vehicle's mass and current travel speed.

When the travel direction valve of the pump (e. g. 4/3-directional valve of the DA-control) is switched to

- the neutral position,
 the electric circuitry causes the previous signal on the travel direction valve on the motor to be retained.
- reversing,
 the electric circuitry causes the travel direction valve on the motor to switch to the other travel direction following a time delay (approx. 0.8 s) with respect to the pump.

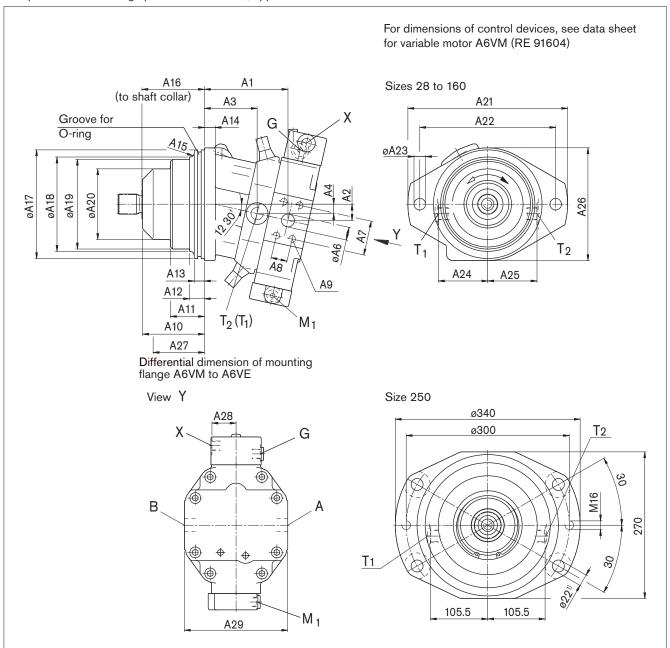
As a result, jerky deceleration or braking is prevented in both cases.


Schematic - electric travel direction valve

Note

The shown diodes and relays are not included in the delivery of the motor.

DA3 control (see page 22)



Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

HD1, HD2 - Proportional control hydraulic

Port plate 02 - SAE flange port A and B at side, opposite

Ports

Size	Service line port A, B SAE J518	Drain port T ₁ ; T ₂ ²⁾ DIN 3852 ³⁾
28	3/4 in	M18 x 1.5; 12 deep
55	3/4 in	M18 x 1.5; 12 deep
80	1 in	M18 x 1.5; 12 deep
107	1 in	M18 x 1.5; 12 deep
160	1 1/4 in	M26 x 1.5; 16 deep
250	1 1/4 in	M22 x 1.5; 14 deep

¹⁾ Hole ø22 with spot face ø48; 2 deep

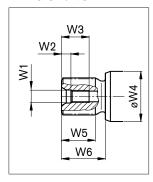
For further ports, see variable motor A6VM (RE 91604)!

^{2) 1}x plugged

³⁾ Observe the general instructions on page 40 for the maximum tightening torques.

Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

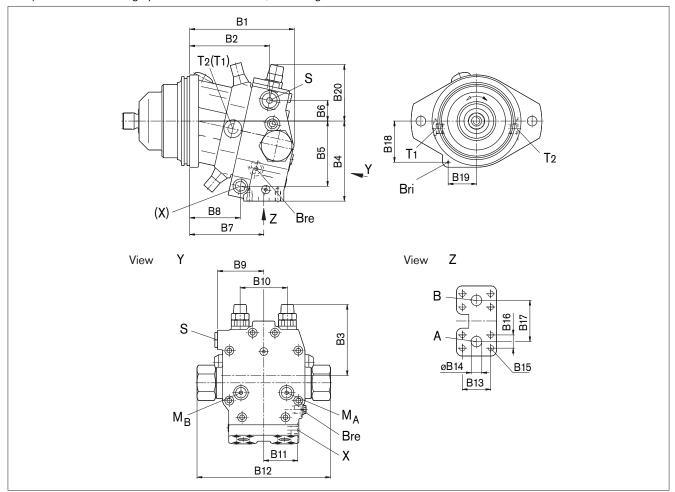

Standard flange L (sizes 28 to 160), M (size 250)

NG	A1	A2	А3	A 4	øA	16	A7	A8	A9 (DII	N 13) ²⁾		A10	A11	A12	A13	A14	A15
28	91	20	47	10	ø1	9	50.8	23.8	M10 x 1	.5; 17	deep	88	54	-	15	14	R10
55	123	24	77	14	ø1	9	50.8	23.8	M10 x 1	.5; 17	deep	91	50	22	15	16	R6
80	129	28	78	16	ø2	5	57.2	27.8	M12 x 1	.75; 17	deep	109.5	65	30	15	18	R10
107	137	30	84	18	ø2	5	57.2	27.8	M12 x 1	.75; 17	deep	121.8	72	35	15	18	R12
160	171	34	109	20	ø3	2	66.7	31.8	M14 x 2	2; 19 de	еер	122	67	29	15	20	R5
250	204	44	103	20	ø3	32	66.7	31.8	M14 x 2	2; 19 de	еер	131.5	_	_	14	25 ¹⁾	_
NG	A16 ³⁾	A17	A 1	18	A19	A20) A21	A22	øA23	A24	A25	A26	A27	A28	A29	O-rir	ng ⁴⁾
28	89	135-0.0	₂₅ 11	0	_	86	188	160	ø13.5	62.5	62.5	142	64	35.5	132	126x	4
55	92	160 _{-0.0}	₂₅ 13	9	132	104	1 235	200	ø17	72.5	72.5	166	59	35.5	152	150x	4
80	110.5	190 _{-0.0}	₂₉ 15	1	143	116	260	224	ø21	78.5	78.5	198	79	35.5	164	182x	4
107	122.8	200-0.0	₂₉ 16	8	160	132	2 286	250	ø21	86.5	86.5	210	82	40.5	180	192x	4
160	123	200-0.0	₁₂₉ 18	8	180	146	3 286	250	ø21	98.5	98.5	210	83	40.5	204	192x	4
250	133.5	260-0.0	₁₈₁ 23	30	_	_	_	_	_	_	_	_	83.5	48.5	224	250x	5

Adapter flange U (size 107)

NG	A1	A2	A3 A	4 <i>A</i>	\5	A6	Α7	A8	A9 (D	IN 13)	2)	A10	A11	A12	A13	A14
107	150	30	96 18	3 1	5.5	25	57.2	27.8	M12 x	1.75; 1	I7 deep	109.5	59.7	22.7	' 18	15
NG	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	O-ring ⁴⁾
107	R8	110.5	190-0.025	168	160	132	260	224	22	86.5	86.5	198	91.5	13.8	70	182x4

Drive shafts


NG	Splined shaft DIN 5480	W1 ²⁾⁵⁾	W2	W3	øW4	W5	W6	
28	A (W30x2x14x9g)	M10 x 1.5	7.5	22	ø35	27	35	
55	Z (W30x2x14x9g)	M12 x 1.75	9.5	28	ø45	27	35	
80	A (W40x2x18x9g)	M16 x 2	12	36	ø50	37	45	
107	Z (W40x2x18x9g)	M12 x 1.75	9.5	28	ø60	37	45	
160	A (W50x2x24x9g)	M16 x 2	12	36	ø70	44	55	
250	Z (W50x2x24x9g)	M16 x 2	12	36	ø60	49	58	

- 1) Hole ø22 with spot face ø48; 2 deep
- 2) Observe the general instructions on page 40 for the maximum tightening torques.
- 3) To shaft collar
- 4) The O-ring is not included in the delivery contents
- 5) Center bore according to DIN 332 (thread according to DIN 13)

Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HA3 – Automatic control high-pressure relatedPort plate 22 – SAE flange port A and B at bottom, with integrated counterbalance valve

Ports

NG	B1	B2	В3	B4	B5	В6	B7	B8	В9	B10	B11	B12	B13	B14	B15 (DIN 13) ²⁾	B16	B17
55	192	144	127	144	117	37	133	91	83	85	64	259	50.8	19	M10 x 1.5; 17 deep	23.8	80
80	198	150	136	162	132	40	138	93	83	90	69	259	57.2	25	M12 x 1.75; 17 deep	27.8	86
107	202	161	139	171.5	143	40	144	99	85	96	72	259	57.2	25	M12 x 1.75; 17 deep	27.8	86
160	240	195	152	197	162	47	177	128	102	108	78	259	66.7	32	M14 x 2; 19 deep	31.8	94

NG	B18	B19	B20	Service line port A, B SAE J518	Drain port T ₁ ; T ₂ ¹⁾ DIN 3852 ²⁾	Infeed S DIN 3852 ²⁾
55	74	51	102	3/4 in	M18 x 1.5; 12 deep	M22 x 1.5; 14 deep
80	90	53	114	1 in	M18 x 1.5; 12 deep	M22 x 1.5; 14 deep
107	96	58	122	1 in	M18 x 1.5; 12 deep	M22 x 1.5; 14 deep
160	94	65	136	1 1/4 in	M26 x 1.5; 16 deep	M27 x 2; 16 deep

^{1) 1}x plugged

Note:

Port plate HZ3 and HA3 are not identical!

²⁾ Observe the general instructions on page 40 for the maximum tightening torques.

Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Designa- tion	Port for	Standard ⁵⁾	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁸⁾
X	Pilot signal (open with HZ and HA3T, plugged with HA3)	ISO 6149	M14 x 1.5; 11.5 deep	100	0
M_{A}, M_{B}	Measuring stroking chamber	DIN 3852	M14 x 1.5; 11.5 deep	420	Χ
Bre	Brake release, external	DIN 3852	M14 x 1.5; 11.5 deep	30	O/X ⁶⁾
Bri	Brake release, internal (not provided on versions with flange U)	_	ø4	30	X/O ⁷⁾

- 1) Observe the general instructions on page 40 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 39).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) Must be connected for external piping. Is plugged with internal ducting.
- 7) Is plugged with external ducting. Must be connected with internal piping.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Connector for solenoids

DEUTSCH DT04-2P-EP04

Sizes 28 to 160

Molded, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

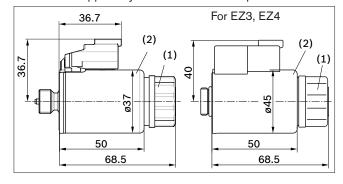
IP67 _____ DIN/EN 60529

and IP69K _____ DIN 40050-9

Circuit symbol

Mating connector

DEUTSCH DT06-2S-EP04 Bosch Rexroth Mat. No. R902601804


 Consisting of:
 DT designation

 - 1 housing
 DT06-2S-EP04

 - 1 wedge
 W2S

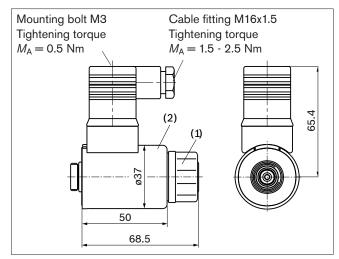
 - 2 sockets
 0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HIRSCHMANN DIN EN 175 301-803-A/ISO 4400

Size 250


Without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

IP65 DIN/EN 60529

The seal ring in the cable fitting is suitable for line diameters of 4.5 mm to 10 mm.

The HIRSCHMANN connector is included in the delivery contents of the motor.

Changing connector orientation

If necessary, you can change the connector orientation by turning the solenoid housing.

To do this, proceed as follows:

- 1. Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one turn counter-clockwise.
- 2. Turn the solenoid body (2) to the desired orientation.
- 3. Retighten the mounting nut. Tightening torque: 5+1 Nm. (WAF26, 12-sided DIN 3124)

On delivery, the connector orientation may differ from that shown in the brochure or drawing.

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

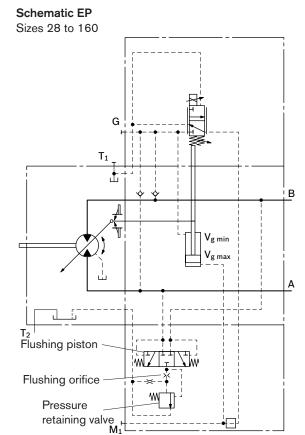
Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

The valve is mounted onto the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

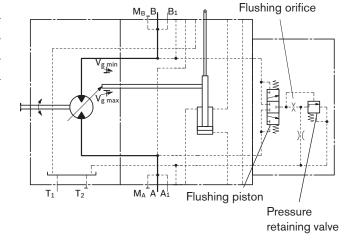
(observe when setting the primary valve) fixed setting ______16 bar

Switching pressure of flushing piston Δp 8±1 bar


Flushing flow q_v

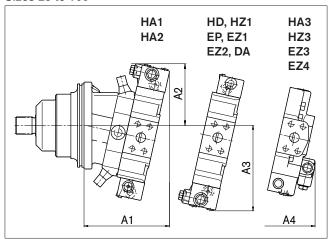
Orifices can be used to set the flushing flows as required. Following parameters are based on:

 $\Delta p_{ND} = p_{ND} - p_G = 25 \text{ bar and } v = 10 \text{ mm}^2/\text{s}$ (p_{ND} = low pressure, p_G = case pressure)

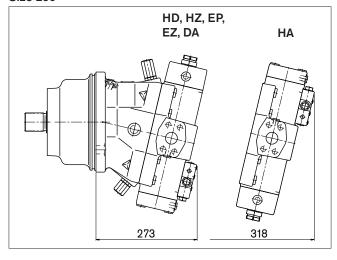

Size	Flushing flow q _V [L/min]	Mat. No. of orifice
28, 55	3.5	R909651766
80	5	R909419695
107	8	R909419696
160	10	R909419697
250	10	R909419697

With sizes 28 to 160, orifices can be supplied for flushing flows from 3.5 to - 10 L/min. For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 12 to 14 L at low pressure $\Delta p_{ND} = 25$ bar.

Schematic


Size 250

Flushing and boost pressure valve


Dimensions

Sizes 28 to 160

NG	A1	A2	А3	A4
28	152	125	161	_
55	182	133	176	176
80	194	141	192	176
107 (L flange)	204	143	202	186
107 (U flange)	217	143	202	199
160	245	154	220	-

Size 250

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

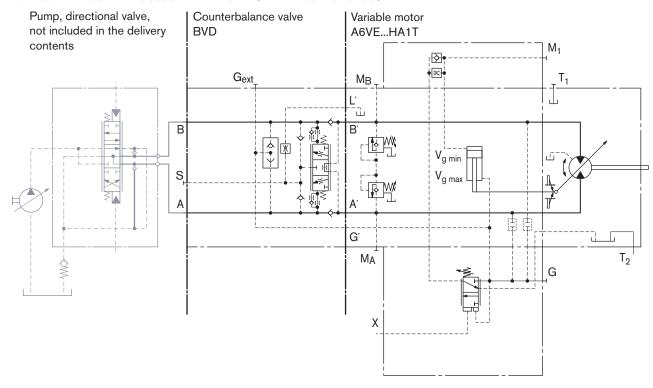
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note

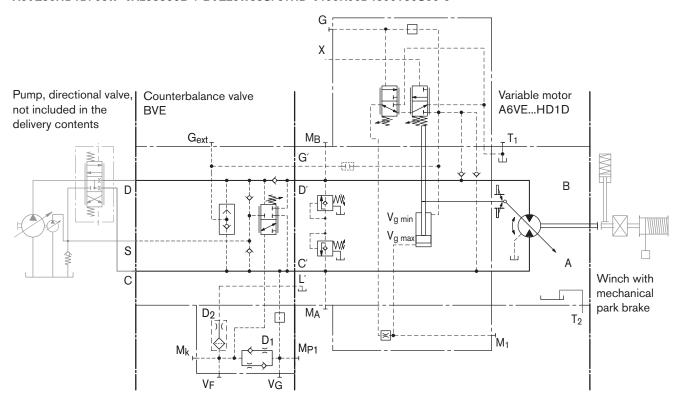

- BVD available for sizes 55 to 160 and BVE available for sizes 107 and 160.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A6VE80HA1T/63W-VAL38800A + BVD20F27S/41B-V03K16D0400S12
- For safety reasons, controls with beginning of control at V_{g min} (e. g. HA) are not permissible for winch drives!
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive for wheeled excavators A6VE80HA1T/63W-VAL38800A + BVD20F27S/41B-V03K16D0400S12


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

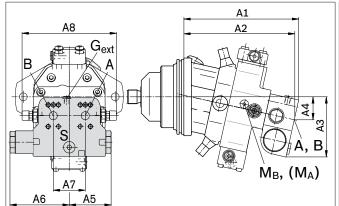
Winch counterbalance valve BVD...W and BVE

Application options

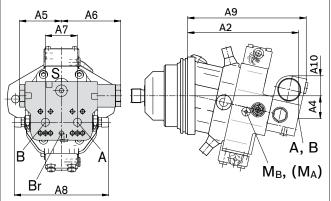
- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes A6VE80HD1D/63W-VAL38800B + BVE25W38S/51ND-V100K00D4599T30S00-0

Permissible input flow or pressure in operation with DBV and BVD/BVE


	Without val	ve	Restricted values in operation with DBV and BVD/BVE								
Motor			DBV				BVD/BVE				
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	
55	400/450	244	22	350/420	240	380	20	350/420	220	388	
80		312					(BVD)				
107		380	32		400	370				378	
107		380				380	25		320	388	
160		496					(BVD/BVE)				
250	350/400	675	On request								

DBV _____ pressure-relief valve
BVD ____ counterbalance valve, double-acting
BVE ____ counterbalance valve, one-sided


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A6VE...HA1/2

A6VE	Counterbalar	Counterbalance valve										
NGplate	Туре	Ports	Dimen	sions								
		A, B	A1	A2	А3	A 4	A5	A6	Α7	A8	Α9	A10
5538	BVD2017	3/4 in	252	243	143	50	98	139	75	222	267	50
8038	BVD2027	1 in	261	252	148	55	98	139	75	222	276	46
10737	BVD2028	1 in	280	271	152	59	98	139	84	234	295	41
10738	BVD2538	1 1/4 in	298	288	165	63	120.5	175	84	238	311	56
16038	BVD2538	1 1/4 in	334	324	170	68	120.5	175	84	238	349	51
10738	BVE2538	1 1/4 in	298	288	171	63	137	214	84	238	315	63
16038	BVE2538	1 1/4 in	334	324	176	68	137	214	84	238	349	59

Ports

Designation	Port for	Version	A6VE Plate	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁵⁾
A, B	Service line			SAE J518	see table above	420	0
S	Infeed	BVD20		DIN 3852 ⁴⁾	M22 x 1.5; 14 deep	30	Χ
		BVD25, E	BVE25	DIN 3852 ⁴⁾	M27 x 2; 16 deep	30	X
Br	Brake release, reduced high-pressure	L	7	DIN 3852 ⁴⁾	M12 x 1.5; 12.5 deep	30	0
			8	DIN 3852 ⁴⁾	M12 x 1.5; 12 deep	30	0
G _{ext}	Brake release, high-pressure	S		DIN 3852 ⁴⁾	M12 x 1.5; 12.5 deep	420	Х
$M_{A,}M_{B}$	Measuring pressure A and B			ISO 6149 ⁴⁾	M18 x 1.5; 14.5 deep	420	Х

¹⁾ At the mounting version for the controls HD and EP, the cast-in port designations A and B on the counterbalance valve BVD do not correspond with the connection drawing of the A6VE motor.

The designation of the ports on the installation drawing of the motor is binding!

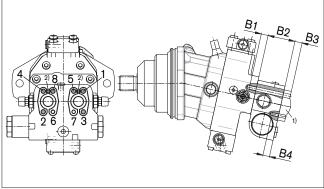
- 5) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

²⁾ Observe the general instructions on page 40 for the maximum tightening torques.

³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

⁴⁾ The spot face can be deeper than specified in the appropriate standard.

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8) _____ length B1+B2+B3 2 screws (6, 7) ____ length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10 x 1.5	10.9	75
M12 x 1.75	10.9	130
M14 x 2	10.9	205

- 1) SAE flange
- 2) Tacking screw (M6 x 1, length = B1 + B2, DIN 912)

NGplate	5538	8038, 10737	10738, 16038			
B1 ³⁾	M10 x 1.5 17 deep	M12 x 1.75 15 deep	M14 x 2 19 deep			
B2	68	68	85			
B3	customer-speci	customer-specific				
B4	M10 x 1.5 15 deep	M12 x 1.75 16 deep	M14 x 2 19 deep			

³⁾ Minimum required thread reach 1 x Ø-thread

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Counterbalance valve integrated BVI

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

The integrated counterbalance valve is designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking or traveling downhill.

Note

- The integrated counterbalance valve must be ordered additionally, see ordering code below.
- The counterbalance valve does not replace the mechanical service brake and park brake.
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Application options

- Track drive in excavator crawlers

Ordering code

BVI			00		-	
01	02	03	04	05		06

Counterbalance valve

01 Counterbalance valve inte	1 Counterbalance valve integrated					
Brake piston version	qv [L/min]	Material number				
Volume preselected	≤ 150	R902038832	51			
	= 150 - 210	R902038936	52			
	= 210 - 270	R902038833	53			
02	= 270 - 330	R902038834	54			
	= 330 - 400	R902038835	55			
	≥ 400	R902038836	56			

	Throttle mounting	Material number	
03	Constant throttle	R909432302	8000
103	Throttle pin	R909651165	0603

Check valve

04 Without residual opening	00]
-----------------------------	----	---

Brake release valve

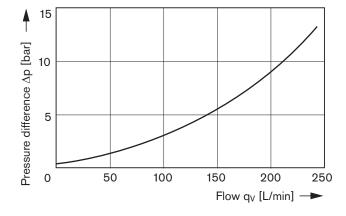
05	With brake release valve (standard with HZ)	Without disable function	1
	With brake release valve (standard with HA)	With disable function	2

Standard / special version

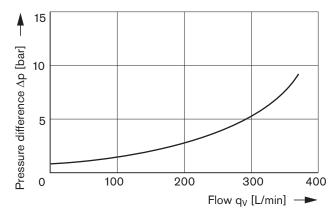
0	Standard version	0	
	Special version	S	Ì

Counterbalance valve integrated BVI

Table of values

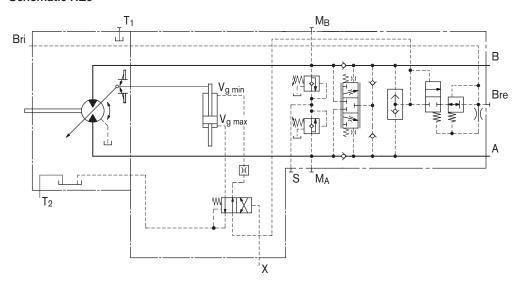

Operating pressure	nominal pressure	р	bar	350	
	peak pressure	р	bar	420	
Flow, maximum		q _{v max}	L/min	400	
Counterbalance spool	start of opening	р	bar	12	
	fully open	р	bar	26	
ressure-reducing valve for brake release	control pressure	р	bar	21+4	
(fixed setting)	beginning of control	р	bar	10+4	

Comparison between port plates 02 and 22

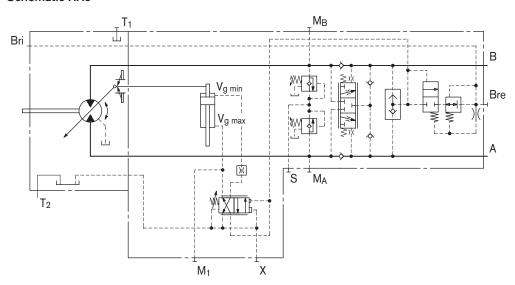

Maximum permissible input flow with restricted nominal pressure 350 bar, maximum pressure 420 bar

	Without restriction standard plate (Restricted values plate with integrated counterbalance valve (22)			
Motor	r				with BVI + DBV	
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	Code	p _{nom} /p _{max} [bar]	q _V [L/min]	
55	400/450	276	22	350/420	240	
80		332				
107		410				
160		533			400	

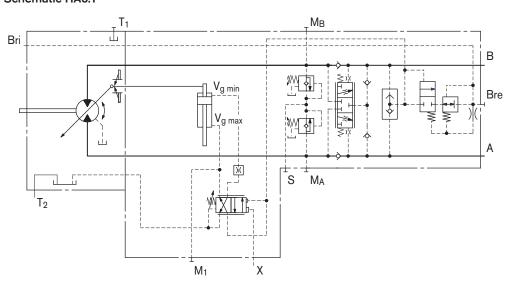
Infeed characteristic M22 x 1.5



Infeed characteristic M27 x 2



Counterbalance valve integrated BVI


Schematic HZ3

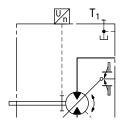
Schematic HA3

Schematic HA3.T

Speed sensor

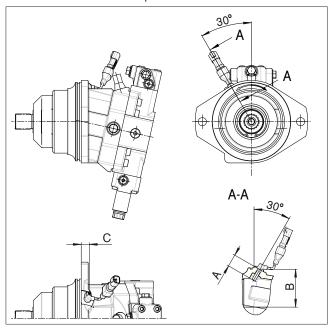
Version A6VE...U ("prepared for speed spensor", i.e. without sensor) is equipped with a toothed ring on the rotary group.

On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.


With the speed sensor DSA mounted, a signal proportional to motor speed can be generated. The sensor measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety instructions about the sensor can be found in the relevant data sheet (DSA – RE 95133).

The sensor is mounted on the port provided for this purpose with a mounting bolt.


We recommend ordering the A6VE variable motor complete with installed sensor.

Schematic

Dimensions

Version "V" with mounted speed sensor

NG	55	80	107	160	250
Number of teeth	54	58	67	75	86
Α	32	32	32	32	on request
В	83.3	87.3	96.3	104.3	on request
С	26	16.5	14.2	28.5	on request

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

39/40

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installa-

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 6.

Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

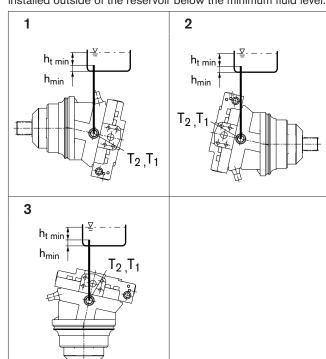
Note

In certain installation conditions, an influence on the control characteristics can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristics and changes in response time.

Installation position	Air bleed	Filling
1	_	T_2 , T_1
2	_	T_2 , T_1
3	_	T ₂ , T ₁
4	L ₁	T ₂ , T ₁ (L ₁)
5	L ₁	T ₂ , T ₁ (L ₁)
6	L ₁	T ₂ , T ₁ (L ₁)

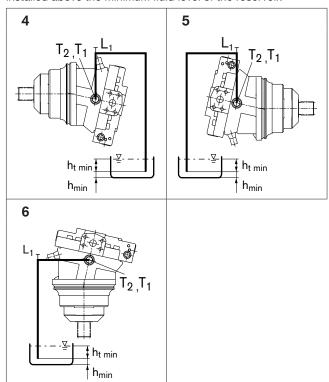
 L_1 Filling / air bleed

 T_1, T_2 Drain port


Minimum required immersion depth (200 mm) h_{t min}

Minimum required spacing to reservoir bot h_{min}

tom (100 mm)


Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

General instructions

- The motor A6VE is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instruction regarding tightening torques for the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO threads according to DIN 13, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads in the axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.
- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports Standard	Size of thread	Maximum permissible tightening torque of the female threads M _{G max}	Required tightening torque of the threaded plugs Mv ¹⁾	WAF hexagon socket of the threaded plugs
DIN 3852	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm
	M14 x 1.5	80 Nm	35 Nm	6 mm
	M16 x 1.5	100 Nm	50 Nm	8 mm
	M18 x 1.5	140 Nm	60 Nm	8 mm
	M22 x 1.5	210 Nm	80 Nm	10 mm
	M26 x 1.5	230 Nm	120 Nm	12 mm
	M27 x 2	330 Nm	135 Nm	12 mm
	M33 x 2	540 Nm	225 Nm	17 mm
	M42 x 2	720 Nm	360 Nm	22 mm

- 1) The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.
- $^{2)}$ In the "lightly oiled" state, the M_V is reduced to 17 Nm for M12 x 1.5.

Bosch Rexroth AG Mobile Applications Glockeraustrasse 4 89275 Elchingen, Germany Tel.: +49-7308-82-0 Fax: +49-7308-72-74 info.brm@boschrexroth.de

www.boschrexroth.com/axial-piston-motors

An den Kelterwiesen 14 72160 Horb, Germany Tel.: +49-7451-92-0 Fax: +49-7451-82-21

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be repro-

duced or given to third parties without its consent.

Subject to change.

Variable plug-in motor A6VE Series 65

RE 91615

Edition: 05.2016 Replaces: 08.2015

- ► High pressure motor for integration in mechanical gearbox
- ▶ Sizes 55 to 200
- ► Nominal pressure 400 bar
- ► Maximum pressure 450 bar
- ▶ Open and closed circuits

Features

- Space-saving construction due to recessed mounting flange
- ▶ Easy to install. Simply plug into the mechanical gearbox.
- Wide control range (can be swiveled to zero)
- Approved for very high rotational speeds
- ► High torque
- Optional with flushing and boost-pressure valve mounted
- Optional with integrated or mounted counterbalance valve
- ► Bent-axis design

Contents	
Type code	2
Hydraulic fluids	5
Flow direction	6
Working pressure range	7
Technical data	8
HP - Proportional hydraulic control	10
EP - Proportional control, electric	13
HZ – Two-point control, hydraulic	15
EZ – Two-point control, electric	16
HA – Automatic high-pressure related control	17
Dimensions Sizes 55 to 160	20
Dimensions Size 215	22
Connector for solenoids	24
Flushing and boost-pressure valve	25
BVD and BVE counterbalance valves	27
Integrated BVI counterbalance valve	30
Speed sensor	35
Setting range for displacement	36
Installation instructions	38
Project planning notes	40
Safety instructions	41

Type code

0	1	02	03	04	05	06	07	80	09	10		11	12	13	14	15	16	17	18	19	20)	21
A	6V	Е					0	0			/	65	М	W	V	0							
xial _I	piston ι	unit																					
01	Bent-a	axis d	esign	, varia	able, n	omina	l press	sure 40	00 bai	r, maxi	mum	pressu	re 450) bar									A6\
pera	ting mo	ode																					
02	Plug-ir	n mot	tor																				Е
ize (I	NG)																						
03	Geom	etric	displa	aceme	ent, se	e "Tec	hnical	data"	on pa	age 8							055	080	10	7	160	200]
Contr	ol devic	e															055	080	10	7	160	200	-
04	Propo	rtion	al cor	ntrol			positi	ve cor	trol				Δp	St = 10) bar		•	•	•	,	•	•	HP:
	Hydra	ulic												St = 25			•	•	•	,	•	•	HP:
							negat	ive co	ntrol				Δp	_{St} = 10) bar		•	•	•	,	•	•	HP
													Δp	st = 25	5 bar		•	•	•	,	•	•	HP6
	Propo		al cor	ntrol			positi	ve cor	itrol				U	= 12 V	•		•	•	•	,	•	•	EP1
	electri	ical											U	= 24 V	'		•	•	•		•	•	EP2
							negat	ive co	ntrol				U	= 12 V	'		•	•	•	,	•	•	EP
													U	= 24 V	'		•	•	•	·	•	•	EP
	Two-p	oint (contro	ol			negat	ive co	ntrol								_		<u> </u>		•	•	HZ
	Hydra	ulic															•	•	•	,	● ¹⁾	-	HZ
	Two-p		contro	ol			negat	ive co	ntrol				U	= 12 V	'		_	<u> </u>	<u> </u>		•	•	EZS
	electri	ical											U	= 24 V	'		<u> </u>	<u> </u>	<u> </u>		•	•	EZ
													U	= 12 V	'		•	•	•		-	-	EZ7
													\boldsymbol{U}	= 24 V	'		•	•	•	,	-	-	EZ8
	Autom						with r	ninimu	ım pr	essure	incre	ase	Δp	≤ app	orox. 1	.0 bar	•	•	•	,	•	•	HA:
	High p			epend	ent,		with p	ressu	re inc	rease			Δp	= 100) bar		•	•	•	·	•	•	HA2
	positiv	vc co					with r	ninimu	ım pr	essure	incre	ase	Δp	≤ app	orox. 1	.0 bar	0	0	•		•	_	НАЗ
ressi	ure con	trol/	overri	ide													055	080	10	7	160	200	
05	Witho	ut pr	essure	e cont	trol/ov	erride	!										•	•	•	,	•	•	00
	Pressu	ure co	ontrol	fixed	settin	ıg, onl	y for H	P5, H	² 6, EF	5 and	EP6						•	•	•	,	•	•	D1
	Overri	de of	the F	HA1, H	A2, an	id HA3	contr	ols, hy	drauli	c remo	te co	ntrolled	d, prop	ortion	nal		•	•	•	,	•	•	Т3
onne	ctor fo	r sol	enoid	s ²⁾ (se	ee pag	e 24)																	
06	Witho	ut co	nnect	or (w	ithout	solen	oid, or	ly for	hydra	ulic co	ntrol)												0
	DEUTS	SCH -	molo	ded co	nnect	or, 2-p	in, wit	hout	suppr	essor c	liode												Р
dditi	onal fu	nctio	n 1																				
07	Witho			nal fur	nction																		0
/qqi+i	onal fu	nctio	n 2																				
wuiti				al fur	nction																		0

Only possible in conjunction with port plate 6 (integrated counterbalance valve)

²⁾ Connectors for other electric components may deviate

P	CV/	-	1				07	08	09	10	1	11	12 M	13 W	12 V	\neg	15	16	17		19 	20 	2
	A6V	E		ļ			0	0			/	65	IVI	w	V		0		ļ				-
	onse t																						
09			ımping	(stan	dard w	ith HP																	0
	Dam	ping										EZ, H			BVE	COL	ınterb	alan	ce val	ves			1
						One	-sided	l in in	let to	large s	trokin	g chan	nber (I	HA)									4
Setti	ng ran	ige foi	r displ	aceme	nt ³⁾												_						
10	$V_{g\;max}$	_x -setti	ng scr	ew		$V_{g\;m}$	_{in} -sett	ing sc	rew								05	5	080	107	160	200	
	No se	etting	screw			sho	rt (0-a	djusta	able)								•	,	•	•	•	•	A
						med	lium										•	,	•	•	•	•	В
						long	5										•	,	•	•	•	•	С
						extr	a long											.	-	•	•	•	D
	short	t				sho	rt (0-a	djusta	able)								•	•	•	•	•	•	E
						med	lium										•	•	•	•	•	•	F
						long	5										•	,	•	•	•	•	G
						extr	a long												-	•	•	•	Н
	medi	ium				sho	rt (0-a	djusta	able)								•	•	•	•	•	•	J
						med	lium										•	•	•	•	•	•	K
						long	5										•	•	•	•	•	•	L
						extr	a long											.	-	•	•	•	М
Serie	es																						
11	Serie	es 6, ir	ndex 5																				65
/ersi	ion of	port a	nd fas	tening	threa	nds																	
/ers i	ion of						accor	ding t	o ISO	6149													М
12	Metri	ic, poi	t thre			i ds ig seal	accor	ding t	o ISO	6149													М
12 Direc	Metri	ic, por	t threa	ad witl	n O-rin	g seal	accor	ding t	o ISO	6149													
12 Direct	Metri	ic, por of rota ed on	t threa		n O-rin	g seal	accor	ding t	o ISO	6149													M
12 Direct 13 Seali	Metri	ic, por of rota ed on terial	tion drive	ad with	n O-rin	g seal	accor	ding t	o ISO	6149													w
12 Direct	Metri	ic, por of rota ed on terial	t threa	ad with	n O-rin	g seal	accor	ding t	o ISO	6149													
12 Direct 13 Seali 14	Metri	of rota ed on terial	tion drives	ad with	n O-rin	g seal	accor	ding t	o ISO	6149													w
12 Direct 13 Seali	Metrication of Views FKM	of rotaled on terial (fluorest bearing)	tion drives	ad with	n O-rin	g seal	accor	ding t	o ISO	6149													w
12 Direct 13 Seali 14 Drive	Metri Viewer FKM Stand	of rota ed on terial (fluor t beari	tion drive:	ad with	n O-rin	g seal	accor	ding t	o ISO	6149							05	55	080	107	160	200	w v
12 Direct 13 Seali 14 Drive	Metri ction o Viewer ing ma FKM shaft Stand	of rota ed on terial (fluor t beari	tion drive s oelaste	ad with	n O-rin	g seal		ding t	o ISO	6149							05		080	107	160	200	W V
12 Direct 13 Seali 14 Drive 15	Metri ction o Viewer ing ma FKM shaft Stand	of rota ed on terial (fluor beari dard b	tion drive s oelaste	ad with	n O-rin	g seal	-2	ding t	o ISO	6149								•	080	107	160	200	
12 Direct 13 Seali 14 Drive 15	Metri ction o Viewer ing ma FKM shaft Stand	of rota ed on terial (fluor beari dard b	tion drive s oelaste	ad with	n O-rin	etional	-2 -2	ding t	o ISO	6149							•		-	-	-	-	0 P2 Y2
12 Direct 13 Seali 14 Drive 15	Metri ction o Viewer ing ma FKM shaft Stand	of rota ed on terial (fluor beari dard b	tion drive s oelaste	ad with	n O-rin	tional	-2 -2 -2	ding t	o ISO	6149							-		-	-	-	-	W V O P2 Y2 S2 S2
12 Direct 13 Seali 14 Drive 15 Moul	Metriction o Viewer Ing ma FKM Stand Stand ISO 3	ic, poi of rota ed on terial (fluoration) bearing dard to lange 3019-2	tion drive s oelaste	ad with	n O-rin	160 190 200	-2 -2 -2	ding t	o ISO	6149							-		- • -	- - •	- - •	- - -	W V O P2 Y2 S2 S2
12 Direct 13 14 Drivet 15 Mount 16	Metriction o Viewer Ing ma FKM Stand Stand ISO 3	ic, poi of rota ed on terial (fluor beari dard b flange 3019-2	tion drive: oelasto ing pearing	ad with	n O-rin	160 190 200 260	-2 -2 -2 -4		o ISO	6149								55	- - - 080	- - • - 107	- - • -	- - - •	W V O P2 Y2 S2 Z2
12 Direct 13 Seali 14 Drive 15 Moul 16	Metriction o Viewer Ing ma FKM Stand Stand ISO 3	ic, poi of rota ed on terial (fluor beari dard b flange 3019-2	tion drive: oelasto ing pearing	ad with	n O-rin	160 190 200 260	-2 -2 -2 -4	4×9g	o ISO	6149							05	55	- • - - 080 -	- - • - 107	- - •	- - -	W V O O P2 Y2 S22 Z2 Z6
12 Direct 13 14 Drivet 15 Mount 16	Metriction o Viewer FKM Stand Stand ISO 3	ic, poi of rota ed on terial (fluor beari dard b flange 3019-2	tion drive: oelasto ing pearing	ad with	n O-rin	160 190 200 260 W30	-2 -2 -2 -4 0×2×14	4×9g 3×9g	o ISO	6149							05	55	- • - - 080 -	- - - 107 -	- - - 160 - -	- - - • 200	W V O P2 Y2 S2 Z2 Z6 Z8 Z8 Z8 Z8 Z8 Z8 Z8
12 Direct 13 14 Drivet 15 Mount 16	Metriction o Viewer FKM Stand Stand ISO 3	ic, poi of rota ed on terial (fluor beari dard b flange 3019-2	tion drive: oelasto ing pearing	ad with	n O-rin	160 190 200 260 W35 W40	-2 -2 -2 -4	4×9g 6×9g 3×9g	o ISO	6149							05	55	- • - - 080 -	- - • - 107	- - • - 160	- - - • 200	w v

3) The adjustment values for the setting screws can be found in the table (page 36).

o = On request

• = Available

- = Not available

4 **A6VE Series 65** | Variable plug-in motor Type code

Αθ	5V	Е					0	0			7	65	М	Ιw	V	0		\top		Π-	
	-											1 30	ı	1							
	ng po															055	080	107	160	200	
-			<u> </u>		nd B at											•	•	•	•	•	1
- F					nd B la					-41 5	\/I -	4			- 4)	•	•	•	•	•	2
								y with	integr	ated E	VI C	ounterl		e vaive	="/	0	0	•	•	-	6
- 1					oressu ounter			e ⁵⁾				BVD2		F0F		•	•	•	_	-	7
	varvoc		- Tourier			Darane						BAD	25, BV	E25				•	•	•	8
	live (see page 25 to 34) 19 Without valve														055	080	107	160	200		
· -																•	•	•	•	•	0
	With BVD/BVE counterbalance valves mounted ⁶⁾														•	•	•	•	•	W	
	Integrated brake release valve (only with port plate 6)										For e	xterna	al pipir	ng	0	0	•	•	-	Υ	
	New Color of the C										for ir	terna	ducti	ng	0	0	•	•	-	Z	
- 1	With flushing and boost-pressure valve mounted, flushing								ning or	1	Flusi	ning fl	ow $q_{\scriptscriptstyle ee}$	[l/min]							
	both sides Flushing flow when:								3.5				•	•	•	-	-	Α			
		_			and ν =	: 10 m	m²/s					5				•	•	•	-	-	В
					= case							8				•	•	•	•	•	С
	Only p	oossib	le wit	h port	t plate	s 1 and	12					10				•	•	•	•	•	D
												14				•	•	•	_	-	F
												15				_	-	-	●7)	●7)	G
												18				-	-	●7)	●7)	●7)	- 1
												21				-	_	•7)	●7)	●7)	J
												27				-	-	•7)	●7)	●7)	K
												31				-	-	•7)	●7)	●7)	L
												37				-	-	-	●7)	●7)	М
oeed	sens	or (se	e pag	e 35)												055	080	107	160	200	
peed sensor (see page 35) 20 Without speed sensor												•	•	•	•	•	0				
Prepared with DSA speed sensor											•	•	•	•	•	U					
ľ	With I	DSA s _l	peed :	sensor	r mour	ited ⁸⁾										•	•	•	•	•	٧
		specia																	1		1
		ard ve																			0
	Stand	ard ve	ersion	with i	nstalla	ition v	ariants	s, e.g.	T port	s oper	n and	d close	d cont	rarv to	stand	ard					Y
H								,	10.00	. 1- 51				. , .							

= Available
 On request
 = Not available

Notice

Special version

▶ Note the project planning notes on page 40.

S

⁴⁾ Only for HZ7 and HA3. Supplement specification for integrated BVI counterbalance valve, see separate type code on page 30. Note the restrictions described on page 31.

⁵⁾ Possible only in combination with HP, EP and HA control Note the restrictions described on page 27.

⁶⁾ Type code for counterbalance valve to be quoted separately in accordance with data sheet 95522 – BVD or 95525 – BVE).

Note the restrictions described on pages 27 and 30.

⁷⁾ Not for EZ7, EZ8, HZ7 and HA3

⁸⁾ Specify the type code separately for sensor in accordance with data sheet 95133 – DSA and observe the requirements for the electronics.

Hydraulic fluids

The A6VE variable motor is designed for operation with HLP mineral oil according to DIN 51524. Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- ▶ 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids
- ▶ 90222: Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)
- ▶ 90223: Fire-resistant, water-containing hydraulic fluids (HFC, HFB)
- ▶ 90225: Axial piston units for operation with water-free and water-containing fire-resistant hydraulic fluids (HFDR, HFDU, HFB, HFC).

The variable motor A6VE is not suitable for operation with HFA hydraulic fluid. If operating with HFB-, HFC- and HFD or environmentally acceptable hydraulic fluids, the limitations regarding technical data or other seals must be observed.

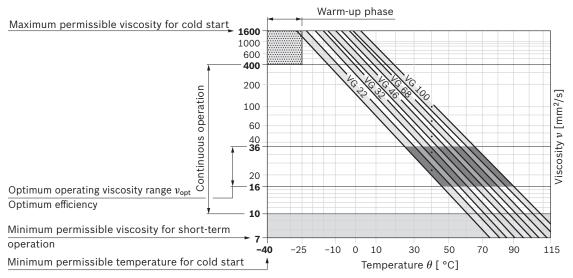
Notes on selection of hydraulic fluid

The hydraulic fluid should be selected such that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt} see selection diagram).

Notice

At no point of the component may the temperature be higher than 115 °C. The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be met due to extreme operating parameters,


we recommend the use of a flushing and boost-pressure valve (see page 25).

Viscosity and temperature of hydraulic fluids

	Viscosity	Temperature	Comment
Cold start ¹⁾	$v_{\text{max}} \le 1600 \text{ mm}^2/\text{s}$	θ _{St} ≥ -40 °C	$t \le 3 \text{ min, } n \le 1000 \text{ min}^{-1}, \text{ without load } p \le 50 \text{ bar}$
Permissible temper	rature difference	ΔT ≤ 25 K	between axial piston unit and hydraulic fluid in the system
Warm-up phase	$v = 1600 \text{ to } 400 \text{ mm}^2/\text{s}$	θ = -40 °C to -25 °C	At $p \le 0.7 \times p_{\text{nom}}$, $n \le 0.5 \times n_{\text{nom}}$ and $t \le 15$ min
Continuous operation	$v = 400 \text{ to } 10 \text{ mm}^2/\text{s}$		this corresponds, for VG 46 for example, to a temperature range of +5 $^{\circ}$ C to +85 $^{\circ}$ C (see selection diagram)
		θ = -25 °C to +103 °C	measured at port T Observe the permissible temperature range of the shaft seal (ΔT = approx. 12 K between bearing/shaft seal and port T)
	$v_{\rm opt} = 36 \text{ to } 16 \text{ mm}^2/\text{s}$		Range of optimum operating viscosity and efficiency
Short-term operation	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		$t < 3 \min, p < 0.3 \times p_{\text{nom}}$

 $_{\rm 1)}$ For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range -40 °C to +90 °C).

▼ Selection diagram

RE 91615/05.2016, Bosch Rexroth AG

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.

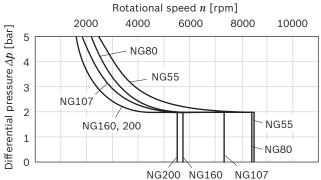
At very high hydraulic fluid temperatures (90 °C to maximum 103 °C, measured at port **T**), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

Effect of case pressure on beginning of control

An increase in the case pressure leads to an increase in the beginning of control for the HP and HA.T3 controls.

For EP and HA control, an increase in case pressure has no effect on the beginning of control.

The factory setting for the beginning of control is made at $p_{\rm abs}$ = 2 bar case pressure.

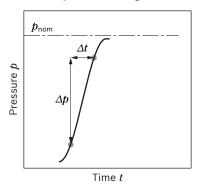

Flow direction

Direction of rotation, viewed on drive shaft									
clockwise	counter-clockwise								
A to B	B to A								

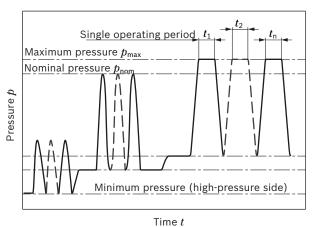
Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the rotational speed of the axial piston unit and the leakage pressure in the housing (case pressure). Momentary (t < 0.1 s) pressure peaks of up to 10 bar are permitted. The service life of the shaft seal decreases with increasing frequency of pressure peaks and increasing mean differential pressure. The case pressure must be equal to or higher than the ambient pressure.

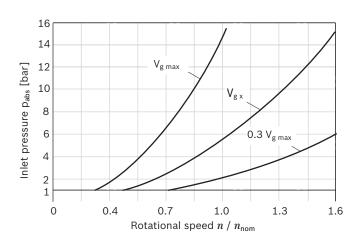


The FKM shaft seal ring may be used for leakage temperatures from -25 °C to +115 °C. For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).


Working pressure range

Pressure at working port A or B		Definition
Nominal pressure p_{nom}	400 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p _{max}	450 bar	The maximum pressure corresponds to the maximum working pressure with-
Single operating period	10 s	in the single operating period. The sum of the single operating periods must
Total operating period	300 h	— not exceed the total operating period.
Minimum pressure (high-pressure side)	25 bar	Minimum pressure at the high-pressure side (A or B) required to prevent damage to the axial piston unit.
Minimum pressure – operation as a pump (inlet)	See diagram below	To avoid damage to the axial piston motor during operation as a pump (change of the high-pressure side at constant direction of rotation, e.g. during braking processes) a minimum pressure has to be ensured at the working port (inlet). The minimum required pressure is dependent on the rotational speed and displacement of the axial piston unit (see characteristic curve).
Summation pressure p_{Su} (pressure A + pressure B)	700 bar	The summation pressure is the sum of the pressures at the working ports (A and B).
Rate of pressure change $R_{A \text{ max}}$		Maximum permissible speed of pressure build-up and reduction during
with built-in pressure relief valve	9000 bar/s	a pressure change across the entire pressure range.
without pressure relief valve	16000 bar/s	

▼ Rate of pressure change $R_{A \text{ max}}$



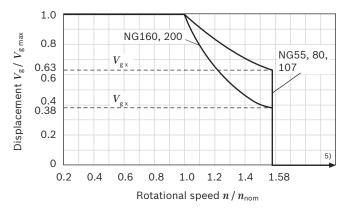
▼ Pressure definition

Total operating period = $t_1 + t_2 + ... + t_n$

▼ Minimum pressure – operation as a pump (inlet)

This diagram is only valid for the optimum viscosity range of $n_{\rm opt}$ = 36 to 16 mm²/s.

If the above mentioned conditions cannot be ensured please contact us.


Notice

Working pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids, please contact us.

Technical data

Size		NG		55	80	107	160	200
Displacement geometric, per revo	olution	$V_{g\;max}$	cm ³	54.8	80	107	160	200
		$V_{g\;min}$	cm ³	0	0	0	0	0
		V_{gx}	cm ³	35	51	68	61	76
Maximum rotational speed ¹⁾ (ob-	at $V_{ m gmax}$	n_{nom}	rpm	4450	3900	3550	3100	2900
serving the maximum permissi-	where $V_{\rm g} < V_{\rm gx}$ (see diagram)	$n_{\sf max}$	rpm	7000	6150	5600	4900	4600
ble inlet flow)	where V_{g0}	$n_{\sf max}$	rpm	8350	7350	6300	5500	5100
Inlet flow ²⁾	at n_{nom} and V_{gmax}	$q_{ m v\; max}$	l/min	244	312	380	496	580
Torque ³⁾	at $V_{\rm gmax}$ and Δp = 400 bar	T	Nm	349	509	681	1019	1273
Rotary stiffness	$V_{ m g\ max}$ to $V_{ m g}/2$	c_{min}	kNm/rad	10	16	21	35	44
	V _g /2 to 0 (interpolated)	c_{min}	kNm/rad	32	48	65	105	130
Moment of inertia for rotary grou	р	J_{TW}	kgm²	0.0042	0.008	0.0127	0.0253	0.0353
Maximum angular acceleration		α	rad/s²	31500	24000	19000	11000	11000
Case volume		V	I	0.75	1.2	1.5	2.4	3.0
Weight approx.	Port plate 1, 2, 7, and 8	m	kg	28	36	46	62	78
	Port plate 6	m	kg	37	45	52	70	_

▼ Permissible displacement in relation to rotational speed

Determining the operating characteristics													
Inlet flow	q_{v}	=	$\frac{V_{g} \times n}{1000 \times \eta_{v}}$		[l/min]								
Rotational speed	n	=	$rac{q_{ m v} imes 1000 imes \eta_{ m v}}{V_{ m g}}$		[rpm]								
Torque	T	=	$\frac{V_{g} \times \Delta p \times \eta_{hm}}{20 \times \pi}$		[Nm]								
Power	P	=	$\frac{2 \pi \times T \times n}{60000} =$	$= \frac{q_{v} \times \Delta p \times \eta_{t}}{600}$	[kW]								

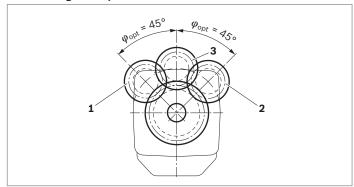
Notice

- ► Theoretical values, without efficiency and tolerances; values rounded
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet 90261.

Key

- $V_{\rm g}$ Displacement per revolution [cm 3]
- Δp Differential pressure [bar]
- n Rotational speed [rpm]
- η_{v} Volumetric efficiency
- $\eta_{
 m hm}$ Hydraulic-mechanical efficiency
- $\eta_{\rm t}$ Total efficiency ($\eta_{\rm t}$ = $\eta_{\rm v}$ × $\eta_{\rm hm}$)

- 1) The values are applicable:
 - for the optimum viscosity range from $v_{\rm opt}$ = 36 to 16 mm²/s
 - with hydraulic fluid based on mineral oils
- Observe limitation of input flow due to counterbalance valve (page 27).
- 3) Torque without radial force, with radial force see page 9.
- $^{4)}$ Values in this range on request


Permissible radial and axial forces of the drive shafts

Size	NG		55		80		107		160		200
Drive shaft			W30	W35	W35	W40	W40	W45	W45	W50	W50
Maximum radial force ¹⁾ at $ F_q $	$F_{q\;max}$	N	7581	8069	10867	10283	13758	12215	18278	16435	20532
distance a (from shaft collar)	a	mm	17.5	20.0	20.0	22.5	22.5	25.0	25.0	27.5	27.5
Maximum torque at $F_{ m q\ max}$	$T_{q\;max}$	Nm	281	349	470	509	681	681	1019	1019	1273
Maximum differential pressure at $V_{ m gmax}$ and $F_{ m q\;max}$	$\Delta p_{q\;max}$	bar	322	400	369	400	400	400	400	400	400
Maximum axial force, at	+ F _{ax max}	N	0	0	0	0	0	0	0	0	0
standstill or depressurized F_{ax} operation	- F _{ax max}	N	500	500	710	710	900	900	1120	1120	1250
Permissible axial force per bar working pressure	+ F _{ax perm/bar}	N/bar	7.5	7.5	9.6	9.6	11.3	11.3	15.1	15.1	17.0

Effect of radial force $F_{\rm q}$ on the service life of bearings

By selecting a suitable direction of radial force $F_{\rm q}$, the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

▼ Toothed gear output drive

- 1 "Counter-clockwise" rotation, pressure at port B
- 2 "Clockwise" rotation, pressure at port A
- 3 Bidirectional direction of rotation

Notice

- ► The values given are maximum values and do not apply to continuous operation.
- ▶ The permissible axial force in direction $-F_{ax}$ is to be avoided as the lifetime of the bearing is reduced.
- ► Special requirements apply in the case of belt drives. Please contact us.

¹⁾ With intermittent operation

HP - Proportional hydraulic control

The proportional hydraulic control provides infinite adjustment of the displacement. The control is proportional to the pilot pressure at port **X**.

HP1, **HP2** positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible rotational speed at minimum pilot pressure)
- ► End of control at $V_{\rm g\ max}$ (maximum torque, minimum rotational speed at maximum pilot pressure)

HP5, HP6 negative control

- ▶ Beginning of control at $V_{\rm g \, max}$ (maximum torque, minimum rotational speed at minimum pilot pressure).
- ▶ End of control at $V_{g \, min}$ (minimum torque, maximum permissible rotational speed, at maximum pilot pressure).

Notice

- ▶ Maximum permissible pilot pressure: p_{St} = 100 bar
- ► The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us.

 Bear in mind that pressures up to 450 bar can occur at
 - Bear in mind that pressures up to 450 bar can occur at port **G**.
- ► Specify the desired beginning of control in plain text when ordering, e.g. beginning of control at 10 bar.
- ► The beginning of control and the HP characteristic curve are influenced by the case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 6) and thus a parallel displacement of the characteristic curve.
- ► A leakage flow of maximum 0.3 l/min can occur at port X due to internal leakage (working pressure > pilot pressure). The control is to be suitably configured to avoid an independent build-up of pilot pressure.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for sizes 55 to 200

HP without damping.

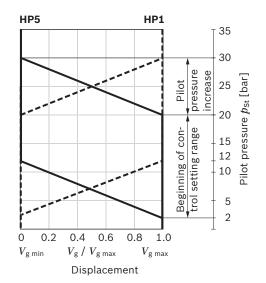
HP.D with throttle pin on both sides, symmetrical (see table)

Optional for sizes 55 to 200

HP with throttle pin on both sides, symmetrical (see table)

▼ Throttle pin overview

Size	55	80	107	160	200	
Groove size [mm]	0.45	0.45	0.55	0.55	0.65	


HP1, HP5 – pilot pressure increase $\Delta p_{\rm St}$ = 10 bar HP1 positive control

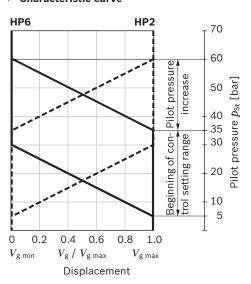
A pilot pressure increase of 10 bar at port X results in an increase in displacement from $V_{\rm g\ min}$ to $V_{\rm g\ max}$.

HP5 negative control

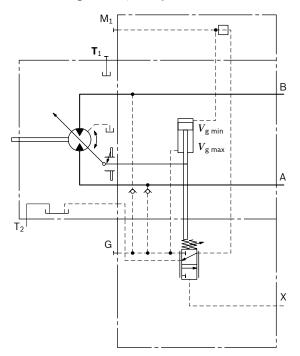
A pilot pressure increase of 10 bar at port **X** results in a decrease in displacement from $V_{\rm g\ max}$ to $V_{\rm g\ min}$. Beginning of control, setting range 2 to 20 bar Standard setting: beginning of control at 3 bar (end of control at 13 bar)

▼ Characteristic curve

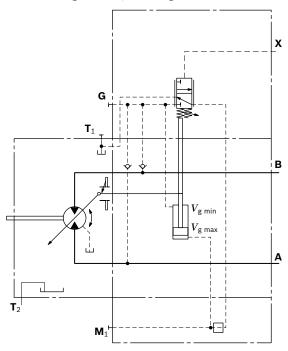
HP2, HP6 pilot pressure increase Δp_{St} = 25 bar HP2 positive control


A pilot pressure increase of 25 bar at port **X** results in an increase in displacement from $V_{\rm g\ min}$ to $V_{\rm g\ max}$.

HP6 negative control

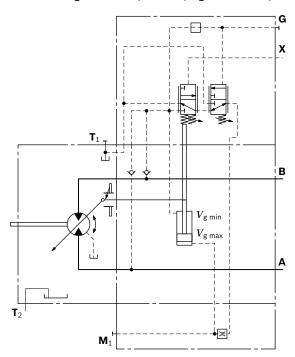

A pilot pressure increase of 25 bar at port **X** results in a decrease in displacement from $V_{\rm g\ max}$ to $V_{\rm g\ min}$. Beginning of control, setting range 5 to 35 bar Standard setting:

beginning of control at 10 bar (end of control at 35 bar)


▼ Characteristic curve

▼ Circuit diagram HP1, HP2 (positive control)

▼ Circuit diagram HP5, HP6 (negative control)


HP5D1, HP6D1 Pressure control, fixed setting

The pressure control overrides the HP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger angle.

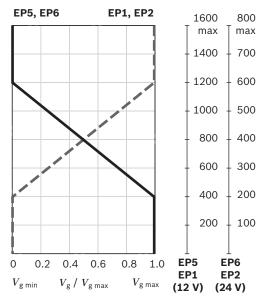
The increase in displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve 80 to 400 bar

▼ Circuit diagram HP5D1, HP6D1 (negative control)

EP - Proportional control, electric

The proportional electric control provides infinite adjustment of the displacement. Control is proportional to the electric control current applied to the solenoid.


EP1, EP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible rotational speed at minimum control current)
- ► End of control at $V_{\rm g \ max}$ (maximum torque, minimum rotational speed at maximum control current)

EP5, EP6 negative control

- ▶ Beginning of control at $V_{g max}$ (maximum torque, minimum rotational speed at minimum control current)
- ▶ End of control at $V_{\rm g \, min}$ (minimum torque, maximum permissible rotational speed at maximum control current)

▼ Characteristic curve

Notice

The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us.

Bear in mind that pressures up to 450 bar can occur at port **G**.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for sizes 55 to 200

EP without damping.

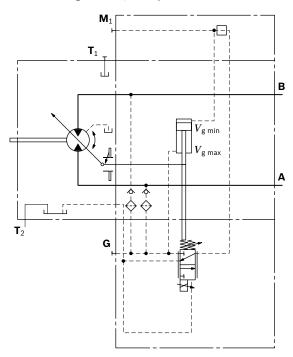
EP.D with throttle pin on both sides, symmetrical (see table)

Optional for sizes 55 to 200

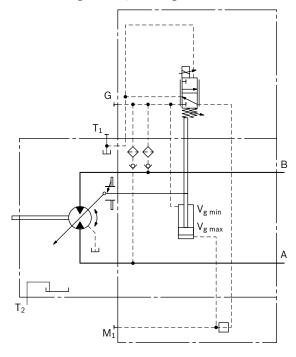
EP with throttle pin on both sides, symmetrical (see table)

▼ Throttle pin overview

Size	55	80	107	160	200
Groove size [mm]	0.45	0.45	0.55	0.55	0.65


Technical data, solenoid	EP1, EP5	EP2, EP6
Voltage	12 V (±20%)	24 V (±20%)
Control current		
Beginning of control	400 mA	200 mA
End of control	1200 mA	600 mA
Current limit	1.54 A	0.77 A
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω
Dither		
Frequency	100 Hz	100 Hz
Minimum oscillation range ¹⁾	240 mA	120 mA
Duty cycle	100%	100%
Type of protection: see connector y	ersion page 24	

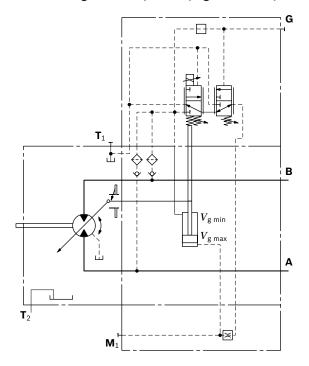
Various BODAS controllers with application software and amplifiers are available for controlling the proportional solenoids.


Further information can also be found on the internet at www.boschrexroth.de/mobilelektronik.

¹⁾ Minimum required oscillation range of the control current $\Delta I_{\text{p-p}}$ (peak to peak) within the respective control range (start of control to end of control)

▼ Circuit diagram EP1, EP2 (positive control)

▼ Circuit diagram EP5, EP6 (negative control)

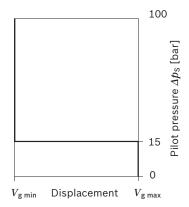

EP5D1, EP6D1 Pressure control, fixed setting

The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger angle.

The increase in displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve 80 to 400 bar

▼ Circuit diagram EP5D1, EP6D1 (negative control)


HZ - Two-point control, hydraulic

The two-point hydraulic control allows the displacement to be set to either $V_{\rm g\,min}$ or $V_{\rm g\,max}$ by switching the pilot pressure at port **X** on or off.

HZ5, HZ7 negative control

- Position at $V_{g max}$ (without pilot pressure, maximum torque, minimum rotational speed)
- Position at V_g min (with pilot pressure > 15 bar activated, minimum torque, maximum permissible rotational speed)

▼ Characteristic curve HZ5, HZ7

Notice

- ▶ Maximum permissible pilot pressure: 100 bar
- ► The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar required in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us. Bear in mind that pressures up to 450 bar can occur at port **G**.
- ► A leakage flow of maximum 0.3 l/min occurs at port **X** (working pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure must be relieved from port **X** to the reservoir.

Response time damping

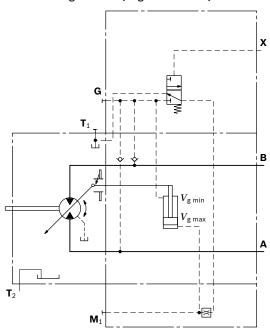
The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for sizes 160 and 200

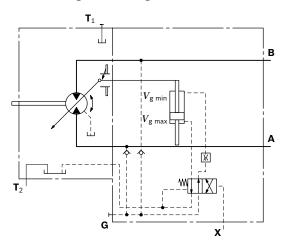
HZ5 with throttle pin on both sides, symmetrical (see table)

Standard for sizes 107 and 160 with BVI

HZ7 with throttle pin on both sides 0.30, symmetrical


Standard for sizes 55 to 107

HZ7 (synchronous piston) with throttle pin on both sides, symmetrical (see table)


▼ Throttle pin overview

Size	55	80	107	160	200
Groove size [mm]	0.30	0.30	0.30	0.55	0.65

▼ Circuit diagram HZ5 (negative control) sizes 160 and 200

▼ Circuit diagram HZ7 (negative control) size 55 to 107

EZ - Two-point control, electric

The two-point electric control allows the displacement to be set to either $V_{\rm g\,min}$ or $V_{\rm g\,max}$ by switching the electric current to a switching solenoid on or off.

Notice

The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us.

Bear in mind that pressures up to 450 bar can occur at port **G**.

Response time damping

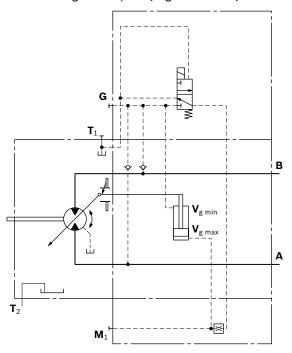
The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for sizes 160 and 200

EZ5, EZ6 with throttle pin on both sides, symmetrical (see table)

Standard for sizes 55 to 107

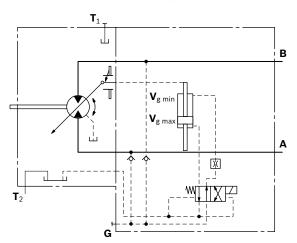
EZ7, EZ8 (synchronous piston) with throttle pin on both sides, symmetrical (see table)


▼ Throttle pin overview

Size	55	80	107	160	200
Groove size [mm]	0.30	0.30	0.30	0.55	0.65

Sizes 160 and 200

Technical data, solenoid with Ø37	EZ5	EZ6						
Voltage	12 V (±20%)	24 V (±20%)						
Position $V_{g\;max}$	de-energized	de-energized						
Position V_{gmin}	Current	Current						
	Switched on	Switched on						
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω						
Nominal power	26.2 W	26.5 W						
Minimum active current required	1.32 A	0.67 A						
Duty cycle	100%	100%						
Type of protection: see connector version page 24								


▼ Circuit diagram EZ5, EZ6 (negative control)

Sizes 55 to 107

Technical data, solenoid with Ø45	EZ7	EZ8						
Voltage	12 V (±20%)	24 V (±20%)						
Position $V_{g\;max}$	de-energized	de-energized						
Position V_{gmin}	energized	energized						
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω						
Nominal power	30 W	30 W						
Minimum active current required	1.5 A	0.75 A						
Duty cycle	100%	100%						
Type of protection: see connector version page 24								

▼ Circuit diagram EZ7, EZ8 (negative control)

HA - Automatic high-pressure related control

The automatic high-pressure related control adjusts the displacement automatically depending on the working pressure.

The beginning of control of the A6VE motor with HA control is $V_{\rm g\ min}$ (maximum rotational speed and minimum torque). The control device measures internally the working pressure at ${\bf A}$ or ${\bf B}$ (no control line required) and upon reaching the beginning of control, the controller swivels the motor from $V_{\rm g\ min}$ to $V_{\rm g\ max}$. The displacement is modulated between $V_{\rm g\ min}$ and $V_{\rm g\ max}$ depending on the load.

HA1, HA2, HA3 positive control

- ▶ Beginning of control at $V_{g min}$ (minimum torque, maximum rotational speed)
- ► End of control at $V_{\rm g\ max}$ (maximum torque, minimum rotational speed)

Notice

- For safety reasons, winch drives are not permissible with beginning of control at $V_{\rm g \, min}$ (standard for HA).
- ► The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us.
 - Bear in mind that pressures up to 450 bar can occur at port \mathbf{G} .
- ► The beginning of control and the HA.T3 characteristic curve are influenced by case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 6) and thus a parallel displacement of the characteristic curve.
- A leakage flow of maximum 0.3 l/min occurs at port X (working pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure must be relieved from port X to the reservoir. Only for HA.T control.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for sizes 55 to 200

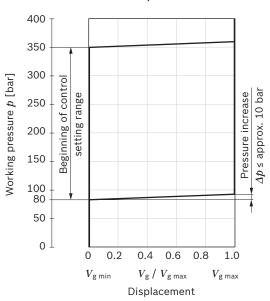
HA1,2 with one-sided throttle pin, throttling occurs from $V_{\rm g\ min}$ to $V_{\rm g\ max}$. (see table) HA3 and HA3T3 with BVI and throttle pin on both sides, 0.30, symmetrical

▼ Throttle pin overview

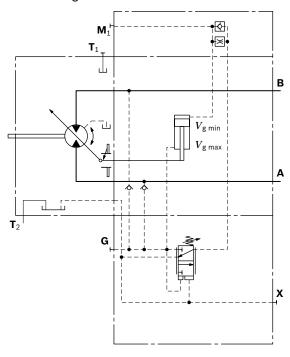
Size	55	80	107	160	200
Groove size [mm]	0.45	0.45	0.55	0.55	0.65

Standard for sizes 55 to 200

HA with BVD or BVE counterbalance valves with throttle screw (see table)


▼ Throttle screw

Size	55	80	107	160	200
Diameter [mm]	0.80	0.80	0.80	0.80	0.80

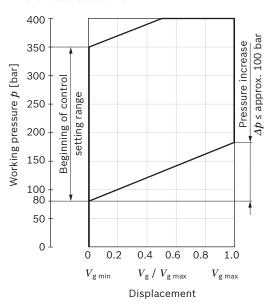

HA1, HA3 with minimum pressure increase, positive control

A working pressure increase of $\Delta p \leq$ approx. 10 bar results in an increase in displacement from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. Beginning of control, setting range 80 to 350 bar Specify the desired beginning of control in plain text when ordering, e.g. beginning of control at 300 bar.

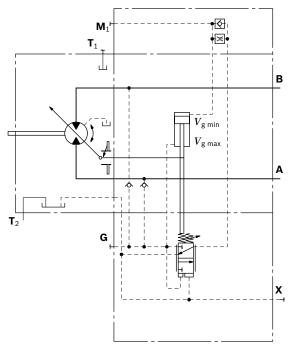
▼ Characteristic curve HA1, HA3

▼ Circuit diagram HA1

▼ Circuit diagram HA3


With integrated BVI counterbalance valve, see page 32

Bosch Rexroth AG, RE 91615/05.2016

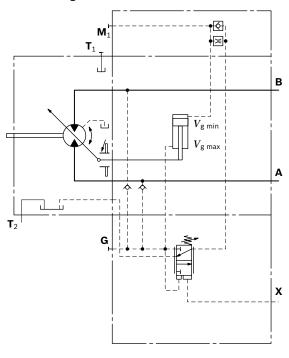

HA2 with pressure increase, positive control

A working pressure increase of $\Delta p \leq$ approx. 100 bar results in an increase in displacement from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. Beginning of control, setting range 80 to 350 bar Specify the desired beginning of control in plain text when ordering, e.g. beginning of control at 200 bar.

▼ Characteristic curve HA2

▼ Circuit diagram HA2

HA.T3 override, hydraulic, remote controlled, proportional


With the HA.T3 control, the beginning of control can be influenced by applying a pilot pressure to port \mathbf{X} . For each 1 bar of pilot pressure increase, the beginning of control is reduced by 17 bar.

Beginning of control setting	300 bar	300 bar		
Pilot pressure at port X	0 bar	10 bar		
Beginning of control at	300 bar	130 bar		

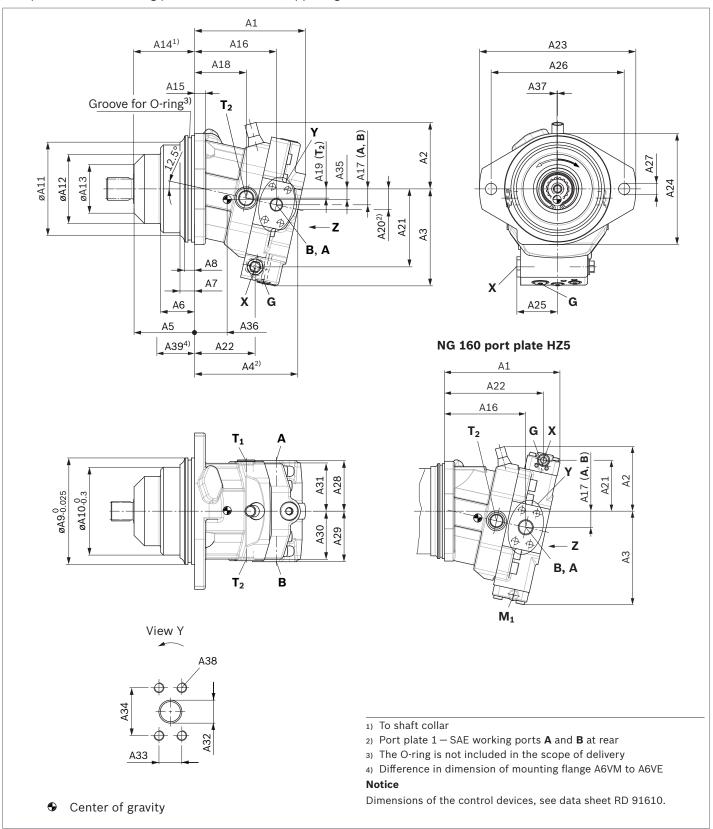
Notice

Maximum permissible pilot pressure 100 bar.

▼ Circuit diagram HA1T3

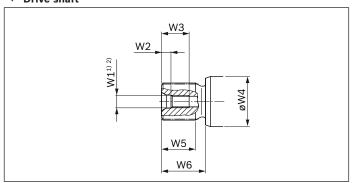
▼ Circuit diagram HA2T3

▼ Circuit diagram HA3T3


With integrated BVI counterbalance valve, see page 32

Dimensions

Sizes 55 to 160


HZ7 - Two-point control, hydraulic

Port plate 2-SAE working ports \boldsymbol{A} and \boldsymbol{B} lateral, opposing

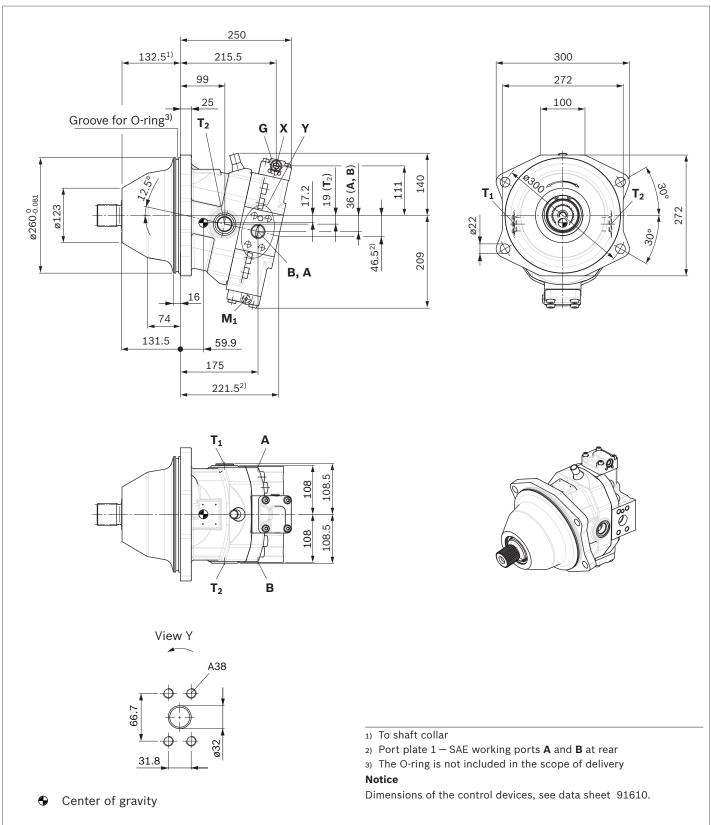
NG	A1	A2	А3	A4	A5	A6	A7	A8	øA9	øA10	øA11	øA12	øA13	A14	A15	A16
55	167	100	146	153	91	51	22	15	160	132	140.5	104	73	92	16	123
80	176	114	161	164	109.5	65	30	15	190	143	151	116	88	110.5	18	129
107	187	121	172	175	121.8	73	35	15	200	160	168	132	90	122.8	18	137
160	243	133	197	212	122	67	29	15	200	180	188	146	100	123	20	171
NG	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32
55	24	77	14	30	117	91	235	166	57	200	17	76	76	73	73	19
80	28	78	16	35	132	93	260	198	57	224	21	82	82	78.5	78.5	25
107	30	82	17	38	143	99	286	210	61	250	21	90	90	86.5	86.5	25
160	34	109	20	43	107	208	286	210	40.5	250	21	102	102	98.5	98.5	32
NG	A33	A34	A35	A36	A37	A38			A39	O-ring						
55	23.8	50.8	15.8	48.8	1	M10 x	1.5; 17	deep	60	150 × 4						
80	27.8	57.2	15.9	44.2	0.6	M12 ×	1.75; 17	7 deep	78.5	182 × 4			,			
107	27.8	57.2	15.2	42.9	0.5	M12 ×	1.75; 17	7 deep	83	192 × 4						
160	31.8	66.7	14.3	69.9	0.5	M14 x	2: 19 de	en	83	192 × 4						

▼ Drive shaft

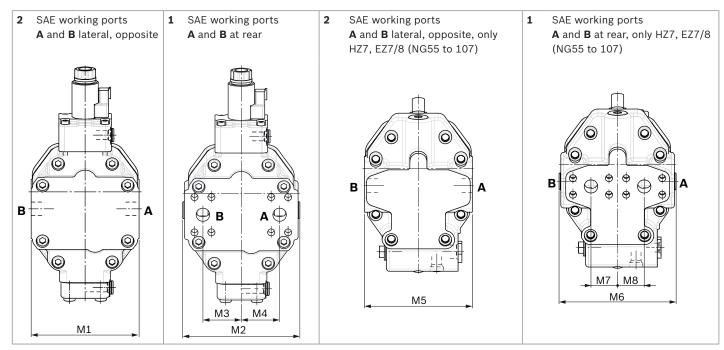
NG	Splined shaft DIN 5480	W1	W2	W3	øW4	W5	W6
55	Z6 - W30×2×14×9g	M12×1.75	9.5	28	45	27	35
55	Z8 - W35×2×16×9g	M12×1.75	9.5	28	45	32	40
80	Z8 - W35×2×16×9g	M12×1.75	9.5	28	50	32	40
80	Z9 - W40×2×18×9g	M16×2	12	36	50	37	45
107	Z9 - W40×2×18×9g	M12×1.75	9.5	28	60	37	45
107	A1 - W45×2×21×9g	M16×2	12	36	60	42	50
160	A1 - W45×2×21×9g	M16×2	12	36	70	42	50
160	A2 - W50×2×24×9g	M16×2	12	36	70	44	55
200	A2 - W50×2×24×9g	M16×2	12	36	70	44	55

¹⁾ For notes on tightening torques, see the instruction manual.

²⁾ Center bore according to DIN 332 (thread according to DIN 13)


22

Dimensions


Sizes 200

HZ5 - Two-point control, hydraulic

Port plate 2-SAE working ports \boldsymbol{A} and \boldsymbol{B} lateral, opposing

▼ Location of the working ports on the port plates (view Z)

NG	M1	M2	М3	M4	M5	М6	M7	M8
55	152	165	54	54	152	165	37.5	37.5
80	164	177	54	54	164	177	42	42
107	180	193	65	65	180	193	42	42
160	204	226	76	76	_	-	_	_
200	216	235	82	82	_	-	_	_

NG	Ports						
	A, B		T ₁ , T ₂	G	X (HA1, HA2)	X (HP, HZ, HA1T/2T)	M_1
55	3/4 in	M10 x 1.5; 17 deep	M22 × 1.5; 15.5 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep	-
80	1 in	M12 × 1.75; 17 deep	M22 × 1.5; 15.5 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep	-
107	1 in	M12 × 1.75; 17 deep	M22 × 1.5; 15.5 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep	-
160	1 1/4 in	M14 x 2; 19 deep	M27 x 2; 19 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep	M14 × 1.5; 11.5 deep
200	1 1/4 in	M14 x 2; 19 deep	M33 × 2; 19 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep

Ports		Standard	p_{max} [bar] ¹⁾	State ⁵⁾
A, B	Working port	SAE J518	450	0
	fastening thread	DIN 13 ²⁾		
T ₁ , T ₂	Drain port	ISO 6149 ⁴⁾	3	X/O (T ₂) ³⁾
G	Synchronous control	ISO 6149 ⁴⁾	450	Χ
X (HA1, HA2)	Pilot signal	ISO 6149 ⁴⁾	3	Χ
X (HP, HZ, HA1T/2T)	Pilot signal	ISO 6149 ⁴⁾	100	0
M ₁	Stroking chamber measurement	ISO 6149 ⁴⁾	450	Х

- 1) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- $_{
 m 2)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard
- 3) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 38).
- 4) The countersink can be deeper than as specified in the standard.
- 5) O = Must be connected (plugged when delivered)
 - X = Plugged (in normal operation)

Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded connector, 2-pin, without bidirectional suppressor diode

The following type of protection results with the installed mating connector:

- ► IP67 (DIN/EN 60529) and
- ► IP69K (DIN 40050-9)

▼ Circuit symbol

▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation
1 housing	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902601804).

Notice

- ► If necessary, you can change the position of the connector by turning the solenoid.
- ▶ The procedure is defined in the instruction manual.

Flushing and boost-pressure valve

The flushing and boost-pressure valve is used to remove heat from the hydraulic circuit.

In a closed circuit, it is used for flushing the case and safeguarding the minimum boost pressure.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the leakage. In the closed circuit, the removed hydraulic fluid must be replaced by cooled hydraulic fluid supplied by the boost pump.

The valve is mounted on the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

(observe when setting the primary valve)

▶ Size 55 to 200, fixed setting 16 bar

Switching pressure of flushing spool Δp

- ► Size 55 to 107 (small flushing valve) 8 ± 1 bar
- Size 107 to 200 (medium and large flushing valve)
 17.5 ± 1.5 bar

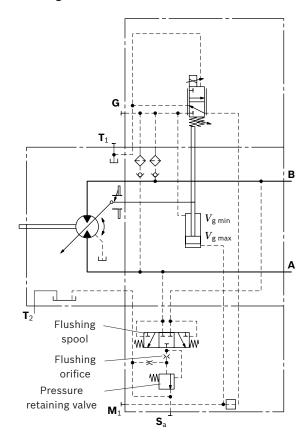
Flushing flow $q_{\scriptscriptstyle \vee}$

Orifices can be used to adjust the flushing flows as required. The following parameters are based on: $\Delta p_{\rm ND} = p_{\rm ND} - p_{\rm G} = 25$ bar and v = 10 mm²/s

 $(p_{ND} = low pressure, p_G = case pressure)$

Small flushing valve for sizes 55 to 107

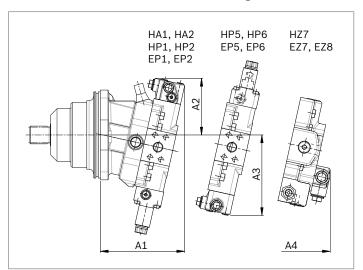
Material number of orifice	ø [mm]	$q_{\scriptscriptstyle ee}$ [l/min]	Code
R909651766	1.2	3.5	Α
R909419695	1.4	5	В
R909419696	1.8	8	С
R909419697	2.0	10	D
R909444361	2.4	14	F


Medium flushing valve for size 107

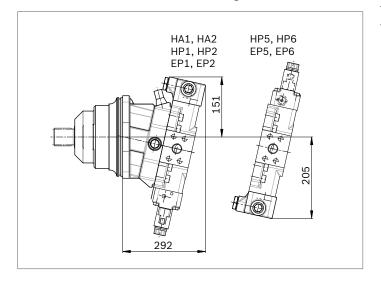
Material number of orifice	ø [mm]	$q_{\scriptscriptstyle ee}$ [l/min]	Code
R909431310	2.8	18	I
R902138235	3.1	21	J
R909435172	3.5	27	K
R909449967	5.0	31	L

Large flushing valve for sizes 160 and 200

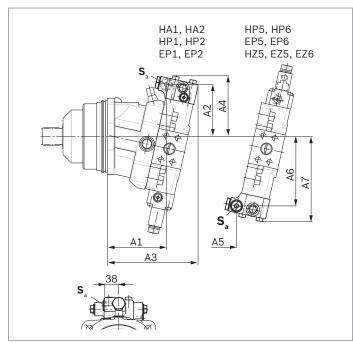
ø [mm]	$q_{\scriptscriptstyle ee}$ [l/min]	Code
1.8	8	С
2.0	10	D
2.5	15	G
2.8	18	I
3.1	21	J
3.5	27	K
4.0	31	L
5.0	37	М
	1.8 2.0 2.5 2.8 3.1 3.5 4.0	1.8 8 2.0 10 2.5 15 2.8 18 3.1 21 3.5 27 4.0 31


▼ Circuit diagram EP

Notice


- ► Port **S**_a only for sizes 160 and 200
- ► For a flushing flow of 35 l/min, it is recommended that port S_a be connected in order to prevent an increase in case pressure. An increased case pressure reduces the flushing flow.

▼ Dimensions of sizes 55 to 107 (small flushing valve)



NG	A1	A2	А3	A4	
55	183	137	183	176	
80	195	142	194	176	
107	204	143	202	186	

▼ Dimensions of size 107 (medium flushing valve)

▼ Dimensions of sizes 160 and 200 (large flushing valve)

NG	A1	A2	А3	Α4	A5	A6	Α7	S _a ¹⁾
160	163	142	249	165	89	190	233	M22 × 1.5; 15.5 deep
200	170	148	256	172	93	201	244	M22 × 1.5; 15.5 deep

ISO 6149, ports plugged (in normal operation). For notes on tightening torques, see instruction manual.

The countersink can be deeper than as specified in the standard.

BVD and BVE counterbalance valves

Function

Counterbalance valves for travel drives and winches should reduce the danger of overspeed and cavitation in open circuits of axial piston motors. Cavitation occurs if, during braking, when going downhill or during the load-lowering process, the motor speed is greater than it should be for the given inlet flow and thus the supply pressure collapses. If the supply pressure falls below the value specified for the relevant counterbalance valve, the counterbalance spool moves into the closed position. The cross-sectional area of the counterbalance valve return duct is then reduced, creating a bottleneck in the return flow of the hydraulic fluid. The pressure increases and brakes the motor until the rotational speed of the motor reaches the specified value for the given inlet flow.

Notice

- ▶ BVD available for sizes 55 to 200 and BVE available for sizes 107 to 200.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set.

Order example: A6VE080HA1T30004A/65MWV0Y2Z 97W0-0 + BVD20F27S/41B-V03K16D0400S12

- For safety reasons, controls with beginning of control at $V_{\rm g\ min}$ (e.g. HA) are not permissible for winch drives!
- Counterbalance valves must be optimized during prototype commissioning to prevent unacceptable operating conditions and compliance with the specification must be verified.
- ► The counterbalance valve does not replace the mechanical service brake and holding brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525.
- ► For the design of the brake release valve, we require the following data for the mechanical holding brake:
 - the cracking pressure
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Permissible inlet flow or pressure when using pressure relief valve and BVD/BVE

	Without va	lve	Limited va	Limited values when using pressure relief valve and BVD/BVE							
Motor			DBV ¹⁾				BVD ²⁾ /BVE ³	3)			
NG	p_{nom}/p_{max} [bar]	$q_{ m V\;max}$ [I/min]	NG	p_{nom}/p_{max} [bar]	q_{ee} [l/min]	Code	NG	p_{nom}/p_{max} [bar]	q_{ee} [l/min]	Code	
55	400 /450	276	22	350 /420	240	7	20(BVD)	350 /420	220	7W	
80		332									
107		410	32		400						
107		410				8	25 (BVD/		320	8W	
160		533					BVE)				
200		628	On request	:							

Mounting of the counterbalance valve

When delivered, the counterbalance valve is fastened to the motor with two tacking screws (transport lock). The tacking screws may not be removed while mounting the working lines! If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be fastened to the motor port plate using the provided tacking screws.

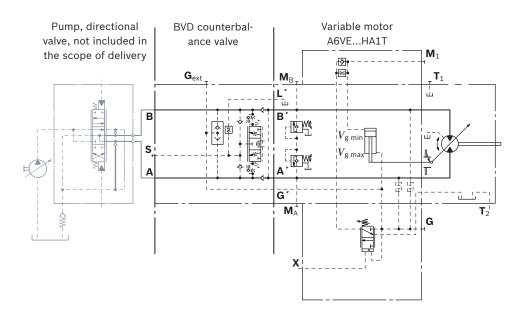
The counterbalance valve is finally mounted to the motor by fitting the SAE flange

The screws to be used and the instructions for mounting can be found in the instruction manual.

¹⁾ Pressure relief valve

²⁾ Counterbalance valve, dual action

³⁾ Counterbalance valve, single action

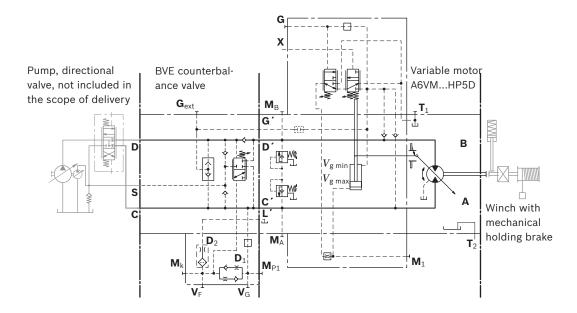

Counterbalance valve for travel drive BVD...F

Application option

► Travel drives for wheeled excavators (BVD and BVE)

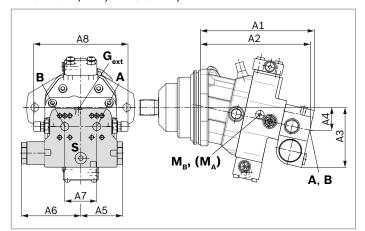
▼ Example circuit diagram for travel drive on wheeled excavators

A6VE080HA1T30004A/65MWV0Y2Z97W0-0 + BVD20F27S/41B-V03K16D0400S12

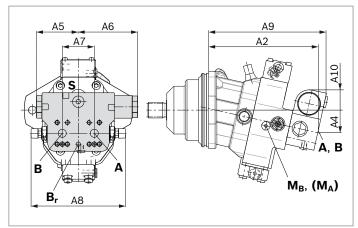

Counterbalance valve for winches and track drives BVD...W and BVE

Application option

- ► Winch drives for cranes (BVD and BVE)
- ► Track drives for tracked excavators (BVD)


▼ Example circuit diagram for winch drive in cranes

A6VE080HP5D10001A/65MWV0Y2Z97W0-0 + BVE25W38S/51ND-V100K00D4599T30S00-0



Counterbalance valve dimensions

▼ A6VE...HA, HP1, HP2 and EP1, EP2

▼ A6VE...HP5, HP6 and EP5, EP6¹)

A6VE	Counterbalance	e valve										
NGplate	Туре	Ports	Dimen	sions								
		A, B	A1	A2	А3	A4	A5	A6	A7	A8	Α9	A10
557	BVD2017	3/4 in	252	243	143	50	98	139	75	222	267	50
807	BVD2027	1 in	261	252	148	55	98	139	75	222	276	46
1077	BVD2028	1 in	280	271	152	59	98	139	84	234	295	41
1078	BVD2538	1 1/4 in	298	288	165	63	120.5	175	84	238	311	56
1608	BVD2538	1 1/4 in	334	324	170	68	120.5	175	84	238	349	51
1078	BVE2538	1 1/4 in	298	288	171	63	137	214	84	238	315	63
1608	BVE2538	1 1/4 in	334	325	176	68	137	214	84	238	349	59
2008	BVD2538	1 1/4 in	356	346	176	74	120.5	175	84	299	370	46
2008	BVE2538	1 1/4 in	356	346	182	74	137	214	84	299	370	52

Ports		Version	A6VM plate	Standard	Size	P_{max} [bar] ²⁾	State ⁴⁾
A, B	Working line			SAE J518	see table above	420	0
S	Infeed	BVD20		DIN 3852 ³⁾	M22 × 1.5; 14 deep	30	Х
		BVD25, BVE25		DIN 3852 ³⁾	M27 x 2; 16 deep	30	Х
Br B	Brake release, reduced high	L	7	DIN 3852 ³⁾	M12 × 1.5; 12.5 deep	30	0
	pressure		8	DIN 3852 ³⁾	M12 × 1.5; 12 deep	30	0
G _{ext}	Brake release, high pressure	S		DIN 3852 ³⁾	M12 × 1.5; 12.5 deep	420	Х
M _A , M _B	Pressure measurement A and B			ISO 6149 ³⁾	M18 x 1.5; 14.5 deep	420	Х

The designation of the ports on the installation drawing of the motor is binding!

RE 91615/05.2016, Bosch Rexroth AG

¹⁾ At the mounting version for the controls HP5, HP6 and EP5, EP6, the cast-in port designation A and B on the BVD/BVE counterbalance valve do not correspond with the connection designation of the A6VE motor.

²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

³⁾ The countersink can be deeper than as specified in the standard.

⁴⁾ O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

Integrated BVI counterbalance valve

Function

The integrated counterbalance valves for track drives in excavator crawlers should reduce the danger of overspeed and cavitation of axial piston motors in open circuits. Cavitation occurs if, during braking or driving downhill, the rotational speed of the motor is greater than it should be for the given inlet flow, causing the supply pressure to fall sharply.

If the supply pressure falls below the value specified for the relevant counterbalance valve, the counterbalance spool moves into the closed position. The cross-sectional area of the counterbalance valve return duct is then reduced, creating a bottleneck in the return flow of the hydraulic fluid. The pressure increases and brakes the motor until the rotational speed of the motor reaches the specified value for the given inlet flow.

02

03

Notice

- ▶ BVI available for sizes 107 and 160.
- ► The counterbalance valve must be ordered additionally.
 Order example: A6VE107HA3T30004A/65MWV0S2Z
 96Y0-0 + BVI510008001-0
- Counterbalance valves must be optimized during prototype commissioning to prevent unacceptable operating conditions and compliance with the specification must be verified.
- ► The counterbalance valve does not replace the mechanical service brake and holding brake.
- ► For the design of the brake release valve, we require the following data for the mechanical holding brake:
 - the cracking pressure

05

 the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)

06

00

 the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Type code

	01		00	0-1				
	BVI					-		
Count	erbalance valve	•						
01 Counterbalance valve integrated								

01	Counterbalance valve integrate	a		BV	/1
Brake	piston version	$q_{\scriptscriptstyle m V}$ [l/min]	Material number		
02	Volume preselection	≤ 150	R902038832	51	ī
		= 150 - 210	R902038936	52	2
		= 210 - 270	R902038833	53	3
		= 270 - 330	R902038834	54	4
		= 330 - 400	R902038835	55	5
		≥ 400	R902038836	56	6

Throttle mounting

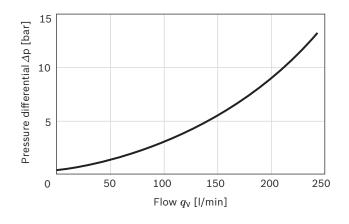
03	Constant throttle	R909432302	8000
	Throttle pin	R909651165	0603

Check valve 04 Without residual opening

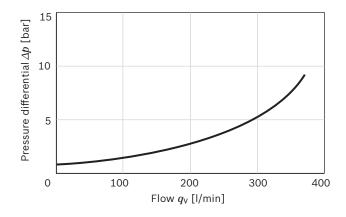
Bra	ke release valve		
0	With brake release valve (standard HZ)	without disable function	1
	With brake release valve	with disable function	_

(standard HA) Standard / special version

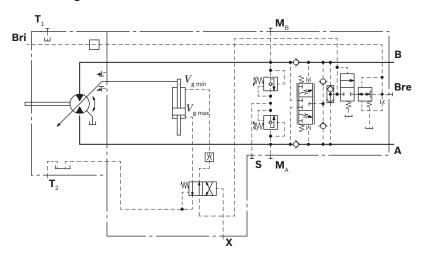
06	6 Standard version	0
	Special version	S

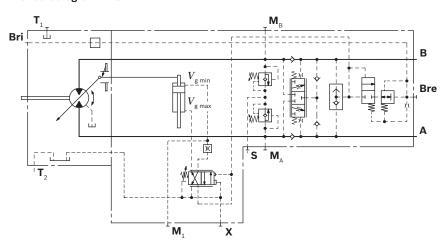

Technical data

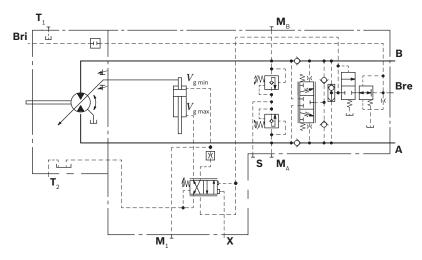
Working pressure	Nominal pressure	p	350 bar
	Maximum pressure	p	420 bar
Volume flow, maximum		q_{vmax}	400 I/min
Counterbalance spool	Start of opening	p	12 bar
	Fully open	p	26 bar
Pressure reducing valve for brake release (fixed setting)	Control pressure	p	21 ⁺⁴ bar
	Beginning of control	p	10 ⁺⁴ bar


Permissible inlet flow or pressure when using pressure relief valve and BVI

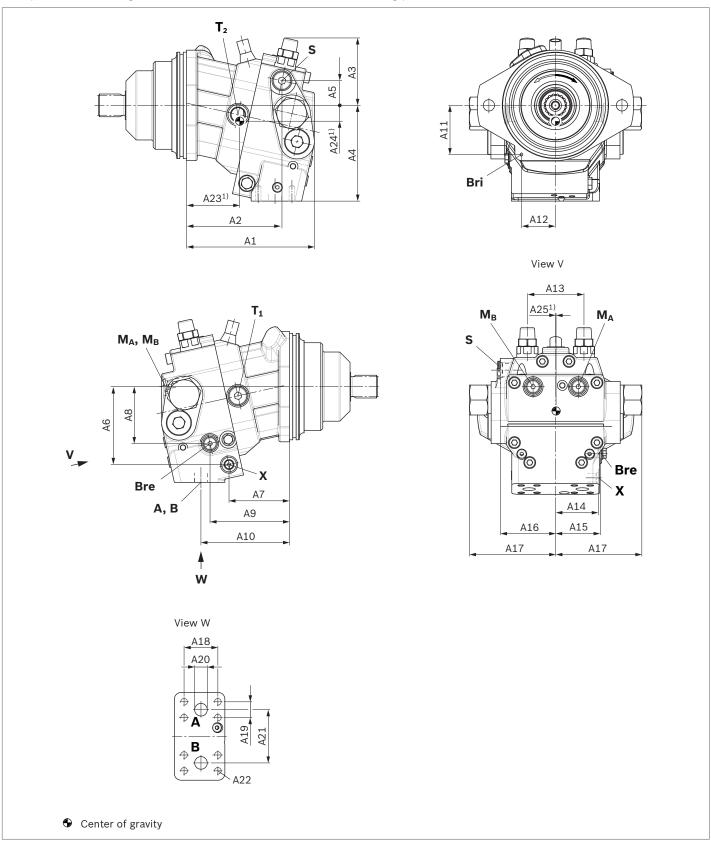
	No restriction Standard plate		Limited values Plate with inte	egrated counterbalance valve (6)
Motor				BVI + DBV
NG	p_{nom}/p_{max} [bar]	q _{V max} [l/min]	p_{nom}/p_{max} [bar]	$q_{\rm V}$ [I/min]
107	400 /450	410	350 /420	240
160		533		400


▼ Infeed characteristic curve M22 × 1.5


▼ Infeed characteristic curve M27 × 2


▼ Circuit diagram HZ7

▼ Circuit diagram HA3


▼ Circuit diagram HA3T3

Integrated BVI counterbalance valve dimensions

HZ7 - Two-point control, hydraulic

Port plate 6, with integrated BVI counterbalance valve – SAE working ports ${\bf A}$ and ${\bf B}$ at bottom

A6VE														
NGplate	Port	Dimen	sions											
	A, B ¹⁾	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13
1076	1 in	204	161	122	172	40	143	99	98	131	144	96	58	96
1606	1 1/4 in	240	195	136	197	47	162	128	113	161	177	94	65	108

A6VE													
NGplate	Port	Dimen	sions										
	A, B	A14	A15	A16	A17	A18	øA19	A20	A21	A22 (DIN 13)	A23	A24	A25
1076	1 in	70	74	85	129.5	57.2	27.8	25	86	M12 × 1.75; 17 deep	68	24.4	0.3
1606	1 1/4 in	78	85	101.5	129.5	66.7	31.8	32	94	M14 × 2; 19 deep	91.7	28.8	0.5

Port	Working line SAE J518 ¹⁾	Reservoir line ISO 6149 ⁴⁾	Pilot signal	ignal Infeed ISO 6149 ⁴⁾		Stroking chamber measurement
NG	A, B	T ₁ , T ₂	X	S	$\mathbf{M}_{A}, \mathbf{M}_{B}$	M ₁ only for HA3
107	see table above	M22 × 1.5; 15.5 deep	M14 x 1.5; 11.5 deep	M22 × 1.5; 15.5 deep	M14 x 1.5; 11.5 deep	M10 x 1; 10 deep
160		M27 x 2; 19 deep	M14 x 1.5; 11.5 deep	M27 x 2; 19 deep	M14 x 1.5; 11.5 deep	M10 x 1; 10 deep
p_{max} [bar] ²⁾	420	3	100	30	420	420
State ⁵⁾	0	X/O (T ₂) ³⁾	0	X	X	X

Port	Brake release, external ISO 6149 ⁴⁾	Brake release, internal
NG	Bre	Bri
107	M14 x 1.5; 11.5 deep	ø4
160	M14 x 1.5; 11.5 deep	ø4
$p_{\sf max}$ [bar] $^{2)}$	30	30
State ⁵⁾	O/X ⁶⁾	X/O ⁷⁾

¹⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard

²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

³⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 38).

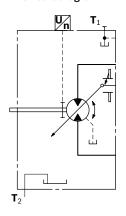
 $^{^{4)}}$ The countersink can be deeper than as specified in the standard.

⁵⁾ O = Must be connected (plugged when delivered)
X = Plugged (in normal operation)

⁶⁾ Must be connected for external piping. Is plugged for internal channel routing.

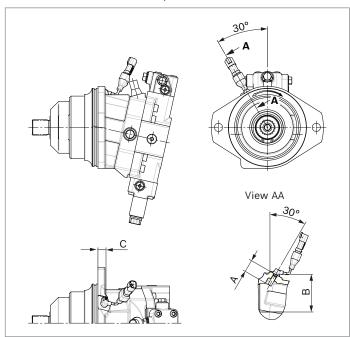
⁷⁾ Is plugged for external channel routing. Must be connected for internal piping.

Speed sensor


The A6VE...U version ("prepared for speed sensor", i.e. without sensor) is equipped with a spline on the rotary group.

A signal proportional to the rotational speed of the motor can be generated with the mounted DSA speed sensor. The DSA sensor registers the rotational speed and direction of rotation.

Type code, technical data, dimensions and parameters for the connector, plus safety instructions about the sensor can be found in the relevant data sheet 95133 – DSA. The sensor is mounted on the port provided specially for this with a mounting bolt. On deliveries without sensor, the port is plugged with a pressure-resistant cover. We recommend ordering the A6VE variable motor complete


We recommend ordering the A6VE variable motor complete with mounted sensor.

▼ Circuit diagram EP

▼ Dimensions

Version "V" with mounted speed sensor

Siz	ze	55	80	107	160	200
Nu	mber of teeth	54	58	67	75	80
Α	Insertion depth (tolerance -0.25)	32	32	32	32	32
В	Contact surface	83.3	87.3	96.3	104.3	109.2
С		26	16.5	14.2	28.5	22.7

Setting range for displacement

	1	5	55			8	30		107						
	$V_{ m g\ max}$ (C	m ³ /rev)	$V_{ m g\;min}$ (c	m ³ /rev)	$V_{ m g\; max}$ (c	:m ³ /rev)	$V_{ m g\;min}$ (c	m ³ /rev)	$V_{ m g\ max}$ (c	:m³/rev)	$V_{ m gmin}$ (c	m ³ /rev)			
	from	to	from	to	from	to	from	to	from	to	from	to			
Α	54.8	54.8	0.0	13.3	80.0	80.0	0.0	23.0	107.0	107.0	0.0	22.2			
	without	screw	M10 R9091		withou	t screw	M12 R9090		withou	t screw	M12 R9090				
В	54.8	54.8	> 13.3	27.0	80.0	80.0	> 23.0	41.0	107.0	107.0	> 22.0	43.8			
	without	screw	M10 R9091		withou	t screw	M12 R9091		withou	t screw	M12 R9091				
С	54.8	54.8	> 27.0	38.0	80.0	80.0	> 41.0	56.0	107.0	107.0	> 43.8	65.5			
	without	screw	M10 R9091		withou	t screw	M12 R9091		withou	t screw	M12 R9091				
D	Х		х		>	(X		107.0	107.0	> 65.5	75.0			
									withou	t screw	M12 >				
Е	< 54.8	42.0	0.0	13.0	< 80.0	58.0	0.0	23.0	< 107.0	86.0	0.0	22.2			
	M10 R9091		M10 R9091		M12 R9090		M12 R9090		M12 R9090	× 70 85976	M12 R9090				
F	< 54.8	42.0	> 13.3	27.0	< 80.0	58.0	> 25.0	41.0	< 107.0	86.0	> 22.2	43.8			
	M10 R9091		M10 R9091		M12 R9090	× 70 85976	M12 R9091			× 70 85976	M12 R9091				
G	< 54.8	42.0	> 27.0	38.0	< 80.0	58.0	> 41.0	56.0	< 107.0	86.0	> 43.8	65.5			
	M10 R9091		M10 R9091		M12 R9090		M12 R9091			× 70 85976	M12 R9091				
Н	х		х		>	<	х		< 107.0	86.0	> 65.5	75.0			
									M12 R9090	× 70 85976	M12 >				
J	< 42.0	29.0	0.0	13.3	< 58.0	41.0	0.0	23.0	< 86.0	64.0	0.0	22.2			
	M10 R9091		M10 R9091	× 60 54690	M12 R9091	× 80 53075	M12 R9090		M12 R9091	× 80 53075	M12 R9090				
К	< 42.0	29.0	> 13.3	27.0	< 58.0	41.0	> 23.0	41.0	< 86.0	64.0	> 22.2	43.8			
	M10 R9091		M10 R9091		M12 R9091	× 80 53075	M12 R9091			× 80 53075	M12 R9091				
L	< 42.0	29.0	> 27.0	38.0	< 58.0	41.0	> 41.0	56.0	< 86.0	64.0	> 43.8	65.5			
	M10 R9091		M10 R9091			× 80 53075	M12 R9091		M12 R9091	× 80 53075	M12 R9091				
М	X		×	[,	<	Х	[< 86.0	64.0	> 65.5	75.0			
										× 80 53075	M12 >				

Specify exact settings for $V_{\rm g\,min}$ and $V_{\rm g\,max}$ in plain text when ordering:

 $ightharpoonup V_{
m g\ min}$ = ... cm³, $V_{
m g\ max}$ =...cm³

Theoretical, maximum setting:

- ▶ for $V_{\rm g\;min}$ = 0.7 × $V_{\rm g\;max}$
- ▶ for $V_{\rm g~max}$ = 0.3 × $V_{\rm g~max}$

Settings that are not listed in the table may lead to damage.

Please contact us.

		16	60		200								
	$V_{ m g\; max}$ (cn	n ³ /rev)	$V_{\mathrm{g\;min}}$ (c	m ³ /rev)	$V_{ m g\ max}$ (c	:m ³ /rev)	V _{g min} (c	m³/rev)					
	from	to	from	to	from	to	from	to					
Α	160.0	160.0	0.0	26.0	200.0	200.0	0.0	39.0					
	without	screw	M12 R9091		without	screw	M12 R9091						
В	160.0	160.0	> 26.0	54.0	200.0	200.0	> 39.0	72.0					
	without	screw	M12 R9091		without	t screw	M12 R9091						
С	160.0	160.0	> 54.0	83.0	200.0	200.0	> 72.0	105.0					
	without	screw	M12 >		without	screw	M12 : R9091						
D	160.0	160.0	> 83.0	110.0	200.0	200.0	> 105.0	140.0					
	without	screw	M12 >		without	t screw	M12 : R9091						
Е	< 160.0	136.0	0.0	26.0	< 200.0	164.0	0.0	39.0					
	M12 × R90915		M12 R9091		M12 R9091		M12 R9091						
F	< 160.0	136.0	> 26.0	54.0	< 200.0	164.0	> 39.0	72.0					
	M12 × R90915		M12 R9091		M12 R9091	× 80 53075	M12 R9091						
G	< 160.0	136.0	> 54.0	83.0	< 200.0	164.0	> 72.0	105.0					
	M12 × R90915		M12 > R9091		M12 R9091	× 80 53075	M12 : R9091						
Н	< 160.0	136.0	> 83.0	110.0	< 200.0	164.0	> 105.0	140.0					
	M12 × R90915		M12 >		M12 R9091	× 80 53075	M12 : R9091						
J	< 136.0	109.0	0.0	26.0	< 164.0	130.5	0.0	39.0					
	M12 × R90915		M12 R9091		M12 R9091	× 90 54041	M12 R9091						
K	< 136.0	109.0	> 26.0	54.0	< 164.0	130.5	> 39.0	72.0					
	M12 x R90915		M12 R9091			× 90 54041	M12 R9091						
L	< 136.0	109.0	> 54.0	83.0	< 164.0	130.5	> 72.0	105.0					
	M12 × R90915		M12 >		M12 R9091	× 90 54041	M12 : R9091						
М	< 136.0	109.0	> 83.0	110.0	< 164.0	130.5	> 105.0	140.0					
	M12 × R90915		M12 >			× 90 54041	M12 × 110 R909154212						

Specify exact settings for $V_{\rm g\;min}$ and $V_{\rm g\;max}$ in plain text when ordering:

 $ightharpoonup V_{
m g\;min}$ = ... cm³, $V_{
m g\;max}$ =...cm³

Theoretical, maximum setting:

- for $V_{\rm g\,min}$ = 0.7 × $V_{\rm g\,max}$
- ▶ for $V_{\rm g~max}$ = 0.3 × $V_{\rm g~max}$

Settings that are not listed in the table may lead to damage.

Please contact us.

Installation instructions

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may empty via the hydraulic lines.

The leakage in the housing area must be directed to the reservoir via the highest drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the maximum permissible case pressure of all connected units is not exceeded at any operational conditions. If this is not possible, separate drain lines must be laid.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Notice

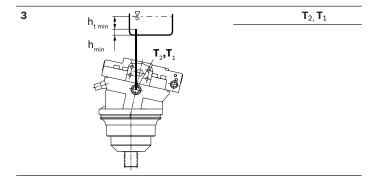
In certain installation positions, an influence on the control or closed loop control can be expected. Gravity, dead weight and case pressure can cause minor characteristic shifts and changes in response time.

Key	
F	Filling / air bleeding
T ₁ , T ₂	Drain port
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required distance to reservoir bottom (100 mm)

Installation position

See the following examples 1 to 6.

Further installation positions are available upon request.


Recommended installation position: 1 and 2

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir and below the minimum fluid level of the reservoir.

Installation position	Air bleed	Filling
1		$\mathbf{T}_{2},\mathbf{T}_{1}$
h _{t min}		
h _{min}		
\mathbf{T}_{2} , \mathbf{T}_{1}		

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Installa	ation position	Air bleed	Filling
4	T ₂ ,T ₁ F h _{t min}	F	T ₂ , T ₁ (F)
5	F T ₂ ,T ₁	F	T ₂ , T ₁ (F)
6	F T ₂ ,T ₁	F	T ₂ , T ₁ (F)

Notice

Port \mathbf{F} is part of the external piping and must be provided on the customer side to make filling and air bleeding easier.

Project planning notes

- ► The motor A6VE is designed to be used in open and closed circuits.
- ► The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified skilled personnel.
- ▶ Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- ► Before finalizing your design, please request a binding installation drawing.
- ► The specified data and notes contained herein must be observed
- For safety reasons, controls with beginning of control at $V_{\rm g\,min}$ (e.g. HA) are not permissible for winch drives, e.g. anchor winches.
- ▶ Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- ▶ Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the instruction manual.
- ▶ Not all versions of the product are approved for use in a safety function according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- ▶ Depending on the type of control used, electromagnetic effects can be produced when using solenoids. When a direct current is applied, solenoids do not cause electromagnetic interference nor is their operation impaired by electromagnetic interference.
 - Other behavior can result when a modulated direct current (e.g. PWM signal) is applied. Potential electromagnetic interference for persons (e.g. persons with a pacemaker) and other components must be tested by the machine manufacturer.
- ▶ Please note the details regarding the tightening torques of port threads and other threaded joints in the instruction manual.

► Working ports:

- The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
- The working ports and function ports are only intended to accommodate hydraulic lines.

Safety instructions

- During and shortly after operation, there is a risk of getting burnt on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- ▶ Moving parts in control equipment (e.g. valve pistons) can, under certain circumstances get stuck in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filter) will not rule out a fault but merely reduce the risk.
 - The machine/system manufacturer must test whether remedial measures are needed on the machine for the application concerned in order to set the consumer being driven to a safe position (e.g. safe stop) and if necessary to ensure it is properly implemented.
- Moving parts in high-pressure relief valves may in certain circumstances become stuck in an undefined position due to contamination (e.g. contaminated hydraulic fluid). This can result in restriction or loss of the load holding function in lifting winches.
 - The machine/system manufacturer must check whether additional measures are required on the machine for the relevant application in order to keep the load in a safe position and ensure they are properly implemented.
- ▶ When using the axial piston motor in winch drives, make certain that the technical limit values are not exceeded under all operating conditions. If the axial piston motor is extremely overloaded (e.g. if the maximum permissible rotational speeds are exceeded during weighing of the anchor while the ship is in motion), the rotary group may be damaged and, in the worst case, the axial piston motor may burst. The machine manufacturer / system manufacturer is to undertake additional measures, up to and including encapsulation.

42 **A6VE Series 65** | Variable plug-in motor Safety instructions

Bosch Rexroth AG

Mobile Applications An den Kelterwiesen 14 72160 Horb a.N., Germany Tel. +49 7451 92-0 info.ma@boschrexroth.de www.boschrexroth.com/brm © Bosch Rexroth AG 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Variable plug-in motor A6VE Series 71

RE 91616

Edition: 05.2016 Replaces: 08.2015

- ► High pressure motor for integration in mechanical gearbox
- ▶ Sizes 60 to 215
- Nominal pressure 450 bar
- Maximum pressure 500 bar
- Open and closed circuits

Features

- Space-saving construction due to recessed mounting flange
- ▶ Easy to install. Simply plug into the mechanical gearbox.
- Approved for very high rotational speeds
- ► High starting efficiency
- ► Excellent slow-running characteristics
- Wide control range (can be swiveled to zero)
- ► High torque
- ▶ Optional with flushing and boost-pressure valve mounted
- ▶ Optional with integrated or mounted counterbalance valve
- Bent-axis design

Contents	
Type code	2
Hydraulic fluids	5
Flow direction	6
Working pressure range	7
Technical data	8
HP - Proportional hydraulic control	10
EP - Proportional control, electric	13
HZ – Two-point control, hydraulic	15
EZ – Two-point control, electric	16
HA – Automatic high-pressure related control	17
Dimensions Sizes 60 to 170	20
Dimensions Size 215	22
Connector for solenoids	24
Flushing and boost-pressure valve	25
BVD and BVE counterbalance valves	27
Integrated BVI counterbalance valve	30
Speed sensor	35
Setting range for displacement	36
Installation instructions	38
Project planning notes	40
Safety instructions	41

Type code

No	0	1	02	03	04	05	06	07	80	09	10		11	12	13	14	15	16	17	18	19	20	21
One Bent-axis design, variable, nominal pressure 450 bar, maximum pressure 500 bar Maximum pres	Αθ	6V	E					0	0			/	71	М	W	V	0						-
One Bent-axis design, variable, nominal pressure 450 bar, maximum pressure 500 bar Maximum pres	Axial ı	piston	unit																				
Size (N N N N N N N N N N	01	Bent-	-axis c	design	ı, varia	able, n	omina	press	ure 45	50 bar	, maxi	num	pressu	re 500) bar								A6V
Size (N N N N N N N N N N	Opera	ting m	node																				
Size No No No No No No No N				tor																			Е
Note Proportional control, hydraulic Positive control Aps. = 10 bar Aps. = 25 bar	ا) محنة																						
Proportional control, hydraulic Proportional Proportional Proportional control, hydraulic Proportional Pr		T -	netric	displ	aceme	ent. se	e "Tec	hnical	data"	on pa	age 8						060	08	5	115	170	215	1
Proportional control, hydraulic negative control Δρ _{St} = 10 bar Δρ _{St} = 25											<u> </u>						_		_				J
$ \begin{array}{ c c c c c } \hline Ap_{3x} = 25 \ bar & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $		1		nal cor	ntrol l	hvdrau	lic r	nositive	e cont	rol				\ <i>h</i> ₀ , =	10 har		1		Ť		1	1	HP1
Proportional control, electric positive control $Ap_{sx} = 25 bar$	0 1	1100	01 (101	iai 001	111101, 1	i y ai aa	110	3031111	0 00111	01			_						-	•			
Proportional control, electric Positive control Proportional control, electric Proportional control, electric Proportional control Proportional control, electric Proportional control Propo							-	negativ	e con	trol							+	+	-+	•	•	•	
Proportional control, electric Proportional control Proportio													_				+	•	,	•	•	•	
Pressure control Pressure c		Prop	ortior	nal cor	ntrol, e	electri	C	ositive	e cont	rol							•	•	,	•	•	•	EP1
Two-point control, hydraulic negative control $U = 24 \text{ V}$														J = 24	V		•	•	,	•	•	•	EP2
Two-point control, hydraulic negative control $ -$							1	negativ	e con	trol			ı	J = 12	V		•	•	,	•	•	•	EP5
Two-point control, electric negative control $U = 12 \ V \qquad - \qquad - \qquad - \qquad - \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$													ī	J = 24	V		•	•		•	•	•	EP6
Two-point control, electric negative control $U = 12 \text{ V} \qquad - \qquad - \qquad - \qquad - \qquad 0 \qquad 0 \qquad EZ5$ $U = 24 \text{ V} \qquad - \qquad - \qquad - \qquad - \qquad 0 \qquad 0 \qquad EZ6$ $U = 12 \text{ V} \qquad 0 \qquad 0 \qquad 0 \qquad - \qquad - \qquad - \qquad EZ7$ $U = 24 \text{ V} \qquad 0 \qquad $		Two-	point	contro	ol, hyc	Iraulic	1	negativ	e con	trol							_	-		-	•	•	HZ5
Automatic control high-pressure related, positive control with minimum pressure increase $\Delta p \le \text{approx. } 10 \text{ bar}$ o 0 • • • • • • • • • • • • • • • • • •																	•	•		•	● ¹⁾	_	HZ7
Automatic control high-pressure related, positive control with pressure increase $\Delta p \le \text{approx. }10 \text{ bar}$ o o o HA2 With pressure increase $\Delta p = 100 \text{ bar}$ o o o HA2 With minimum pressure increase $\Delta p \le \text{approx. }10 \text{ bar}$ o o o HA2 With minimum pressure increase $\Delta p = 100 \text{ bar}$ o o o HA3 With pressure control/override 060 085 115 170 215 Without pressure control/override 0 060 085 115 170 215 Without pressure control fixed setting, only for HP5, HP6, EP5 and EP6 0 00 Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Two-ı	point	contro	ol, ele	ctric	1	negativ	e con	trol				J = 12	V		_	-		-	•	•	EZ5
Automatic control high-pressure related, positive control with pressure increase with minimum pressure increase $\Delta p \leq \text{approx. } 10 \text{ bar}$ o o o HA2 Pressure control/override $\Delta p \leq \text{approx. } 10 \text{ bar}$ o o o o $\Delta p \leq \text{approx. } 10 \text{ bar}$ o o o o $\Delta p \leq \text{approx. } 10 \text{ bar}$ o o o o o o o o o o o o o o o o o o o													_!	J = 24	V		_			-	•	•	EZ6
Automatic control high-pressure related, positive control With pressure increase $\Delta p = 100 \text{ bar}$ \bullet													_!	J = 12	V		•	•		•		_	EZ7
related, positive control with pressure increase $\Delta p = 100 \text{ bar}$ with minimum pressure increase $\Delta p = 100 \text{ bar}$ o o o • • • • HA2 with minimum pressure increase $\Delta p = 100 \text{ bar}$ o o o • • • • HA3 Pressure control/override 060 085 115 170 215 05 Without pressure control/override Pressure control fixed setting, only for HP5, HP6, EP5 and EP6 Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic controll DEUTSCH - molded connector, 2-pin, without suppressor diode Override of the HA1 and HA2 controls only for hydraulic control) DEUTSCH - molded connector, 2-pin, without suppressor diode Override of the HA1 and HA2 controls only for hydraulic control) Override of the HA1 and HA2 controls, hydraulic control) Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls, hydraulic controls Override of the HA1 and HA2 controls Ov													U	J = 24	V		•	•	,	•		_	EZ8
with minimum pressure increase \(\frac{Ap}{2} \) = 100 \(\text{ball} \) = \(\frac{Ap}{2} \) = 100 \(\text{ball} \) = \(\frac{Ap}{2} \) = 100 \(\text{ball} \) = \(\frac{Ap}{2} \) = 100 \(\text{ball} \) = \(\frac{Ap}{2} \) = 100 \(\text{ball} \) = \(\frac{Ap}{2} \) = 100 \(\text{ball} \) = \(\frac{Ap}{2} \) = \(\frac{Ap}{2} \) = 100 \(\text{ball} \) = \(\frac{Ap}{2} \) =		1					sure \	with m	inimu	m pre	ssure i	ncrea	se Z	1 <i>p</i> ≤ ap	prox.	10 bar	•	•		•	•	•	HA1
Pressure control/override Mithout pressure control/override Mithout pressure control/override Mithout pressure control fixed setting, only for HP5, HP6, EP5 and EP6 Mithout connector for solenoids ²⁾ (see page 24) Object Mithout connector (without solenoid, only for hydraulic control) DEUTSCH - molded connector, 2-pin, without suppressor diode Padditional function 1 Mithout additional function 2 Mithout additional function 3 Mithout additional funct		relate	ed, pc	sitive	contr	Ol	_\	with pr	essur	e incr	ease			$\Delta p = 1$	00 bar		•	•		•	•	•	
Without pressure control/override Pressure control fixed setting, only for HP5, HP6, EP5 and EP6 Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Without connector (without solenoid, only for hydraulic control) DEUTSCH - molded connector, 2-pin, without suppressor diode Additional function 1 Without additional function Odditional function 2							\	with m	inimu	m pre	ssure i	ncrea	se ∠	1 <i>p</i> ≤ ap	prox.	10 bar	0	0		•	•	-	HA3 ¹⁾
Pressure control fixed setting, only for HP5, HP6, EP5 and EP6 Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Connector for solenoids ²⁾ (see page 24) Without connector (without solenoid, only for hydraulic control) DEUTSCH - molded connector, 2-pin, without suppressor diode P Additional function 1 O7 Without additional function OAdditional function 2	Pressi	ure co	ntrol/	overr	ide												060	08	5	115	170	215	
Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic remote controlled, proportional Override of the HA1 and HA2 controls, hydraulic controlled, proportional Override of the HA1 and HA2 controls, hydraulic controlled, proportional Override of the HA1 and HA2 controls, hydraulic controlled, proportional Override of the HA1 and HA2 controls, hydraulic controlled, proportional Override of the HA1 and HA2 controls, hydraulic controlled, proportional Override of the HA1 and HA2 controls, hydraulic controlled, proportional Override of the HA1 and HA2 controls, hydraulic controlled, proportional Override of the HA1 and HA2 controls, hydraulic controlled, proportional Override of the HA1 and HA2 controls, hydraulic controlled, hyd	05	With	out pr	essur	e cont	rol/ov	erride										•	•		•	•	•	00
Connector for solenoids ²⁾ (see page 24) 06 Without connector (without solenoid, only for hydraulic control) DEUTSCH - molded connector, 2-pin, without suppressor diode Additional function 1 07 Without additional function Odditional function 2		Press	sure c	ontrol	l fixed	settin	g, only	for H	P5, HF	P6, EP	5 and	EP6					•	•		•	•	•	D1
Without connector (without solenoid, only for hydraulic control) DEUTSCH - molded connector, 2-pin, without suppressor diode Additional function 1 07 Without additional function Additional function 2		Over	ride o	f the I	HA1 aı	nd HA2	2 conti	ols, hy	/draul	ic rem	note co	ntrol	ed, pr	oporti	onal		•	•	•	•	•	•	Т3
DEUTSCH - molded connector, 2-pin, without suppressor diode Additional function 1 07 Without additional function Additional function 2	Conne	ctor f	or sol	lenoid	ls ²⁾ (se	ee page	e 24)																
Additional function 1 07 Without additional function Additional function 2	06	With	out co	nnect	tor (w	ithout	solend	oid, on	ly for	hydra	ulic co	ntrol)											0
07 Without additional function 0 Additional function 2		DEUT	rsch	- molo	ded co	nnect	or, 2-p	in, wit	hout s	suppre	essor c	iode											Р
Additional function 2	Additi	onal f	unctio	on 1																			
	07	With	out ac	dditior	nal fun	ction																	0
08 Without additional function 0	Additi	onal f	unctio	on 2																			
	08	With	out ac	ditior	nal fun	ction																	0

• = Available • = On request • = Not available

¹⁾ Only possible in conjunction with port plate 6 (integrated counterbalance valve)

 $_{
m 2)}$ Connectors for other electric components may deviate

	01	02 _	03 	04 	05 	06	07	80	09	10 T		, т	11	12	$\overline{}$	$\overline{}$	14	$\overline{}$	\neg	.6 1	7 18 	19 	20 T		2: T
	16V	E					0	0			/		71	М	V	/	V	0						_	
esp	onse ti	ime da	ampin	g (for	select	ion, se	e cont	rol)																	
09	Witho	out da	mping	(stan	dard w	ith HP	and E	EP)																	0
	Damp	oing				HP,	EP, HF	25,6D	and	EP5,6	6D., I	ΗZ, E	EZ, H	4 wit	h BV	D/E	3VE	coun	erba	lance v	alves			\perp	1
						One	-sided	in in	let to	large	stro	king	char	nber	(HA)										4
etti	ng rang	ge for	displa	aceme	nt ³⁾	(3)																			
10	1		ng scre			V _{g m}	_{in} -setti	ing sc	rew										060	085	115	170	215	,	
	No se	tting	screw			sho	t (0-a	djusta	able)										•	•	•	•	•		Α
						med	lium												•	•	•	•	•		В
						long													•	•	•	•	•		С
						extr	a long												-	-	•	•	•		D
	short					sho	t (0-a	djusta	able)										•	•	•	•	•		Ε
						med	lium												•	•	•	•	•		F
						long													•	•	•	•	•		G
						extr	a long												-	-	•	•	•		Н
	mediu	um				sho	t (0-a	djusta	able)										•	•	•	•	•		J
						med	lium												•	•	•	•	•		K
		long • • • • •										L													
			extra long • • •											М											
erie	ies																								
11	Series	s 7, in	dex 1																					Г	71
arci																									
C1 3			nd fac	taning	thres	de																			
12	1				threa		accord	ding t	o ISO	6149	9														м
12	Metri	c, por	t threa				accor	ding t	o ISO	6149	9														М
Direc	Metric	c, por	t threa	ad with	n O-rin	g seal	accor	ding t	o ISO	6149	9														
	Metric	c, por	t threa	ad with		g seal	accord	ding t	o ISO	6149	9														M
Direct	Metric	c, por f rotated on (t threa	ad with	n O-rin	g seal	accor	ding t	o ISO	6149	9														
Direct	Metric	c, por f rotated on o	t threa tion drive s	ad with	n O-rin	g seal	accord	ding t	o ISO	6149	9														
13 ieali	Metric	c, por f rotated on o terial	t threa	ad with	n O-rin	g seal	accore	ding t	o ISO	6149	9														w
13 Geali	Metric Ction of Viewe Ing mat FKM (c, por f rotated on exterial (fluorous)	t threa	ad with	n O-rin	g seal	accord	ding t	o ISO	6149	9														w
13 Seali 14 Orive	Metric Me	c, por f rotated on exerial (fluorous) bearing	t threation drive s pelasto	ad with	n O-rin	g seal	accore	ding t	o ISO	6149	9								060	085	115	170	215		v
13 seali 14 Orive	Metric Me	c, por f rotat ed on e terial (fluoro beari lard be ange	t threation drive s pelasto ng earing	ad with	n O-rin	g seal		ding t	o ISO	6149	9								060	085	115	170	215		v
Direction 13 Seali 14 Drivet 15	Metric Me	c, por f rotat ed on e terial (fluoro beari lard be ange	t threation drive s pelasto ng earing	ad with	n O-rin	g seal	-2	ding t	o ISO	6149	9								060	-	115	170			W V 0
13 seali 14 Orive	Metric Me	c, por f rotat ed on e terial (fluoro beari lard be ange	t threation drive s pelasto ng earing	ad with	n O-rin	tional 160 190	-2	ding t	o ISO	6148	9								•		-	-			W V 0 P2 Y2
13 eali 14 Prive	Metric Me	c, por f rotat ed on e terial (fluoro beari lard be ange	t threation drive s pelasto ng earing	ad with	n O-rin	160 190 200	-2 -2 -2	ding t	o ISO	6148	9								• -	-	-	-			V V 0 P2 Y2 S2
Direct 13 6eali 14 Drive 15 Mount 16	Metric ction of Viewer ing mat FKM (e shaft Stand nting fl	c, por f rotat ed on e terial (fluoro beari lard be ange	t threation drive s pelasto ng earing	ad with	n O-rin	tional 160 190	-2 -2 -2	ding t	o ISO	6149	9								• - -	- • -	- - •	- - •			V V 0 P2 Y2 S2
eali 14 Prive 15 16	Metric ction of Viewer ing mat FKM (shaft Stand ISO 3	c, por f rotated on other terial (fluorother) bearing lard bearing ange 019-2	t threa	ad with	n O-rin	160 190 200 260	-2 -2 -2 -4		o ISO	6149	9								- - - -	- - - - 085	-	-	- - - •		V V 0 P2 Y2 S2 Z2
13 6eali 14 Drive 15 Mount	Metric ction of Viewer from the shaft Stand ISO 3	c, por f rotat ed on o terial (fluoro bearin lard b ange 019-2	t threa	ad with	n O-rin	160 190 200 260 W35	-2 -2 -2 -4 6×2×16	s)×9g	o ISO	6148	9								• - - - 060	- - - - 085	- - • - 115	- - - 170	- - - • 215		W V 0 P2 Y2 S2 Z2 Z8
13 6eali 14 Drive 15 Mount	Metric ction of Viewer ing mat FKM (shaft Stand ISO 3	c, por f rotat ed on o terial (fluoro bearin lard b ange 019-2	t threa	ad with	n O-rin	160 190 200 260 W35	-2 -2 -2 -4 -6×2×16 0×2×16	S×9g 3×9g	o ISO	6148	9								• - - - 060 • -	- - - - 085	- - - 115 -	- - - 170	- - - • 215		V V 0 P2 Y2 S2 Z2 Z8 Z9
13 6eali 14 Drive 15 Mount	Metric ction of Viewer from the shaft Stand ISO 3	c, por f rotat ed on o terial (fluoro bearin lard b ange 019-2	t threa	ad with	n O-rin	160 190 200 260 W40 W45	-2 -2 -2 -4 6×2×16	\$\times 9g \\ 3\times 9g \\ \times 9g \\ \ti	o ISO	6149	9								• - - - 060	- - - - 085	- - • - 115	- - - 170	- - - • 215		v

³⁾ The adjustment values for the setting screws can be found in the table (page 36).

4 **A6VE Series 71** | Variable plug-in motor Type code

(13	14	15	16	17	18	19	20	21						
Α	\6V	E	8				0	0			/	7	<u>ا</u> ا	M	W	V	0						
/ork	cing po	ort															060	0	085	115	170	215	
18	SAE	workin	g por	ts A aı	nd B at	rear											•		•	•	•	•	1
	SAE	workin	g por	ts A aı	nd B la	teral,	oppos	ite									•		•	•	•	•	2
	SAE	workin	g por	ts A aı	nd B at	botto	m onl	y with	integ	rated	BVI	count	erbal	anc	e valv	e ⁴⁾	0		0	•	•	-	6
	1	plate v										BVE	20				•		•	•	-	-	7
	valve	alves for mounting a counterbalance valve ⁵⁾ BVD25, BVE25														_		-	•	•	•	8	
alve	e (see	page 2	5 to 3	34)													060	0	085	115	170	215	
19	With	out val	ve														•		•	•	•	•	0
	With	With BVD/BVE counterbalance valves mounted ⁶⁾															•		•	•	•	•	W
	Integ	rated l	orake	releas	e valve)						For	exte	rnal	pipin	g	0		0	•	•	-	Υ
	(only	with p	ort p	late 6))							for	nter	nal	ductir	ıg	0		0	•	•	-	Z
	With	flushir	ng and	boos	t-press	sure va	lve m	ounte	d			Flu	shing	flo	w $q_{\scriptscriptstyle ee}$ [l/min]				'			
	1	ing on										3.5					•		•	•	-	-	Α
	1	ing flo				10	2/-					5					•		•	•	-	-	В
		p _{ND} – <i>p</i> = low p										8					•		•	•	•	•	С
	_	possib		_								10					•		•	•	•	•	D
												14					•		•	•	-	-	F
												15					-		-	-	●7)	●7)	G
												18					T -		-	●7)	●7)	●7)	ı
												21					T -		-	●7)	●7)	●7)	J
												27					T -		-	●7)	●7)	●7)	K
												31					-		-	●7)	●7)	●7)	L
												37					_		-	-	● ⁷⁾	●7)	М
oee	d sens	or (se	e pag	e 35)													060	0	085	115	170	215	
20	With	out spe	eed se	ensor													•		•	•	•	•	0
	Prepa	ared w	ith D	SA spe	ed ser	sor											•		•	•	•	•	U
	With	DSA s	peed	senso	r mour	ted ⁸⁾											•		•	•	•	•	٧
tand	dard /	specia	ıl ver	sion																			
21	1	dard ve																			,		0
	Stand	dard ve	ersion	with	installa	tion v	ariants	s, e.g.	T por	ts ope	n ar	nd clo	sed c	ont	rary to	stand	lard						Υ
	Spec	ial vers	sion																				S

= AvailableOn request= Not available

Notice

▶ Note the project planning notes on page 40.

⁴⁾ Only for HZ7 and HA3. Supplement specification for integrated BVI counterbalance valve, see separate type code on page 30. Note the restrictions described on page 31.

⁵⁾ Possible only in combination with HP, EP and HA control Note the restrictions described on page 27.

⁶⁾ Type code for counterbalance valve to be quoted separately in accordance with data sheet 95522 – BVD or 95525 – BVE Note the restrictions described on pages 27 and 30.

⁷⁾ Not for EZ7, EZ8, HZ7 and HA3

⁸⁾ Specify type code of sensor in accordance with data sheet 95133 – DSA separately and observe the requirements for the electronics.

Hydraulic fluids

The A6VE variable motor is designed for operation with HLP mineral oil according to DIN 51524. Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- ▶ 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids
- ▶ 90222: Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)
- ▶ 90223: Fire-resistant, water-containing hydraulic fluids (HFC, HFB)
- ▶ 90225: Axial piston units for operation with water-free and water-containing fire-resistant hydraulic fluids (HFDR, HFDU, HFB, HFC).

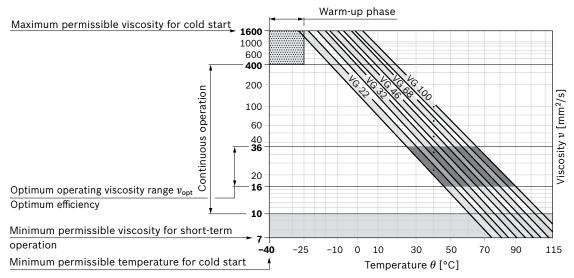
The variable motor A6VE is not suitable for operation with HFA hydraulic fluid. If operating with HFB-, HFC- and HFD or environmentally acceptable hydraulic fluids, the limitations regarding technical data or other seals must be observed.

Notes on selection of hydraulic fluid

The hydraulic fluid should be selected such that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt} see selection diagram).

Notice

At no point of the component may the temperature be higher than 115 °C. The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.


If the above conditions cannot be maintained due to extreme operating parameters, we recommend the use of a flushing and boost-pressure valve (see page 25).

Viscosity and temperature of hydraulic fluids

	Viscosity	Temperature	Comment
Cold start ¹⁾	$v_{\text{max}} \le 1600 \text{ mm}^2/\text{s}$	θ _{St} ≥ -40 °C	$t \le 3 \text{ min, } n \le 1000 \text{ min}^{-1}, \text{ without load } p \le 50 \text{ bar}$
Permissible temper	rature difference	Δ <i>T</i> ≤ 25 K	between axial piston unit and hydraulic fluid in the system
Warm-up phase	$v = 1600 \text{ to } 400 \text{ mm}^2/\text{s}$	θ = -40 °C to -25 °C	At $p \le 0.7 \times p_{\text{nom}}$, $n \le 0.5 \times n_{\text{nom}}$ and $t \le 15$ min
Continuous operation	$v = 400 \text{ to } 10 \text{ mm}^2/\text{s}$		this corresponds, for VG 46 for example, to a temperature range of +5 $^{\circ}$ C to +85 $^{\circ}$ C (see selection diagram)
		θ = -25 °C to +103 °C	measured at port T Observe the permissible temperature range of the shaft seal (ΔT = approx. 12 K between bearing/shaft seal and port T)
	$v_{\rm opt} = 36 \text{ to } 16 \text{ mm}^2/\text{s}$		Range of optimum operating viscosity and efficiency
Short-term operation	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		$t < 3 \min, p < 0.3 \times p_{\text{nom}}$

 $_{1)}$ For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range -40 °C to +90 °C)

▼ Selection diagram

RE 91616/05.2016, Bosch Rexroth AG

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.

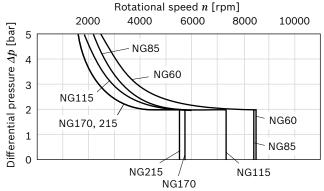
At very high hydraulic fluid temperatures (90 °C to maximum 103 °C, measured at port **T**), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

Effect of case pressure on beginning of control

An increase in the case pressure leads to an increase in the beginning of control for the HP and HA.T3 controls.

For EP and HA control, an increase in case pressure has no effect on the beginning of control.

The factory setting for the beginning of control is made at $p_{\rm abs}$ = 2 bar case pressure.

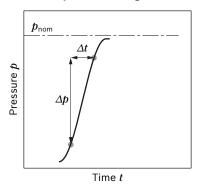

Flow direction

Direction of rotation, viewed on drive shaft							
clockwise	counter-clockwise						
A to B	B to A						

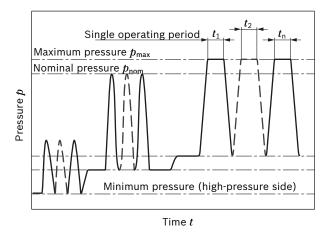
Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the rotational speed of the axial piston unit and the leakage pressure in the housing (case pressure). Momentary ($t < 0.1 \, \mathrm{s}$) pressure peaks of up to 10 bar are permitted. The service life of the shaft seal decreases with increasing frequency of pressure peaks and increasing mean differential pressure. The case pressure must be equal to or higher than the ambient pressure.

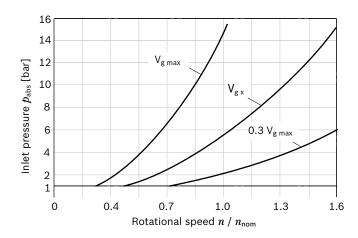


The FKM shaft seal ring may be used for leakage temperatures from -25 °C to +115 °C. For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).


Working pressure range

Pressure at working port A or B		Definition
Nominal pressure p_{nom}	450 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p _{max}	500 bar	The maximum pressure corresponds to the maximum working pressure with-
Single operating period	10 s	in the single operating period. The sum of the single operating periods must
Total operating period	300 h	mot exceed the total operating period.
Minimum pressure (high-pressure side)	25 bar	Minimum pressure at the high-pressure side (A or B) required to prevent damage to the axial piston unit.
Minimum pressure – operation as a pump (inlet)	See diagram below	To avoid damage to the axial piston motor during operation as a pump (change of the high-pressure side at constant direction of rotation, e.g. during braking processes) a minimum pressure has to be ensured at the working port (inlet). The minimum required pressure is dependent on the rotational speed and displacement of the axial piston unit (see characteristic curve).
Summation pressure p_{Su} (pressure A + pressure B)	700 bar	The summation pressure is the sum of the pressures at the working ports (A and B).
Rate of pressure change $R_{\text{A max}}$		Maximum permissible speed of pressure build-up and reduction during
with built-in pressure relief valve	9000 bar/s	a pressure change across the entire pressure range.
without pressure relief valve	16000 bar/s	_

▼ Rate of pressure change $R_{A \text{ max}}$



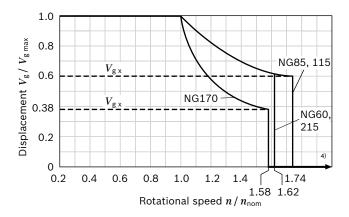
▼ Pressure definition

Total operating period = $t_1 + t_2 + ... + t_n$

▼ Minimum pressure – operation as a pump (inlet)

This diagram is only valid for the optimum viscosity range of $n_{\rm opt}$ = 36 to 16 mm²/s.

If the above mentioned conditions cannot be ensured please contact us.


Notice

Working pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids, please contact us.

Technical data

Size		NG		60	85	115	170	215
Displacement geometric, per revolution		$V_{g\;max}$	cm ³	62.0	85.2	115.6	171.8	216.5
		$V_{g\;min}$	cm ³	0	0	0	0	0
		V_{gx}	cm ³	37	51	69	65	130
Maximum rotational speed ¹⁾ (in	at V_{gmax}	n_{nom}	rpm	4450	3900	3550	3100	2900
compliance with maximum per-	where $V_{\rm g} < V_{\rm gx}$ (see diagram)	n_{max}	rpm	7200	6800	6150	4900	4800
missible inlet flow)	where $V_{\mathrm{g}0}$	n_{max}	rpm	8400	8350	7350	5750	5500
Inlet flow ²⁾	at n_{nom} and $V_{g\;max}$	$q_{ m v\ max}$	l/min	275	332	410	533	628
Torque ³⁾	at $V_{\rm gmax}$ and Δp = 450 bar	T	Nm	444	610	828	1230	1550
Rotary stiffness	$V_{ m g\ max}$ to $V_{ m g}/2$	c_{min}	kNm/rad	15	22	37	52	70
	$V_{\rm g}/2$ to 0 (interpolated)	c_{min}	kNm/rad	45	68	104	156	196
Moment of inertia for rotary grou	ıp	J_{TW}	kgm²	0.0043	0.0072	0.0110	0.0213	0.0303
Maximum angular acceleration		α	rad/s²	21000	17500	15500	11000	10000
Case volume		V	1	0.8	1.0	1.5	2.3	3.0
Weight approx.	Without BVI	m	kg	28	36	46	62	78
	With BVI	m	kg	37	45	52	70	_

▼ Permissible displacement in relation to rotational speed

Determining t	he ope	rat	ing characteristics		
Inlet flow	$q_{\sf v}$	=	$\frac{V_{g} \times n}{1000 \times \eta_{v}}$		[l/min]
Rotational speed	n	=	$rac{q_{v} imes 1000 imes \eta_{v}}{V_{g}}$		[rpm]
Torque	Т	=	$\frac{V_{g} \times \Delta p \times \eta_{hm}}{20 \times \pi}$		[Nm]
Power	P	=	$\frac{2\pi \times T \times n}{60000} = \frac{q_{\text{v}}}{}$	$\frac{\times \Delta p \times \eta_{\rm t}}{600}$	[kW]

Notice

- ► Theoretical values, without efficiency and tolerances; values rounded
- Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet 90261.

Key

 $V_{\rm g}$ Displacement per revolution [cm 3]

 Δp Differential pressure [bar]

n Rotational speed [rpm]

 η_{v} Volumetric efficiency

 $\eta_{
m hm}$ Hydraulic-mechanical efficiency

 η_{t} Total efficiency ($\eta_{t} = \eta_{v} \times \eta_{hm}$)

1) The values are applicable:

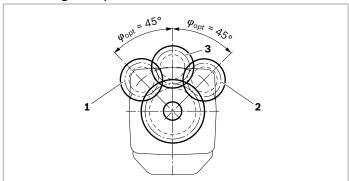
- for the optimum viscosity range from $v_{\rm opt}$ = 36 to 16 mm²/s

- with hydraulic fluid based on mineral oils

 Observe limitation of input flow due to counterbalance valve (page 27).

3) Torque without radial force, with radial force see page 9.

 $^{4)}$ Values in this range on request


Permissible radial and axial forces of the drive shafts

Size	NG		60	85	115	170	215
Drive shaft			W35	W40	W40	W45	W50
Maximum radial force ¹⁾ $ F_q \rightarrow$	$F_{q\;max}$	N	10266	12323	16727	21220	25016
at distance a (from shaft collar)	a	mm	20.0	22.5	22.5	25.0	27.5
Maximum torque at $F_{q\;max}$	$T_{q\;max}$	Nm	444	610	828	1200	1550
Maximum differential pressure at $V_{ m gmax}$ and $F_{ m q\;max}$	$\Delta p_{q\;max}$	bar	450	450	450	440	450
Maximum axial force, at	+ F _{ax max}	N	0	0	0	0	0
standstill or depressurized $F_{ax} \xrightarrow{+}$ operation	- F _{ax max}	N	500	710	900	1120	1250
Permissible axial force per bar working pressure	+ F _{ax perm/bar}	N/bar	7.5	9.6	11.3	15.1	17.0

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force $F_{\rm q}$, the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

▼ Toothed gear output drive

- 1 "Counter-clockwise" rotation, pressure at port B
- 2 "Clockwise" rotation, pressure at port A
- 3 Bidirectional direction of rotation

Notice

- ► The values given are maximum values and do not apply to continuous operation.
- ► The permissible axial force in direction $-F_{ax}$ is to be avoided as the lifetime of the bearing is reduced.
- Special requirements apply in the case of belt drives.
 Please contact us.

¹⁾ With intermittent operation

HP - Proportional hydraulic control

The proportional hydraulic control provides infinite adjustment of the displacement. The control is proportional to the pilot pressure at port **X**.

HP1, **HP2** positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible rotational speed at minimum pilot pressure)
- ► End of control at $V_{\rm g \ max}$ (maximum torque, minimum rotational speed at maximum pilot pressure)

HP5, HP6 negative control

- ▶ Beginning of control at $V_{\rm g \, max}$ (maximum torque, minimum rotational speed at minimum pilot pressure).
- ▶ End of control at $V_{g \, min}$ (minimum torque, maximum permissible rotational speed, at maximum pilot pressure).

Notice

- ▶ Maximum permissible pilot pressure: p_{St} = 100 bar
- ► The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is necessary in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us.

Bear in mind that pressures up to 500 bar can occur at port **G**.

- ► Specify the desired beginning of control in plain text when ordering, e.g. beginning of control at 10 bar.
- ► The beginning of control and the HP characteristic curve are influenced by the case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 6) and thus a parallel displacement of the characteristic curve.
- ► A leakage flow of maximum 0.3 l/min can occur at port X due to internal leakage (working pressure > pilot pressure). The control is to be suitably configured to avoid an independent build-up of pilot pressure.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for sizes 60 to 215

HP without damping.

 $\label{eq:hpdf} \mbox{HP.D with throttle pin on both sides, symmetrical (see table)}$

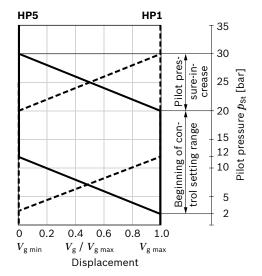
Optional for sizes 60 to 215

HP with throttle pin on both sides, symmetrical (see table)

▼ Throttle pin overview

Size	060	085	115	170	215	
Groove size [mm]	0.45	0.45	0.55	0.55	0.65	

HP1, HP5 – pilot pressure increase Δp_{St} = 10 bar HP1 positive control

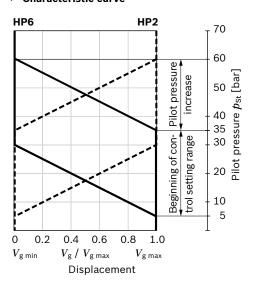

A pilot pressure increase of 10 bar at port **X** results in an increase in displacement from $V_{\rm g\ min}$ to $V_{\rm g\ max}$.

HP5 negative control

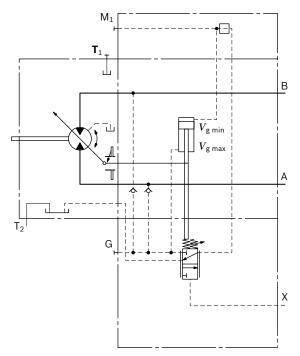
A pilot pressure increase of 10 bar at port **X** results in a decrease in displacement from $V_{\rm g\,max}$ to $V_{\rm g\,min}$. Beginning of control, setting range 2 to 20 bar Standard setting:

beginning of control at 3 bar (end of control at 13 bar)

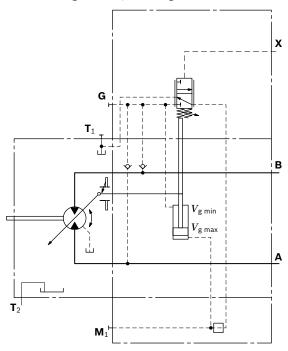
▼ Characteristic curve


HP2, HP6 pilot pressure increase Δp_{St} = 25 bar HP2 positive control

A pilot pressure increase of 25 bar at port **X** results in an increase in displacement from $V_{\rm g\ min}$ to $V_{\rm g\ max}$.

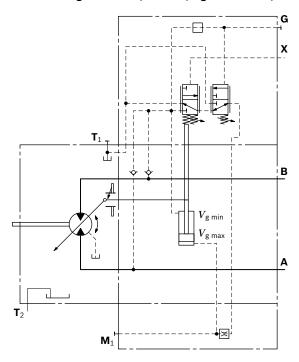

HP6 negative control

A pilot pressure increase of 25 bar at port **X** results in a decrease in displacement from $V_{\rm g\,max}$ to $V_{\rm g\,min}$. Beginning of control, setting range 5 to 35 bar Standard setting: beginning of control at 10 bar (end of control at 35 bar)


▼ Characteristic curve

▼ Circuit diagram HP1, HP2 (positive control)

▼ Circuit diagram HP5, HP6 (negative control)


HP5D1, HP6D1 Pressure control, fixed setting

The pressure control overrides the HP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger angle.

The increase in displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve 80 to 450 bar

▼ Circuit diagram HP5D1, HP6D1 (negative control)

EP - Proportional control, electric

The proportional electric control provides infinite adjustment of the displacement. Control is proportional to the electric control current applied to the solenoid.

EP1, EP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible rotational speed at minimum control current)
- ► End of control at $V_{\rm g \ max}$ (maximum torque, minimum rotational speed at maximum control current)

EP5, EP6 negative control

- ▶ Beginning of control at $V_{g max}$ (maximum torque, minimum rotational speed at minimum control current)
- ▶ End of control at $V_{\rm g\,min}$ (minimum torque, maximum permissible rotational speed at maximum control current)

▼ Characteristic curve

Notice

The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us.

Bear in mind that pressures up to 500 bar can occur at port **G**.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for sizes 60 to 215

EP without damping.

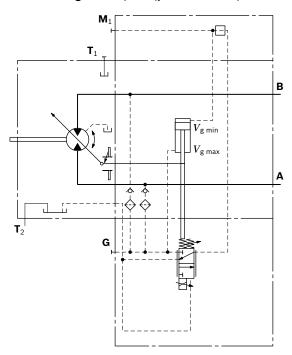
EP.D with throttle pin on both sides, symmetrical (see table)

Optional for sizes 60 to 215

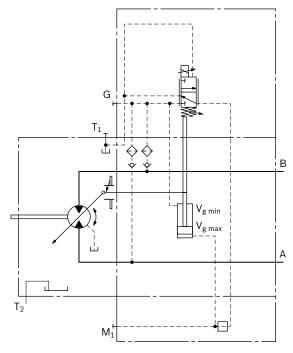
(see table)

▼ Throttle pin overview

Size	60	85	115	170	215
Groove size [mm]	0.45	0.45	0.55	0.55	0.65


Technical data, solenoid	EP1, EP5	EP2, EP6
Voltage	12 V (±20%)	24 V (±20%)
Control current		
Beginning of control	400 mA	200 mA
End of control	1200 mA	600 mA
Current limit	1.54 A	0.77 A
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω
Dither		
Frequency	100 Hz	100 Hz
Minimum oscillation range ¹⁾	240 mA	120 mA
Duty cycle	100%	100%
Type of protection: see connector y	version page 24	

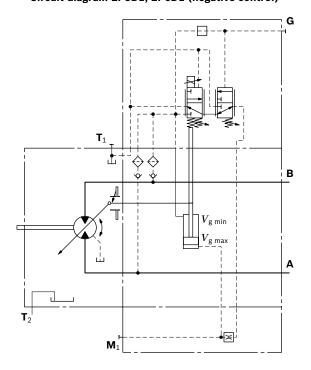
Various BODAS controllers with application software and amplifiers are available for controlling the proportional solenoids.


Further information can also be found on the internet at www.boschrexroth.de/mobilelektronik.

¹⁾ Minimum required oscillation range of the control current $\Delta I_{\text{p-p}}$ (peak to peak) within the respective control range (start of control to end of control)

▼ Circuit diagram EP1, EP2 (positive control)

▼ Circuit diagram EP5, EP6 (negative control)

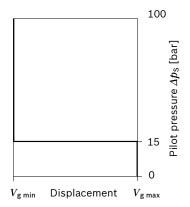

EP5D1, EP6D1 Pressure control, fixed setting

The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger angle.

The increase in displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve 80 to 450 bar

▼ Circuit diagram EP5D1, EP6D1 (negative control)


HZ - Two-point control, hydraulic

The two-point hydraulic control allows the displacement to be set to either $V_{\rm g\ min}$ or $V_{\rm g\ max}$ by switching the pilot pressure at port **X** on or off.

HZ5, HZ7 negative control

- Position at $V_{g max}$ (without pilot pressure, maximum torque, minimum rotational speed)
- Position at $V_{\rm g\,min}$ (with pilot pressure > 15 bar activated, minimum torque, maximum permissible rotational speed)

▼ Characteristic curve HZ5, HZ7

Notice

- ► Maximum permissible pilot pressure: 100 bar
- ▶ The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us.

Bear in mind that pressures up to 500 bar can occur at port ${\bf G}$.

► A leakage flow of maximum 0.3 l/min occurs at port **X** (working pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure must be relieved from port **X** to the reservoir.

Response time damping

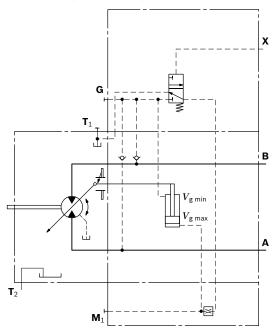
The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for sizes 170 and 215

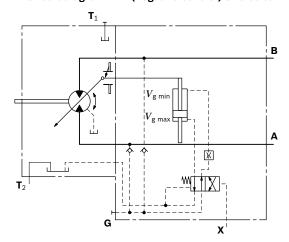
HZ5 with throttle pin on both sides, symmetrical (see table)

Standard for sizes 115 and 170 with BVI

HZ7 with throttle pin on both sides 0.30, symmetrical


Standard for sizes 60 to 115

HZ7 (synchronous piston) with throttle pin on both sides, symmetrical (see table)


▼ Throttle pin overview

Size	60	85	115	170	215
Groove size [mm]	0.30	0.30	0.30	0.55	0.65

▼ Circuit diagram HZ5 (negative control) sizes 170 and 215

▼ Circuit diagram HZ7 (negative control) size 60 to 115

RE 91616/05.2016, Bosch Rexroth AG

EZ - Two-point control, electric

The two-point electric control allows the displacement to be set to either $V_{\rm g\,min}$ or $V_{\rm g\,max}$ by switching the electric current to a switching solenoid on or off.

Notice

The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us.

Bear in mind that pressures up to 500 bar can occur at port ${\bf G}$.

Response time damping

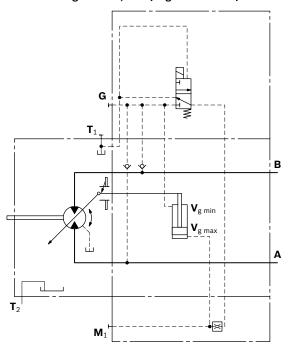
The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for sizes 170 and 215

EZ5, EZ6 with throttle pin on both sides, symmetrical (see table)

Standard for sizes 60 to 115

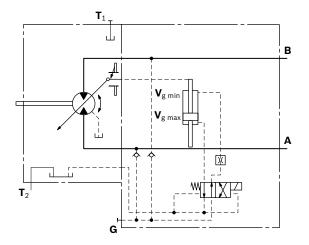
EZ7, EZ8 (synchronous piston) with throttle pin on both sides, symmetrical (see table)


▼ Throttle pin overview

Size	60	85	115	170	215
Groove size [mm]	0.30	0.30	0.30	0.55	0.65

Sizes 170 and 215

Technical data, solenoid with Ø37	EZ5	EZ6			
Voltage	12 V (±20%)	24 V (±20%)			
Position V_{gmax}	de-energized	de-energized			
Position V_{gmin}	Current	Current			
	Switched on	Switched on			
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω			
Nominal power	26.2 W	26.5 W			
Minimum active current required	1.32 A	0.67 A			
Duty cycle	100%	100%			
Type of protection: see connector version page 24					


▼ Circuit diagram EZ5, EZ6 (negative control)

Sizes 60 to 115

Technical data, solenoid with Ø45	EZ7	EZ8			
Voltage	12 V (±20%)	24 V (±20%)			
Position $V_{g\;max}$	de-energized	de-energized			
Position V_{gmin}	Current	Current			
	Switched on	Switched on			
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω			
Nominal power	30 W	30 W			
Minimum active current required	1.5 A	0.75 A			
Duty cycle	100%	100%			
Type of protection: see connector version page 24					

▼ Circuit diagram EZ7, EZ8 (negative control)

HA - Automatic high-pressure related control

The automatic high-pressure related control adjusts the displacement automatically depending on the working pressure.

The beginning of control of the A6VE motor with HA control is $V_{\rm g\,min}$ (maximum rotational speed and minimum torque). The control device measures internally the working pressure at ${\bf A}$ or ${\bf B}$ (no control line required) and upon reaching the beginning of control, the controller swivels the motor from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. The displacement is modulated between $V_{\rm g\,min}$ and $V_{\rm g\,max}$ depending on the load.

HA1, HA2, HA3 positive control

- ▶ Beginning of control at $V_{g min}$ (minimum torque, maximum rotational speed)
- ► End of control at $V_{\rm g\ max}$ (maximum torque, minimum rotational speed)

Notice

port G.

- For safety reasons, winch drives are not permissible with beginning of control at V_{g min} (standard for HA).
- ► The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, a working pressure of at least 30 bar is required in **A** (**B**). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port **G** using an external check valve. For lower pressures, please contact us. Bear in mind that pressures up to 500 bar can occur at
- ► The beginning of control and the HA.T3 characteristic curve are influenced by case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 6) and thus a parallel displacement of the characteristic curve.
- A leakage flow of maximum 0.3 l/min occurs at port X (working pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure must be relieved from port X to the reservoir. Only for HA.T control.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for sizes 60 to 215

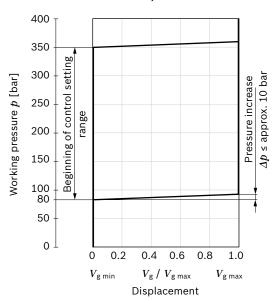
HA1,2 with one-sided throttle pin, throttling occurs from $V_{\rm g\ min}$ to $V_{\rm g\ max}$. (see table) HA3 and HA3T3 with BVI and throttle pin on both sides, 0.30, symmetrical

▼ Throttle pin overview

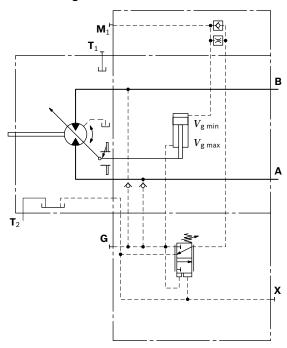
Size	60	85	115	170	215
Groove size [mm]	0.45	0.45	0.55	0.55	0.65

Standard for sizes 60 to 215

HA with BVD or BVE counterbalance valves with throttle screw (see table)


▼ Throttle screw

Size	60	85	115	170	215
Diameter [mm]	0.80	0.80	0.80	0.80	0.80

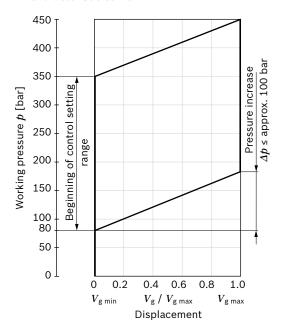

HA1, HA3 with minimum pressure increase, positive control

A working pressure increase of $\Delta p \leq$ approx. 10 bar results in an increase in displacement from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. Beginning of control, setting range 80 to 350 bar Specify the desired beginning of control in plain text when ordering, e.g. beginning of control at 300 bar.

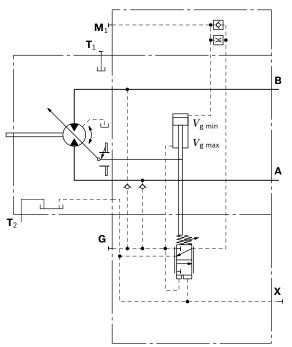
▼ Characteristic curve HA1, HA3

▼ Circuit diagram HA1

▼ Circuit diagram HA3


With integrated BVI counterbalance valve, see page 32

Bosch Rexroth AG, RE 91616/05.2016

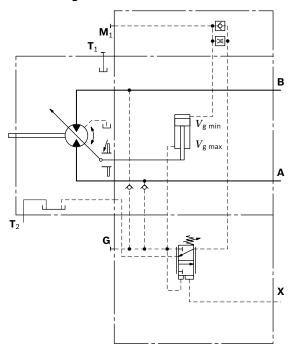

HA2 with pressure increase, positive control

A working pressure increase of $\Delta p \leq$ approx. 100 bar results in an increase in displacement from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. Beginning of control, setting range 80 to 350 bar Specify the desired beginning of control in plain text when ordering, e.g. beginning of control at 200 bar.

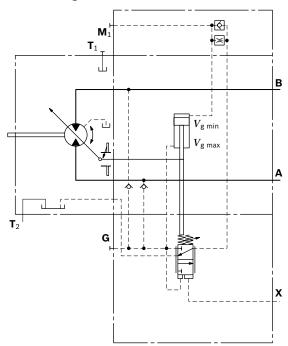
▼ Characteristic curve HA2

▼ Circuit diagram HA2

HA.T3 override, hydraulic, remote controlled, proportional


With the HA.T3 control, the beginning of control can be influenced by applying a pilot pressure to port \mathbf{X} . For each 1 bar of pilot pressure increase, the beginning of control is reduced by 17 bar.

Beginning of control setting	300 bar	300 bar
Pilot pressure at port X	0 bar	10 bar
Beginning of control at	300 bar	130 bar

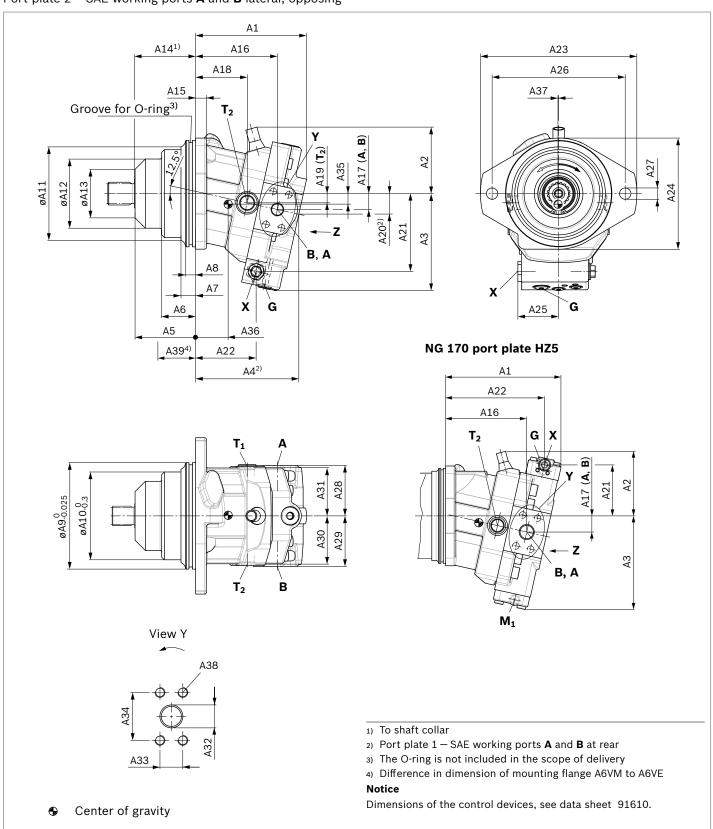

Notice

Maximum permissible pilot pressure 100 bar.

▼ Circuit diagram HA1T3

▼ Circuit diagram HA2T3

▼ Circuit diagram HA3T3


With integrated BVI counterbalance valve, see page 32

Dimensions

Sizes 60 to 170

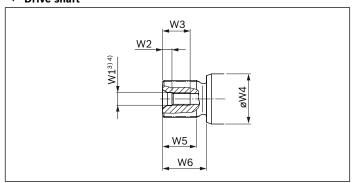
HZ7 - Two-point control, hydraulic

Port plate 2-SAE working ports \boldsymbol{A} and \boldsymbol{B} lateral, opposing

1	100 114 121 133	146 161 172	153 164	91 109.5	A6 51 65	A7	A8	ØA9	øA10 132	øA11	øA12	øA13	A14	A15	A16
1	114 121	161	164			22	15	160	122						
1	121		-	109.5	e E				132	140.5	104	73	92	16	123
		172			65	30	15	190	143	151	116	88	110.5	18	130
1	122		175	121.8	73	35	15	200	160	168	132	90	122.8	18	137
	133	197	212	122	67	29	15	200	180	188	146	100	123	20	171
^	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32
1	77	14	30	117	91	235	167	57	200	17	76	76	73	73	19
7	78	16	35	132	93	260	198	57	224	21	82	82	78.5	78.5	25
3	82	17	38	143	99	286	210	61	250	21	90	90	86.5	86.5	25
1	109	20	43	107	208	286	210	40.5	250	21	102	102	98.5	98.5	32
^	A34	A35	A36	A37	A38			A39	O-ring						
0	50.8	15.8	48.8	1	M10 ×	1.5; 17	deep	60	150 × 4						
_	57.2	15.9	44.2	0.6	M12 ×	1.75; 17	7 deep	78.5	182 × 4						
_	57.2	15.2	42.9	0.5	M12 ×	1.75; 17	7 deep	83	192 × 4						
7	77 78 82 109 A34 50.8 57.2	14 16 17 20 A35 15.8 15.9	30 35 38 43 A36 48.8 44.2	117 132 143 107 A37 1	91 93 99 208 A38 M10 × M12 ×	235 260 286 286 286 : 1.5; 17 : 1.75; 17	167 198 210 210 deep 7 deep	57 57 61 40.5 A39 60 78.5	200 224 250 250 O-ring 150 × 4 182 × 4	17 21 21	76 82 90	76 82 90		73 78.5 86.5	73 73 78.5 78.5 86.5 86.5

83

192 × 4


▼ Drive shaft

31.8

66.7

14.3

 $170^{2)}$

69.9

0.5

M14 × 2; 19 deep

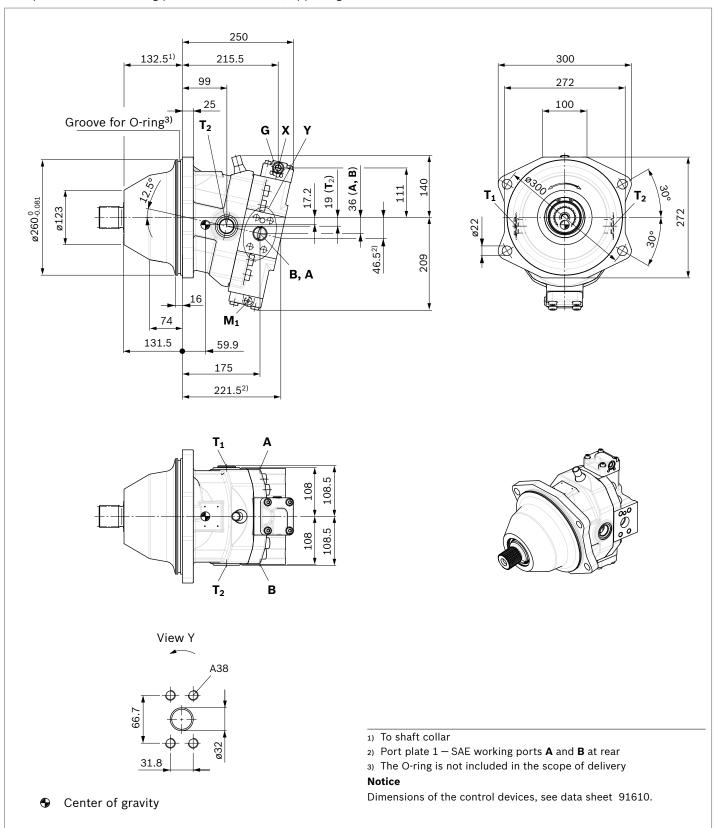
NG	Splined shaft DIN 5480	W1	W2	W3	øW4	W5	W6
60	Z8 - W35×2×16×9g	M12 × 1.75	9.5	28	45	32	40
85	Z9 - W40×2×18×9g	M16 × 2	12	36	50	37	45
115	Z9 - W40×2×18×9g	M16 × 2	12	36	60	37	45
170	A1 - W45×2×21×9g	M16 × 2	12	36	70	42	50
215	A2 - W50×2×24×9g	M16 × 2	12	36	70	44	55

¹⁾ HZ7 control

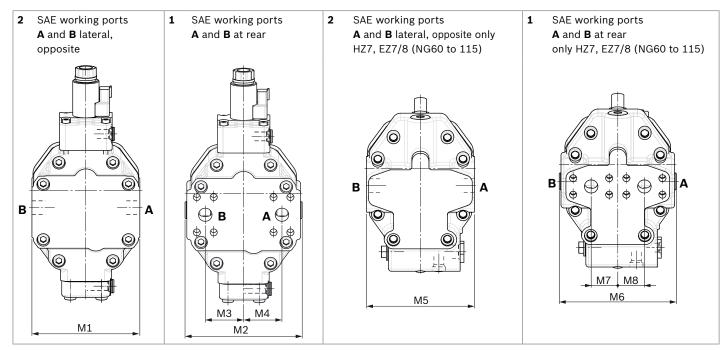
²⁾ HZ5 control

 $[\]ensuremath{\mathfrak{I}}$ For notes on tightening torques, see the instruction manual.

⁴⁾ Center bore according to DIN 332 (thread according to DIN 13)


22

Dimensions


Size 215

HZ5 - Two-point control, hydraulic

Port plate 2-SAE working ports \boldsymbol{A} and \boldsymbol{B} lateral, opposing

▼ Location of the working ports on the port plates (View Z)

NG	М1	M2	М3	M4	M5	М6	М7	М8
60	152	165	54	54	152	165	37.5	37.5
85	164	177	54	54	164	177	42	42
115	180	193	65	65	180	193	42	42
170	204	226	76	76	-	_	-	_
215	216	235	82	82	-	-	-	_

NG	Ports						
	A, B		T ₁ , T ₂	G	X (HA1, HA2)	X (HP, HZ, HA1T/2T)	M_1
60	3/4 in	M10 x 1.5; 17 deep	M22 × 1.5; 15.5 de	ep M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 d	leep M14 x 1.5; 11.5 deep	-
85	1 in	M12 × 1.75; 17 deep	M22 × 1.5; 15.5 de	ep M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 d	leep M14 x 1.5; 11.5 deep	-
115	1 in	M12 × 1.75; 17 deep	M22 × 1.5; 15.5 de	ep M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 d	leep M14 x 1.5; 11.5 deep	-
170	1 1/4 in	M14 x 2; 19 deep	M27 x 2; 19 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 d	leep M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep
215	1 1/4 in	M14 x 2; 19 deep	M33 × 2; 19 deep	M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 c	leep M14 x 1.5; 11.5 deep	M14 x 1.5; 11.5 deep

Ports		Standard	$p_{\sf max\;abs}[{\sf bar}]^{1)}$	State ⁵⁾
А, В	Working port Fastening thread	SAE J518 DIN 13 ²⁾	500	Ο
T ₁ , T ₂	Drain port	ISO 6149 ⁴⁾	3	X/O (T ₂) ³⁾
G	Synchronous control	ISO 6149 ⁴⁾	500	Х
X (HA1, HA2)	Pilot signal	ISO 6149 ⁴⁾	3	Х
X (HP, HZ, HA1T/2T)	Pilot signal	ISO 6149 ⁴⁾	100	0
M ₁	Stroking chamber measurement	ISO 6149 ⁴⁾	500	Х

- Depending on the application, momentary pressure peaks can occur.
 Keep this in mind when selecting measuring devices and fittings.
- $_{
 m 2)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard
- 3) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 38).
- $_{\mbox{\scriptsize 4)}}$ The countersink can be deeper than as specified in the standard.
- 5) O = Must be connected (plugged when delivered) X = Plugged (in normal operation)

RE 91616/05.2016, Bosch Rexroth AG

Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded connector, 2-pin, without bidirectional suppressor diode

The following type of protection ensues with the installed mating connector:

- ► IP67 (DIN/EN 60529) and
- ► IP69K (DIN 40050-9)

▼ Circuit symbol

▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation
1 housing	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902601804).

Notice

- ► If necessary, you can change the position of the connector by turning the solenoid.
- ▶ The procedure is defined in the instruction manual.

Flushing and boost-pressure valve

The flushing and boost-pressure valve is used to remove heat from the hydraulic circuit.

In a closed circuit, it is used for flushing the case and safeguarding the minimum boost pressure.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the leakage. In the closed circuit, the removed hydraulic fluid must be replaced by cooled hydraulic fluid supplied by the boost pump.

The valve is mounted on the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

(observe when setting the primary valve)

Size 60 to 215, fixed setting 16 bar

Switching pressure of flushing spool Δp

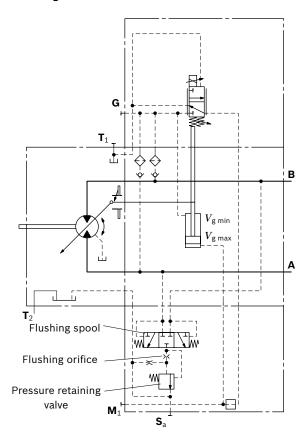
- Size 60 to 115 (small flushing valve) 8 ± 1 bar
- ➤ Sizes 115 to 215 (medium and large flushing valve) 17.5 ± 1.5 bar

Flushing flow $q_{\scriptscriptstyle \vee}$

Orifices can be used to adjust the flushing flows as required. The following parameters are based on: $\Delta p_{\rm ND} = p_{\rm ND} - p_{\rm G} = 25$ bar and $\nu = 10$ mm²/s ($p_{\rm ND} = 10$ pressure, $p_{\rm G} = 10$ case pressure)

Small flushing valve for sizes 60 to 115

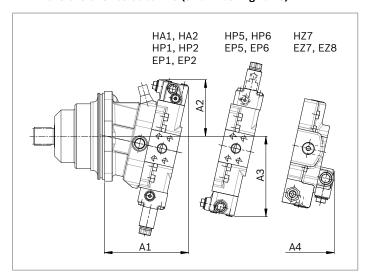
Material number of orifice	ø [mm]	$q_{\scriptscriptstyle ee}$ [l/min]	Code
R909651766	1.2	3.5	А
R909419695	1.4	5	В
R909419696	1.8	8	С
R909419697	2.0	10	D
R909444361	2.4	14	F


Medium flushing valve for size 115

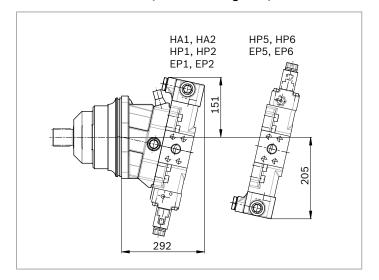
Material number of orifice	ø [mm]	$q_{\scriptscriptstyle ee}$ [l/min]	Code
R909431310	2.8	18	1
R902138235	3.1	21	J
R909435172	3.5	27	K
R909449967	5.0	31	L

Large flushing valve for sizes 170 to 215

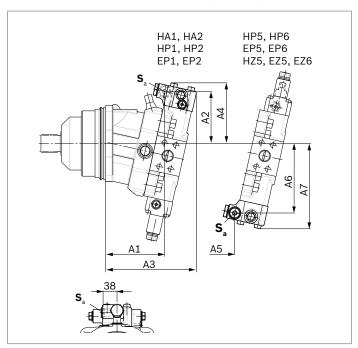
Material number of orifice	ø [mm]	$q_{\scriptscriptstyle ee}$ [l/min]	Code
R909449998	1.8	8	С
R909431308	2.0	10	D
R909431309	2.5	15	G
R909431310	2.8	18	I
R902138235	3.1	21	J
R909435172	3.5	27	K
R909436622	4.0	31	L
R909449967	5.0	37	М
			<u> </u>


▼ Circuit diagram EP

Notice


- ► Port **S**_a only for sizes 170 and 215
- ► For a flushing flow of 35 l/min, it is recommended that port **S**_a be connected in order to prevent an increase in case pressure. An increased case pressure reduces the flushing flow.

▼ Dimensions of sizes 60 to 115 (small flushing valve)



NG	A1	A2	А3	Α4	
060	183	137	183	176	
085	195	142	194	176	
115	204	143	202	186	

▼ Dimensions of size 115 (medium flushing valve)

▼ Dimensions of sizes 170 and 215 (large flushing valve)

NG	A1	A2	А3	Α4	A5	A6	Α7	S _a ¹⁾
170	163	142	249	165	89	190	233	M22 × 1.5; 15.5 deep
215	170	148	256	172	93	201	244	M22 × 1.5; 15.5 deep

The countersink can be deeper than as specified in the standard.

ISO 6149, ports plugged (in normal operation). For notes on tightening torques, see instruction manual.

BVD and BVE counterbalance valves

Function

Counterbalance valves for travel drives and winches should reduce the danger of overspeed and cavitation in open circuits of axial piston motors. Cavitation occurs if, during braking, when going downhill or during the load-lowering process, the motor speed is greater than it should be for the given inlet flow and thus the supply pressure collapses. If the supply pressure falls below the value specified for the relevant counterbalance valve, the counterbalance spool moves into the closed position. The cross-sectional area of the counterbalance valve return duct is then reduced, creating a bottleneck in the return flow of the hydraulic fluid. The pressure increases and brakes the motor until the rotational speed of the motor reaches the specified value for the given inlet flow.

Notice

- ▶ BVD available for sizes 60 to 215 and BVE available for sizes 115 to 215.
- ► The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set.

Order example: A6VE085HA1T30004A/71MWV0Y2Z 97W0-0 + BVD20F27S/41B-V03K16D0400S12

- ► For safety reasons, controls with beginning of control at $V_{\rm g\ min}$ (e.g. HA) are not permissible for winch drives!
- ► Counterbalance valves must be optimized during prototype commissioning to prevent unacceptable operating conditions and compliance with the specification must be verified.
- ► The counterbalance valve does not replace the mechanical service brake and holding brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525.
- ► For the design of the brake release valve, we require the following data for the mechanical holding brake:
 - the cracking pressure
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm2/s)

Permissible inlet flow or pressure when using pressure relief valve and BVD/BVE

	Without va	lve	Limited va	Limited values when using pressure relief valve and BVD/BVE								
Motor			DBV ¹⁾	DBV ¹⁾				BVD ²⁾ /BVE ³⁾				
NG	p_{nom}/p_{max} [bar]	$q_{ m V\;max}$ [I/min]	NG	p_{nom}/p_{max} [bar]	q_{ee} [l/min]	Code	NG	$p_{\sf nom}/p_{\sf max}$ [bar]	q_{ee} [l/min]	Code		
60	450 /500	276	22	350 /420	240	7	20(BVD)	350 /420	220	7W		
85		332										
115		410	32		400							
115		410				8	25		320	8W		
170		533					(BVD/BVE)					
215		628	On reques	t					-			

Mounting of the counterbalance valve

When delivered, the counterbalance valve is fastened to the motor with two tacking screws (transport lock). The tacking screws may not be removed while mounting the working lines! If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be fastened to the motor port plate using the provided tacking screws.

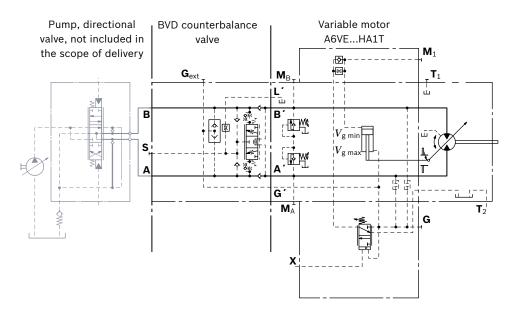
The counterbalance valve is finally mounted to the motor by fitting the SAE flange

The screws to be used and the instructions for mounting can be found in the instruction manual.

¹⁾ Pressure relief valve

²⁾ Counterbalance valve, dual action

³⁾ Counterbalance valve, single action

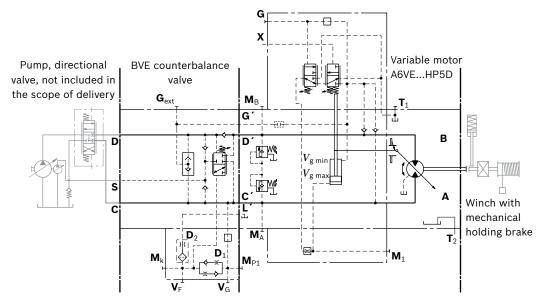

Counterbalance valve for travel drive BVD...F

Application option

► Travel drives for wheeled excavators (BVD and BVE)

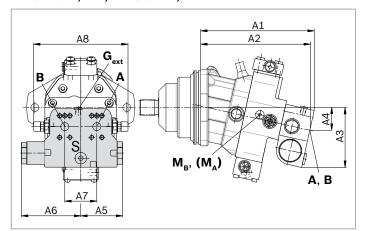
▼ Example circuit diagram for travel drive on wheeled excavators

A6VE085HA1T30004A/71MWV0Y2Z97W0-0 + BVD20F27S/41B-V03K16D0400S12

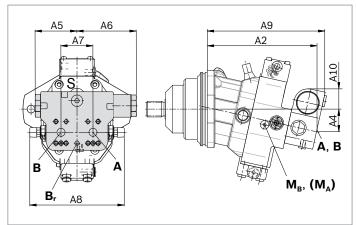

Counterbalance valve for winches and track drives BVD...W and BVE

Application option

- ► Winch drives for cranes (BVD and BVE)
- ► Track drives for tracked excavators (BVD)


▼ Example circuit diagram for winch drive in cranes

A6VE085HP5D10001A/71MWV0Y2Z97W0-0 + BVE25W38S/51ND-V100K00D4599T30S00-0



Dimensions of counterbalance valve

▼ A6VE...HA, HP1, HP2 and EP1, EP2

▼ A6VE...HP5, HP6 and EP5, EP6¹)

A6VE	VE Counterbalance valve											
NGplate	Туре	Ports	Dimen	sions								
		A, B	A1	A2	А3	A4	A5	A6	A7	A8	Α9	A10
607	BVD2017	3/4 in	252	243	143	50	98	139	75	222	267	50
857	BVD2027	1 in	261	252	148	55	98	139	75	222	276	46
1157	BVD2028	1 in	280	271	152	59	98	139	84	234	295	41
1158	BVD2538	1 1/4 in	298	288	165	63	120.5	175	84	238	311	56
1708	BVD2538	1 1/4 in	334	324	170	68	120.5	175	84	238	349	51
1158	BVE2538	1 1/4 in	298	288	171	63	137	214	84	238	315	63
1708	BVE2538	1 1/4 in	334	325	176	68	137	214	84	238	349	59
2158	BVD2538	1 1/4 in	356	346	176	74	120.5	175	84	299	370	46
2158	BVE2538	1 1/4 in	356	346	182	74	137	214	84	299	370	52

Ports		Version	A6VE plate	Standard	Size	P _{max abs} [bar] ²⁾	State ⁴⁾
A , B	Working line			SAE J518	see table above	420	0
S	Infeed	BVD20		DIN 3852 ³⁾	M22 × 1.5; 14 deep	30	Χ
		BVD25, BVE25		DIN 3852 ³⁾	M27 x 2; 16 deep	30	X
Br	Brake release, reduced high	L	7	DIN 3852 ³⁾	M12 × 1.5; 12.5 deep	30	0
	pressure		8	DIN 3852 ³⁾	M12 × 1.5; 12 deep	30	0
G _{ext}	Brake release, high pressure	S		DIN 3852 ³⁾	M12 × 1.5; 12.5 deep	420	Х
M _A , M _B	Pressure measurement A and B			ISO 6149 ³⁾	M18 x 1.5; 14.5 deep	420	Х

The designation of the ports on the installation drawing of the motor is binding!

RE 91616/05.2016, Bosch Rexroth AG

¹⁾ At the mounting version for the controls HP5, HP6 and EP5, EP6, the cast-in port designation **A** and **B** on the BVD/BVE counterbalance valve do not correspond with the connection designation of the A6VE motor.

²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $_{
m 3)}$ The countersink can be deeper than as specified in the standard.

⁴⁾ O = Must be connected (plugged when delivered)
X = Plugged (in normal operation)

Integrated BVI counterbalance valve

Function

The integrated counterbalance valves for track drives in excavator crawlers should reduce the danger of overspeed and cavitation of axial piston motors in open circuits. Cavitation occurs if, during braking or driving downhill, the rotational speed of the motor is greater than it should be for the given inlet flow, causing the supply pressure to fall sharply.

If the supply pressure falls below the value specified for the relevant counterbalance valve, the counterbalance spool moves into the closed position. The cross-sectional area of the counterbalance valve return duct is then reduced, creating a bottleneck in the return flow of the hydraulic fluid. The pressure increases and brakes the motor until the rotational speed of the motor reaches the specified value for the given inlet flow.

Notice

- ▶ BVI available for sizes 115 and 170.
- ► The counterbalance valve must be ordered additionally. Order example: A6VE115HA3T30004A/71MWV0Y2Z 96Y0-0 + BVI510008001-0
- Counterbalance valves must be optimized during prototype commissioning to prevent unacceptable operating conditions and compliance with the specification must be verified.
- ► The counterbalance valve does not replace the mechanical service brake and holding brake.
- ► For the design of the brake release valve, we require the following data for the mechanical holding brake:
 - the cracking pressure
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)

00

the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Type code

01	02	03	04	05		06
BVI					-	

Counterbalance valve

01	Counterbalance valve integrate	ed				
Brake	piston version	q_{\scriptscriptstyleee} [l/min]	Material number			
02	Volume preselection	≤ 150	R902038832	51		
		= 150 - 210	R902038936	52		
		= 210 - 270	R902038833	53		
		= 270 - 330	R902038834	54		
		= 330 - 400	R902038835	55		
		≥ 400	R902038836	56		

Throttle mounting

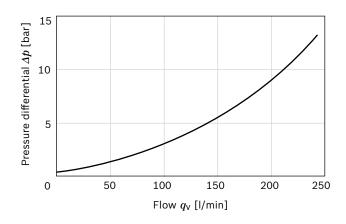
	g		
03	Constant throttle	R909432302	8000
	Throttle pin	R909651165	0603

Check valve

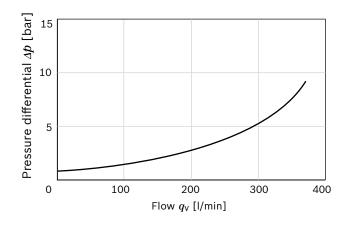
Brake	release valve			
05	With brake release valve (standard HZ)	without disable function	1	
	With brake release valve (standard HA)	with disable function	2	١

Standard / special version

Without residual opening

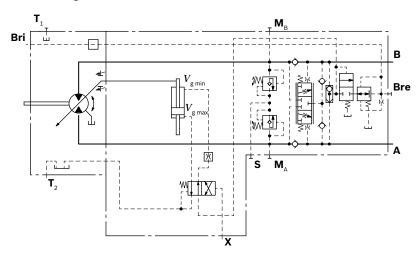

06	Standard version	0	
	Special version	S	١

Working pressure	Nominal pressure	þ	350 bar
	Maximum pressure	p	420 bar
Volume flow, maximum		q_{vmax}	400 l/min
Counterbalance spool	Start of opening	p	12 bar
	Fully open	p	26 bar
Pressure reducing valve for brake release (fixed setting)	Control pressure	p	21 ⁺⁴ bar
	Beginning of control	p	10 ⁺⁴ bar

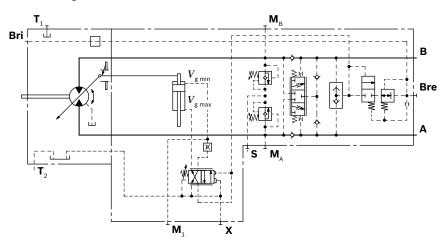

Permissible inlet flow or pressure when using pressure relief valve and BVI

	No restriction Standard pla		Limited value Plate with int	s egrated counterbalance valve (6)
Motor				BVI + DBV
NG	p_{nom}/p_{max} [bar]	$q_{ m V\;max}$ [I/min]	p_{nom}/p_{max} [bar]	q_{V} [l/min]
115	450 /500	410	350 /420	400
170		533		

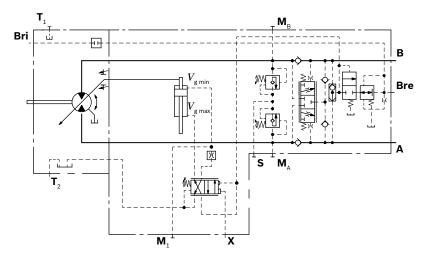
▼ Infeed characteristic curve M22 × 1.5



▼ Infeed characteristic curve M27 × 2



32


▼ Circuit diagram HZ7

▼ Circuit diagram HA3

▼ Circuit diagram HA3T3

Integrated BVI counterbalance valve dimensions

HZ7 - Two-point control, hydraulic

Port plate 6, with integrated BVI counterbalance valve – SAE working ports ${\bf A}$ and ${\bf B}$ at bottom

A6VE														
NGplate	Port	Dimensions												
	A, B	A1	A2	А3	A4	A5	A6	Α7	A8	Α9	A10	A11	A12	A13
1156	1 in	204	161	122	172	40	143	99	98	131	144	96	58	96
1706	1 1/4 in	240	195	136	197	47	162	128	113	161	177	94	65	108

A6VE													
NGplate	Ports	Dimen	sions										
	A, B	A14	A15	A16	A17	A18	øA19	A20	A21	A22 (DIN 13)	A23	A24	A25
1156	1 in	70	74	85	129.5	57.2	27.8	25	86	M12 × 1.75; 17 deep	68	24.4	0.3
1706	1 1/4 in	78	85	101.5	129.5	66.7	31.8	32	94	M14 × 2; 19 deep	91.7	28.8	0.5

Port	Working line SAE J518 ¹⁾	Reservoir line ISO 6149 ⁴⁾	Pilot signal	Infeed ISO 6149 ⁴⁾	Stroking chamber measurement	Stroking cham- ber measuremen	
NG	А, В	T ₁ , T ₂	X	S	$\mathbf{M}_{A}, \mathbf{M}_{B}$	$\mathbf{M_1}$ only for HA3	
115	- see table above	M22 × 1.5; 15.5 deep	M14 x 1.5; 11.5 deep	M22 × 1.5; 15.5 deep	M14 x 1.5; 11.5 deep	M10 x 1; 10 deep	
170		M27 x 2; 19 deep	M14 x 1.5; 11.5 deep	M27 x 2; 19 deep	M14 x 1.5; 11.5 deep	M10 x 1; 10 deep	
p _{max abs} [bar] ²⁾	420	3	100	30	420	420	
State ⁵⁾	0	X/O (T ₂) ³⁾	0	Х	X	X	

Port	Brake release, external ISO 6149 ⁴⁾	Brake release, internal
NG	Bre	Bri
115	M14 x 1.5; 11.5 deep	ø4
170	M14 x 1.5; 11.5 deep	ø4
$p_{\text{max abs}}[\text{bar}]^{2)}$	30	30
State ⁵⁾	O/X ⁶⁾	X/O ⁷⁾

¹⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard

²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

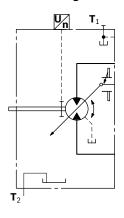
³⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 38).

⁴⁾ The countersink can be deeper than as specified in the standard.

⁵⁾ O = Must be connected (plugged when delivered)
X = Plugged (in normal operation)

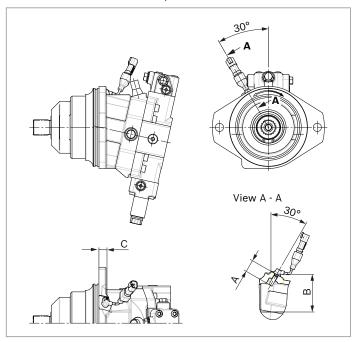
⁶⁾ Must be connected for external piping. Is plugged for internal channel routing.

⁷⁾ Is plugged for external channel routing. Must be connected for internal piping.


Speed sensor

The A6VE...U version ("prepared for speed sensor", i.e. without sensor) is equipped with a spline on the rotary group.

A signal proportional to the rotational speed of the motor can be generated with the mounted DSA speed sensor. The DSA sensor registers the rotational speed and direction of rotation.


Type code, technical data, dimensions and parameters for the connector, plus safety instructions about the sensor can be found in the relevant data sheet 95133 – DSA. The sensor is mounted on the port provided specially for this with a mounting bolt. On deliveries without sensor, the port is plugged with a pressure-resistant cover. We recommend ordering the A6VE variable motor complete with mounted sensor.

▼ Circuit diagram EP

▼ Dimensions

Version "V" with mounted speed sensor

Siz	ze	60	85	115	170	215
Nu	mber of teeth	54	58	67	75	80
Α	Insertion depth (tolerance -0.25)	32	32	32	32	32
В	Contact surface	83.3	87.3	96.3	104.3	109.2
С		26	16.5	14.2	28.5	22.7

Setting range for displacement

		6	0			8	5			1:	15	
	$V_{ m g\;max}$ (cm $^3/{ m re}$	ev)	$V_{ m g\;min}$ (c	m³/rev)	$V_{\rm g\; max}$ (c	m³/rev)	$V_{\mathrm{g\;min}}$ (C	m³/rev)	$V_{g\;max}$ (c	m³/rev)	V_{gmin} (c	m³/rev)
	from	to	from	to	from	to	from	to	from	to	from	to
Α	62.0 6	2.0	0.0	15.0	85.2	85.2	0.0	25.0	115.6	115.6	0.0	24.0
	without scre	ew	M10 × 60 R909154690		without screw		M12 × 70 R909085976		without screw		M12 × 70 R909085976	
В	62.0 6	2.0	> 15.0	30.5	85.2	85.2	> 25.0	44.0	115.6	115.6	> 24.0	47.5
	without scre	ew	M10 R9091		without	screw	M12 × 80 R909153075		without screw		M12 R9091	
С	62.0 6	2.0	> 30.5	43.0	85.2	85.2	> 44.0	59.0	115.6	115.6	> 47.5	71.0
	without scre	ew	M10 R9091		without	screw	M12 R9091		withou	t screw	M12 R9091	
D	х		х	(>	(Х		115.6	115.6	> 71.0	80.0
									withou	t screw	M12 >	
E	< 62.0 4	7.5	0.0	15.0	< 85.2	62.0	0.0	25.0	< 115.6	93.5	0.0	24.0
	M10 × 60 R909154690		M10 × 60 R909154690			M12 × 70 R909085976		M12 × 70 R909085976		M12 × 70 R909085976		× 70 85976
F	< 62.0 4	7.5	> 15.0	30.5	< 85.2	62.0	< 25.0	44.0	< 115.6	93.5	> 24.0	47.5
	M10 × 60 R90915469		M10 R9091		M12 R9090			M12 × 80 R909153075		M12 × 70 R909085976		× 80 53075
G	< 62.0 4	7.5	> 30.5	43.0	< 85.2	62.00	> 44.0	59.0	< 115.6	93.5	> 47.5	71
	M10 × 60 R90915469		M10 R9091		M12 R9090		M12 R9091			× 70 85976	M12 R9091	
Н	х		>	(>	(X		< 115.6	93.5	> 71.0	80.0
										× 70 85976	M12 ×	
J	< 47.5 3	3.0	0.0	15.0	< 62.0	43.0	0.0	25.0	< 93.5	71.0	0.0	24.0
	M10 × 70 R90915377		M10 R9091		M12 R9091	× 80 53075	M12 R9090			× 80 .53075	M12 R9090	
К	< 47.5 3	3.0	> 15.0	30.5	< 62.0	43.0	> 25.0	44.0	< 93.5	71.0	> 24.0	47.5
	M10 × 70 R90915377		M10 R9091		M12 R9091			M12 × 80 R909153075		× 80 .53075	M12 R9091	
L	< 47.5	3.0	> 30.5	43.0	< 62.0	43.0	> 44.0	59.0	< 93.5	71.0	> 47.5	71.0
	M10 × 70 R90915377		M10 R9091			× 80 53075	M12 R9091			× 80 .53075	M12 R9091	
М	Х		>	(>	(×		< 93.5	71.0	> 71.0	80.0
										× 80 .53075	M12 ³ R9091	

Specify exact settings for $V_{\rm g\,min}$ and $V_{\rm g\,max}$ in plain text when ordering:

 $ightharpoonup V_{
m g\ min}$ = ... cm³, $V_{
m g\ max}$ =...cm³

Theoretical, maximum setting:

- ▶ for $V_{\rm g\;min}$ = 0.7 × $V_{\rm g\;max}$
- ▶ for $V_{\rm g~max}$ = 0.3 × $V_{\rm g~max}$

Settings that are not listed in the table may lead to damage.

Please contact us.

Bosch Rexroth AG, RE 91616/05.2016

		17	70			2:	 15			
	$V_{ m g\ max}$ (CI	m ³ /rev)	V_{gmin} (c	m³/rev)	$V_{ m g\; max}$ (c	:m³/rev)	$V_{g\;min}$ (c	m³/rev)		
	from	to	from	to	from	to	from	to		
Α	171.8	171.8	0.0	28.0	216.5	216.5	0.0	44.5		
	without	screw	M12 R9091		without	screw	M12 × 80 R909153075			
В	171.8	171.8	> 28.0	56.0	216.5	216.5	> 44.5	80.0		
	without	screw	M12 R9091		without	t screw	M12 R9091			
С	171.8	171.8	> 56.0 91.0 216.5 216.5		216.5	> 80.0	115.0			
	without	screw	M12 ×		without	screw	M12 R9091			
D	171.8	171.8	> 91.0	118.0	216.5	216.5	> 115.0	150.0		
	without	screw	M12 × R9091		without	t screw	M12 R9091	× 110 54212		
E	< 171.8	145.0	0.0	28.0	< 216.5	175.0	0.0	44.5		
	M12 : R90915		M12 R9091		M12 R9091		M12 × 80 R909153075			
F	< 171.8	145.0	> 28.0	56.0	< 216.5	175.0	> 44.5	80.0		
	M12 × 80 R909153075		M12 R9091		M12 R9091		M12 × 90 R909154041			
G	< 171.8	145.0	> 56.0	91.0	< 216.5	175.0	> 80.0	115.0		
	M12 : R90915		M12 × 100 R909153975		M12 × 80 R909153075		M12 R9091			
Н	< 171.8	145.0	> 91.0	118.0	< 216.5	175.0	> 115.0	150.0		
	M12 : R90915		M12 ? R9091		M12 R9091			× 110 54212		
J	< 145.0	118.0	0.0	28.0	< 175.0	141.0	0.0	44.5		
	M12 : R90915		M12 R9091		M12 R9091		M12 R9091			
K	< 145.0	118.0	> 28.0	56.0	< 175.0	141.0	> 44.5	80.0		
	M12 : R90915	x 90 54041	M12 R9091	× 90 54041	M12 R9091		M12 R9091	× 90 54041		
L	< 145.0	118.0	> 56.0	91.0	< 175.0	141.0	> 80.0	115.0		
	M12 R90915		M12 : R9091		M12 R9091	× 90 54041		× 100 53975		
М	< 145.0	118.0	> 91.0	118.0	< 175.0	141.0	> 115.0	150.0		
	M12 R90915		M12 : R9091		M12 R9091	× 90 54041	M12 × 110 R909154212			

Specify exact settings for $V_{\rm g\,min}$ and $V_{\rm g\,max}$ in plain text when ordering:

 $\qquad \qquad \mathbf{V}_{\mathrm{g\;min}} = ...\;\mathrm{cm^3},\; V_{\mathrm{g\;max}} = ...\mathrm{cm^3}$

Theoretical, maximum setting:

- for $V_{\rm g\,min}$ = 0.7 × $V_{\rm g\,max}$
- ▶ for $V_{\rm g~max}$ = 0.3 × $V_{\rm g~max}$

Settings that are not listed in the table may lead to damage.

Please contact us.

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may empty via the hydraulic lines.

The leakage in the housing area must be directed to the reservoir via the highest drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the maximum permissible case pressure of all connected units is not exceeded at any operational conditions. If this is not possible, separate drain lines must be laid.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

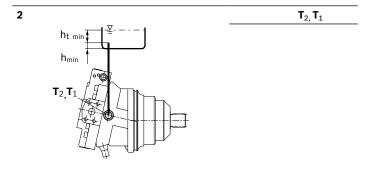
Notice

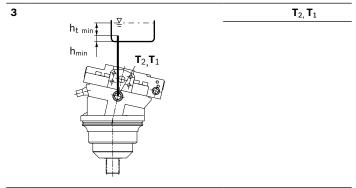
In certain installation positions, an influence on the control or closed loop control can be expected. Gravity, dead weight and case pressure can cause minor characteristic shifts and changes in response time.

Key	
F	Filling / air bleeding
T ₁ , T ₂	Drain port
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required distance to reservoir bottom (100 mm)

Installation position

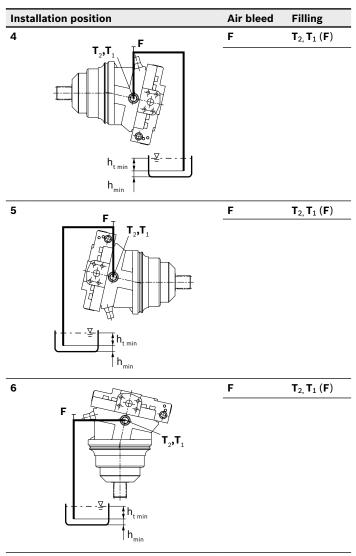
See the following examples 1 to 6.


Further installation positions are available upon request.


Recommended installation position: 1 and 2

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir and below the minimum fluid level of the reservoir.


Installation position	Air bleed	Filling
1 h _{t min} h _{min} T ₂ ,T ₁		T ₂ , T ₁

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Notice

Port ${\bf F}$ is part of the external piping and must be provided on the customer side to make filling and air bleeding easier.

Project planning notes

- ► The motor A6VE is designed to be used in open and closed circuits.
- ► The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified skilled personnel.
- ► Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- ► Before finalizing your design, please request a binding installation drawing.
- ► The specified data and notes contained herein must be observed
- For safety reasons, controls with beginning of control at $V_{\rm g\ min}$ (e.g. HA) are not permissible for winch drives, e.g. anchor winches.
- ▶ Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- ▶ Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the instruction manual.
- ▶ Not all versions of the product are approved for use in a safety function according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- ▶ Depending on the type of control used, electromagnetic effects can be produced when using solenoids. When a direct current is applied, solenoids do not cause electromagnetic interference nor is their operation impaired by electromagnetic interference.

 Other behavior can result when a modulated direct current (e.g. PWM signal) is applied. Potential electromagnetic interference for persons (e.g. persons with a pacemaker) and other components must be tested by the machine manufacturer.
- Please note the details regarding the tightening torques of port threads and other threaded joints in the instruction manual.

► Working ports:

- The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
- The working ports and function ports are only intended to accommodate hydraulic lines.

Safety instructions

- During and shortly after operation, there is a risk of getting burnt on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- ▶ Moving parts in control equipment (e.g. valve pistons) can, under certain circumstances get stuck in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filter) will not rule out a fault but merely reduce the risk.
 - The machine/system manufacturer must test whether remedial measures are needed on the machine for the application concerned in order to set the consumer being driven to a safe position (e.g. safe stop) and if necessary to ensure it is properly implemented.
- Moving parts in high-pressure relief valves may in certain circumstances become stuck in an undefined position due to contamination (e.g. contaminated hydraulic fluid). This can result in restriction or loss of the load holding function in lifting winches.
 - The machine/system manufacturer must check whether additional measures are required on the machine for the relevant application in order to keep the load in a safe position and ensure they are properly implemented.
- ▶ When using the axial piston motor in winch drives, make certain that the technical limit values are not exceeded under all operating conditions. If the axial piston motor is extremely overloaded (e.g. if the maximum permissible rotational speeds are exceeded during weighing of the anchor while the ship is in motion), the rotary group may be damaged and, in the worst case, the axial piston motor may burst. The machine manufacturer / system manufacturer is to undertake additional measures, up to and including encapsulation.

42 **A6VE Series 71** | Variable plug-in motor Safety instructions

Bosch Rexroth AG

Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 91616/05.2016

Axial piston variable motor A10VM Plug-in version A10VE

RE 91703/03.10 Replaces: 06.09

1/28

Data sheet

Series 52 Size 28 to 85 Nominal pressure 280 bar Maximum pressure 350 bar Open and closed circuit

A10VM A10VE

Contents

Features	1
Ordering code for standard program	2
Technical data	4
Two-point direct control DG	7
Two-point control, hydraulically operated HZ/HZ6	8
Two-point control, electrically operated EZ	9
Dimensions size A10VM 28 to 85	10
Dimensions size A10VE 28 to 63	18
Integrated flushing and boost press. relief valve, N007	24
Connector for solenoids	25
Speed pickup	26
Mounting position	27
General instructions	28

Features

- Dual displacement motor, axial piston swashplate design, for hydrostatic transmissions in open and closed circuits
- Output speed is directly proportional to inlet flow and inversely proportional to motor displacement
- Output torque increases proportional to the pressure difference between high and low pressure sides and increasing displacement
- Heavy duty bearings for long service life
- High permissible output speed
- Well proven A10-rotary unit technology
- High power/weight ratio compact dimensions
- Cost effective
- Low noise
- External control pressure supply possible
- Minimum displacement can be set externally
- SAE-2-bolt mounting flange on A10VM
- Special 2-bolt mounting flange on A10VE

Ordering code for standard program

	10V	М		Т		52	W		Т_	V		С	Π	Т				
A	01	02	03	04	/	05	06	07	+-	08	09	10	11		12	1:	2	14
	Axial p			04		00	00	07		00	09	10			12	1	5	14
01				variable	e, nomir	nal press	ure 280	bar, m	aximum p	essure	350 bar	-						A10V
	Operat	ing M	ode															
02	Motor,	open	and clo	sed circ	uit													M
	Size (N	1G)																
03	Displa	cemer	it V _{g max}	in cm ³										028	045	063	085]
	Contro	l devi	ces											028	045	063	085	
	Two po	oint co	ntrol		Directly	operate	d, extern	al cont	rol supply	, withou	t pilot va	lve		•	•	•	•	DG
					Hydraul	ically op	erated		Stroking t	ime	wi	thout		•	•	•	0	HZ
				-					orifice		wi	th		•	•	•	О	HZ6
04									Stroking to	ime	_	thout		•	•	•	•	EZ1
				-		voltage					wi	th thout		•	•	•	0	EZ6 EZ2
						voltage 2			Stroking to	ime	wi			•		•	0	EZ7
	Cariaa					· onago ·												
05	Series Series	5 Ind	ev 2															52
		,																02
06	Viowo		naft end								- Ri	-directio	nal					W
											-) F	į vv
	Minimu								<i>r t</i>		028		45		63		35	
07	i			essly adj clear te					from/to		8/28		/25 6/45		/38 /62		/50 /85	2
	Seals	illelit s	state III	Clear te	Λι.				110111/10			20	745	40	702	40	700	
	FKM (f	flour-ru	ıbber)															٧
	Drive s	haft												റാള	045	063	085	
			t, ANSI	B92.1a	-1976, f	or highe	r drive to	rque			-			028	043	•	083	R
09						or reduc		-						_	•	•	•	W
	Mounti																	
10																		С
	Ports fo			e														
					side, me	etric fixin	g screw	 S						•	•	•	•	10N00
11				metric f			J							0	•	0	0	11N00
						metric t	hread							•	•	•	0	16N00
	Valves																	
	Withou	ut valv	es											•	•	•	•	0
12	Integra	ated flu	ıshing v	alve, on	ly with s	side port	s (10N0	0 and	16N00)					•	•	•	•	7
	Speed	pickur)															
	Withou		ed pickı	ıp										•	•	•	•	-
13	Prepar	ed for	inductiv	ve type	of spee	d pickup	ID R							•	•	•	0	D
	Connec	ctor fo	r solenc	oids														
					r – with	out supp	ressor c	liod										Н
14	DEUTS	SCH -	connec	ctor, mo	lded, 2-	pin – wit	thout sup	presso	or diod					•	•	•	•	Р

■ = available

O = in preparation

- = not available

 \blacktriangle = not for new projects

● = available

O = in preparation

- = not available

 \triangle = not for new projects

Ordering code for standard program

A10V	E			,	52	W		Τ_	V		F					
01	02	03	04	/	05	06	07		08	09	10	11	12	-	13	14
Axial p			, , ,	J									,			
01 Swash			variable	, nomir	nal press	ure 280	bar, ma	ximum pr	essure	350 baı	r					A10V
Operat	ina m	ode			-			-								
02 Motor,			pen and	d close	d circuit											Е
Size (N			•													
03 Displa		t V _{a max}	in cm ³										028	3 045	063	1
														•	•	-
Two po			Di	rectly o	nerated	externa	l contro	l supply, v	without	nilot val	ve		028	045	063	DG
	J 00			ydraulic		OXIOITIO		Stroking ti		pilot vai	witho	out	•	•	•	HZ
			,		,			rifice	110		with		•	•	•	HZ6
04			Ele	ectrical	y with so	olenoid v	alve S	Stroking ti	me		withc	ut	•	•	•	EZ1
			_		oltage 12			rifice			with		•	•	•	EZ6
					y with so		_	troking ti	me		witho	ut	•	•	•	EZ2
			CO	ontrol vo	oltage 24	IV.	0	rifice			with		•	•	•	EZ7
Series																
05 Series	5, Ind	ex 2														52
Direction	on of ı	otation	1													
06 Viewed	d on st	naft end									Bi-di	ection	al			W
Minimu	ım dis	placem	ent								02	28	045	0	63	
V _{g min} (in cm ³) steppl	es adjus	stable			froi	n/to			10	/28	12/25	16	3/38	1
Adjust	ment p	lease s	tate in c	lear tex	t		froi	n/to				-	26/45	40)/62	2
Seals																
08 FKM (1	lour-ru	ibber)														V
Drive s													028	045	063	$\overline{}$
09					or higher								•	•	•	R
Spline	a snan	, ANSI	B92.1a-	1976, 10	or reduc	ea arive	torque						-			W
Mounti																
10 Specia	al 2-bo	lt												<u>.</u>		F
Ports fo																
					ric fixing	screws							•	•	•	10N00
11 SAE fla						اء ۽ ۽ يا							0	•	0	11N00
Inread	iea po	rts on si	de, san	ne side	, metric t	nread				-						16N00
Valves														T _	Ι.	
12 Withou			ماده مداد		side port	- (10NO	.O and 1	evioo)					•	•	•	0
			aive, oni	y with s	side port	S (TOING	o and i	ONUU)								7
Speed															T -	
13 ⊢		ed picku	·	of apace	d pickup	ID D					-			•		-
				n speed	и ріскир	יט ת							0		0	D
		soleno		***			E - J						Ι.			
14 ⊢					out supp pin – wit			r diad								H
שבטוג	JUП -	connec	tor, more	ueu, 2-	hiii – Mit	nout Su	phiesso	uiou								Р

Fluid

Prior to project design please see our data sheets RE 90220 (mineral oil), RE 90221 (ecologically acceptable fluids) and RE90223 (HF-fluids) for detailed information on fluids and application conditions.

When operating on ecologically acceptable fluids, limitations to the techical data may be necessary.

Please contact us and state the fluid used in clear text when ordering.

Operating viscosity range

For optimum efficiency and service life we recommend an operating viscosity (at operating temperature) in the range

 v_{opt} = opt. operating viscosity 16...36 mm²/s

referred to circuit temperature in closed circuits or tank temperature in open circuits.

The following limits are valid for extreme operating conditions:

 $v_{\text{min}} = 5 \text{ mm}^2/\text{s} \text{ (closed circuit)}$ $v_{\text{min}} = 10 \text{ mm}^2/\text{s} \text{ (open circuit)}$

briefly (t \leq 1 min) at max. permissible temperature of 115 °C.

Please note, that the max. fluid temperature of 115 °C may also not be exceeded in certain areas (for instance bearing area) The temperature in the bearing area is approx. 5 K higher than the average fluid temperature.

$$\begin{split} \nu_{\text{max}} = & 1600 \text{ mm}^2\text{/s} \\ \text{briefly (t} \leq 1 \text{ min)} \\ \text{on cold start (t}_{\text{min}} = -25 ^{\circ}\text{C}, \ p \leq 30 \ \text{bar, n} \leq 1000 \ \text{rpm)}. \end{split}$$

At temperatures between -25 °C and -40 °C special measures may be required for certain installation positions. Please consult us for further information

For detailed information on operation at very low temperatures see RE 90300-03-B.

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuit), circuit temperature (closed circuits), in relation to the ambient temperature.

The fluid should be selected, so that within the operating temperatue range, the viscosity lies within the optimum range (v_{opt}) , see shaded section of the selection diagram. We recommend to select the higher viscosity grade in each case.

Example: at an ambient temperature of X °C the operating temperature in the tank is 60 °C. In the optimum viscosity range (v_{opt}; shaded area) this corresponds to viscosity grades VG 46 resp. VG 68; select VG 68.

Important: The leakage fluid (case drain fluid) temperature is influenced by pressure and motor speed and is always higher than the tank temperature. However, at no point in the circuit may the temperature exceed 115 °C.

If it is not possible to comply with the above conditions because of extreme operating parameters or high ambient temperatures please consult us

Filtration of fluid

The finer the filtration the better the achieved cleanliness of the fluid and the longer the life of the axial piston unit.

To ensure a reliable functioning of the axial piston unit, a minimum cleanliness of

20/18/15 to ISO 4406 is necessary.

At very high fluid temperatures (90 °C to max. 115 °C) the minimum cleanliness has to be at least

19/17/14 to ISO 4406.

If above cleanliness classes cannot be met please consult us.

Operating pressure range

Pressure at port A or B

(Pressure data to DIN 24312)

Nominal pressure pN $280 \text{ bar}^{1)}$ Maximum pressure p_{max} 350 bar With motors connected in series please consult us.

Case drain pressure

Max. permissible pressure at leakage port L

p_{abs} max operation as a motor in open circuit
 p_{abs} max operation as a motor in closed circuit
 p_{abs} max motor/pump operation in open circuit
 bar abs
 bar abs

Direction of rotation

Direction of rotation, viewed on shaft end								
clockwise	counter-clockwise							
B to A	A to B							

Adjustment of displacement

The minimum displacement is steplessly adjustable within the range of the screw lenghts 1 or 2 (see ordering code).

Please state minimum displacement in clear text when ordering

Selection diagram

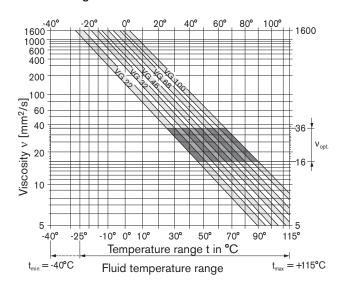
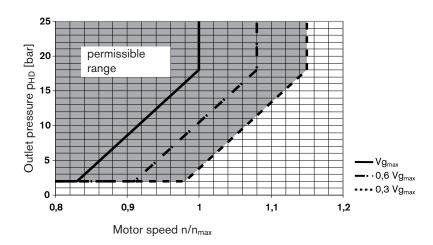



Table of values (theoretical values, without efficiency levels and tolerances; values rounded)

Size			28	45	63	85
Displacement	$V_{g max}$	cm ³	28	45	62	87
	$V_{g min}$	cm ³	8 (VM)/10(VE)	12	16	22
Speed ¹⁾						
max. at $V_{g max}$	n _{0 max}	min ⁻¹	4700	4000	3300	3100
max. at V _{g min}	n _{0 max zul}	min ⁻¹	5400	4600	3900	3560
Min. speed in cont. operation	n _{0 min}	min ⁻¹	250	250	250	250
Inlet flow						
bei $n_{0 \text{ max}}$ and $V_{g \text{ max}}$	q _{V0 max}	L/min	131,6	180	205	270
Torque constant ²⁾ at V _{g max}	T _K	Nm/bar	0,445	0,716	1,002	1,35
Torque						
at $V_{g max}$ $p_N = 280 bar$	T_{max}	Nm	125	200	276	387
Actual starting torque						
at $n = 0 \text{ min}^{-1}$ $p_N = 280 \text{ bar}$	т Т	Nm ca.	92	149	205	253
Rotary stiffness Shaft R	С	Nm/rad	26000	41000	69400	152900
Shaft V	/ с	Nm/rad	19800	34400	54000	117900
Mass moment of inertia (about output shaft)	J	kgm²	0,0017	0,0033	0,0056	0,012
Filling volume	V	L	0,6	0,7	0,8	1,0
Weight approx.	m	kg	14	18	26	34

¹⁾ At maximal speed in closed circuit operation make sure that motor outlet pressure is at least \geq 18 bar.

Minimum required outlet pressure (low pressure) at port A (B) depending on motor speed

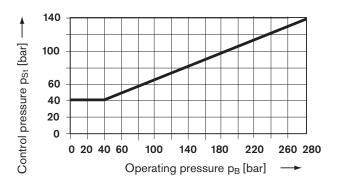
²⁾ In open circuit Δp 280bar at p_{boostpress}. 2bar In closed circuit Δp 260bar at p_{boostpress}. 20bar

Calculating size

Flow	~	_	V _g • n			[L/min]	v_g	=	Displacement per rev. in cm ³
FIOW	q۷	=	1000 • η _V				Δр	=	Differential pressure in bar
Torque	т	_	1,59 • V _g • Δp •η _{mh}			[Nm]	n	_	speed in rpm
lorque	'	_	100			[INIII]	η_{V}	_	Volumetric efficiency
or	Т	=	$T_K \bullet \Delta p \bullet \eta_{mh}$				η_{mh}	=	Mechanical-hydraulic efficiency
Output power	Р	_	2π • T • n	_	$q_V \bullet \Delta p \bullet \eta_t$	[kW]	$\eta_{t} \\$	_	Total efficiency ($\eta_t = \eta_V \bullet \eta_{mh}$)
Output power	Г	_	60000	_	600	[KVV]	T_K	=	Torque constant
0			q _v • 1000 • η _v			r : .11			
Output speed	n	=	V_{α}			[min ⁻¹]			

Permissible radial and axial forces on drive shaft

Size					28	45	63	85
Max. radial force	Fq	at X/2	F _{q max}	N	1200	1500	1700	2000
Max. axial force	± Fax ◀		F _{ax}	N	1000	1500	2000	3000

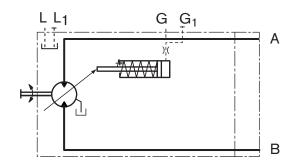

Two-point direct control DG

Normally the motor is at max. displacement. By applying an external pressure to port G, the control piston is directly pressurized and the motor swivels back to min. displacement

The minimum required control pressure is $p_{St} \geq 40 \ bar$

Please note, that this minimum required control pressure at port G depends directly on the operating pressure p_B in port A or B. (Pressure in A or B),see control pressure diagram below. With a control pressure above this minimum required pressure level the motor will destroke properly.

Control pressure diagram


Control pressure = 0 bar $\triangleq V_{g \text{ max}}$

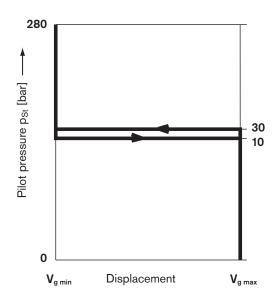
Control pressure \geq 40 bar $\triangleq V_{g min}$ (see circuit diagram)

The max. permissible control pressure is $p_{St} = 280$ bar.

 V_{gmin} adjustment please state in clear text with order

Circuit diagram

Ports for				
A, B	Pressure			
L, L ₁	Caise drain (L ₁ plugged)			
G, G ₁	For external control pressure (G ₁ plugged)			


Two-point control, hydraulically operated HZ/HZ6

Normally the motor is at max. displacement. By applying a pilot pressure p_X to port X the pilot valve shifts and the control piston is pressurized causing the motor to swivel to min. displacement ($p_X \ge 30$ bar).

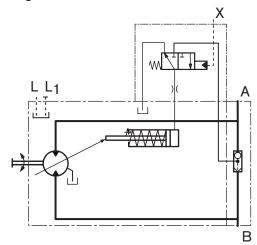
The necessary control pressure is via a shuttle valve taken out of the motor pressure side A or B. A minimum pressure difference of $\Delta p_{A,B} \geq 20$ bar between the motor pressure sides is required.

Only $V_{g max}$ or $V_{g min}$ are possible.

V_{q min} - adjustment please state in clear text when ordering.

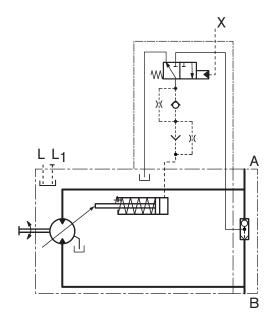
Pilot pressure $p_X = 0$ bar $\triangle V_{g max}$ Pilot pressure $p_X \ge 30$ bar $\triangle V_{g min}$

Techn. data HZ/HZ6	
Minimum pilot pressure	30 bar
Maximum permissible pilot pressure	280 bar


Version HZ6 with stroking time shuttle orifice

Slow down of swivel action by means of shuttle orifice.

This enables a smooth swivel action.

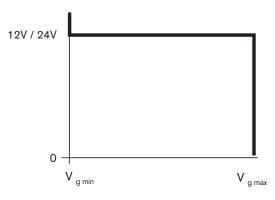

Standard orifice size = 0.21 mm; other sizes on request.

Circuit diagram HZ

Ports for			
A, B	Pressure		
L, L ₁	Caise drain (L ₁ plugged)		
Χ	Pilot pressure (plugged)		

Circuit diagram HZ6

Ports for			
A, B	Pressure		
L, L ₁	Caise drain (L ₁ plugged)		
Χ	Pilot pressure (plugged)		


Two-point control, electrically operated EZ¹⁾

Normally the motor is at maximum displacement. By energizing the solenoid of the control valve, the control piston is pressurized and the motor swivels to minimum displacement.

The control pressure is via a shuttle valve taken out of the motor pressure side A or B. A minimum pressure difference of $\Delta p_{A,B} \geq 20$ bar between the pressure sides is required.

The motor can only swivel between $V_{g max}$ or $V_{g min}$.

 $V_{g \, min}$ - adjustment please state in clear text when ordering.

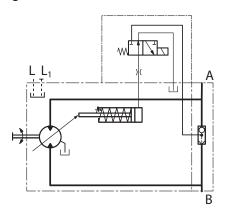
De-energized	$\triangle V_{g max}$
Energized	♠ V _{g min}

Techn. data EZ		
Version	EZ 1/6	EZ 2/7
Supply voltage	12V DC	24V DC
Nom. current at 20°C	1.5 A	0.8 A
Duty cycler	100% ED	100% ED
Plug protection class to DIN 43650	IP 65	IP 65

Ambient temperature range -20°C to +60°C. If the above temperature range cannot be met please consult us

Features

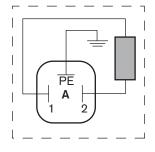
- with spring return at solenoid
- Solenoid plug can be turned 4 x 90°

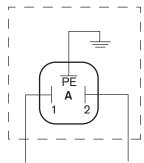

Version EZ6/7 with stroking time shuttle orifice.

Slow down of swivel action by means of shuttle orifice. This enables a smooth swivel action.

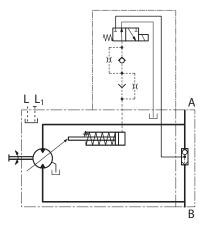
Standard orifice size = 0.21 mm; other sizes on request.

More information see page 25


Circuit diagram EZ1/2

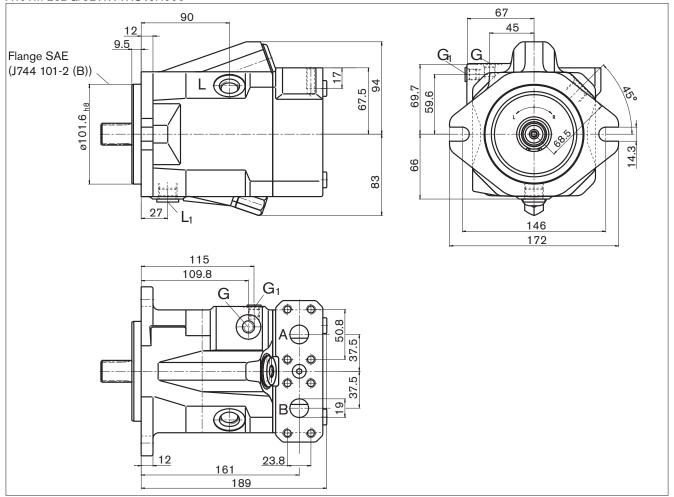


Ports for			
A, B	Pressure		
L, L ₁	Caise drain (L ₁ plugged)		


Connection to solenoid according to DIN 43650

Plug connection to DIN EN 175301-803-A Cable screw joint M 16x1.5

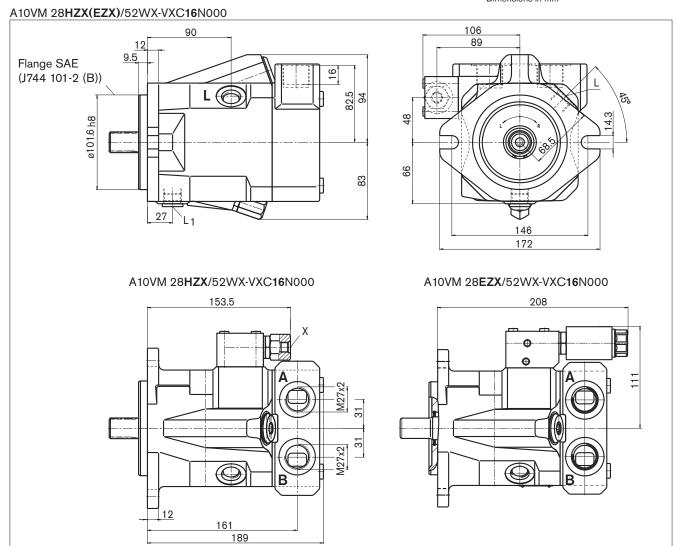
Circuit diagram EZ6/7

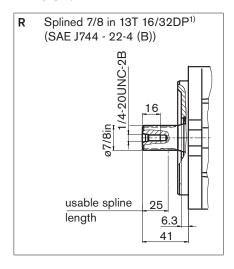

Ports for		
A, B	Pressure	
L, L ₁	Caise drain (L ₁ plugged)	

Shown in the unit dimensions: DIN connector from HIRSCHMANN;
 Preferred for mobile applications (other dimensions): DEUTSCH connector molded, 2-pin – without suppressor diode

Before finalising your design please request a certifified installation drawing.

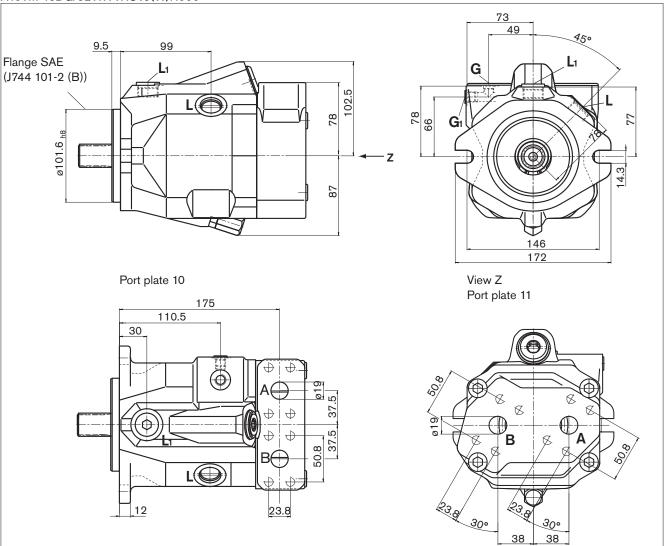
Dimensions in mm


A10VM 28DG/52WX-VXC10N000


Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (High presure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	3/4-16UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	3/4-16UNF-2B	4	X ⁴⁾
G	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Χ
X	Pilot pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0

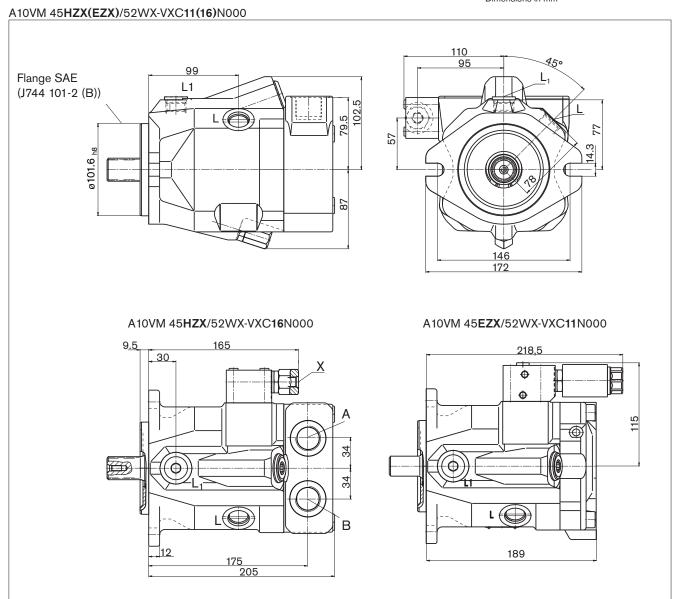
- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings
- 4) Depending on installation position L oder L_1 must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)

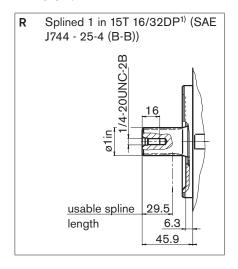
Before finalising your design please request a certifified installation drawing. Dimensions in mm

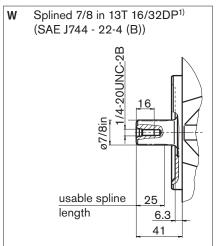

Drive shaft

Before finalising your design please request a certifified installation drawing.

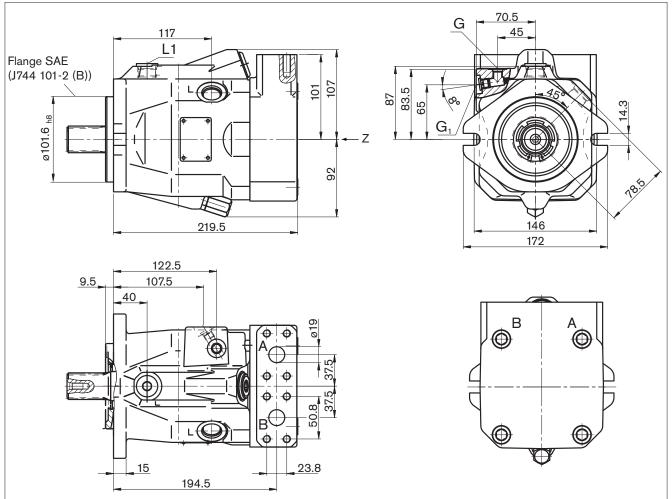
Dimensions in mm


A10VM 45DG/52WX-VXC10(11)N000


Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	X ⁴⁾
G	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Х
X	Pilot pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0

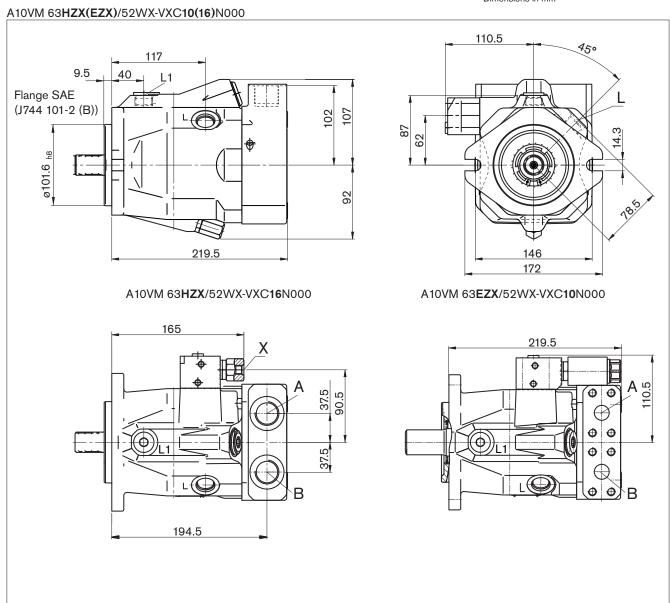

- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- $\,$ 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position L oder L₁ must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Before finalising your design please request a certifified installation drawing. Dimensions in mm

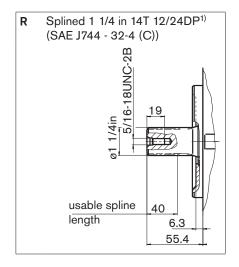

Drive shaft

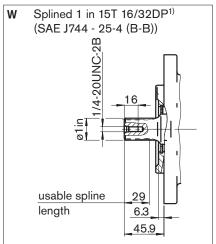
Before finalising your design please request a certifified installation drawing. Dimensions in mm

A10VM 63DG/52WX-VXC10N000



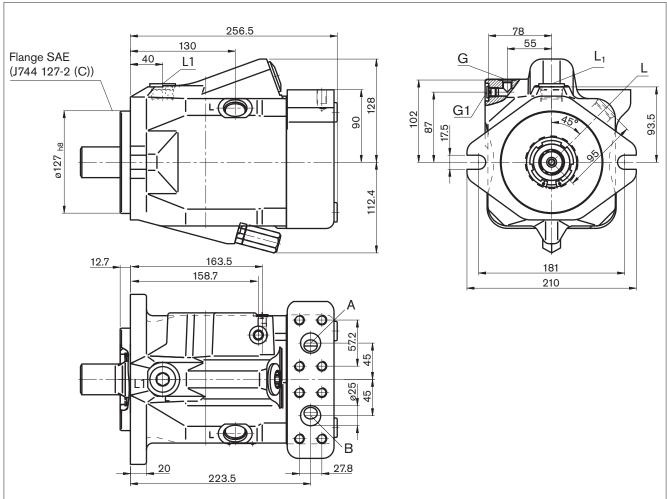
Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	X ⁴⁾
G	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Χ
X	Pilot pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0


- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position L oder L_1 must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must bee connected (plugged on delivery)
- X = Plugged (in normal operation)


Before finalising your design please request a certifified installation drawing.

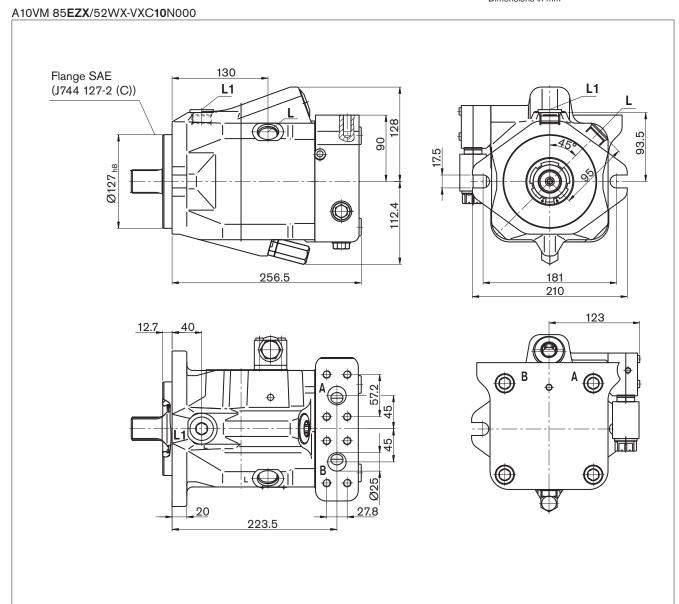
Dimensions in mm

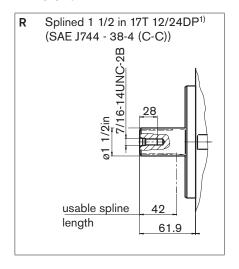
Drive shaft

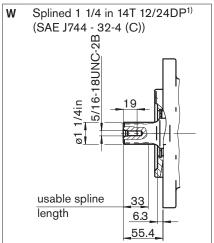


Before finalising your design please request a certifified installation drawing.

Dimensions in mm

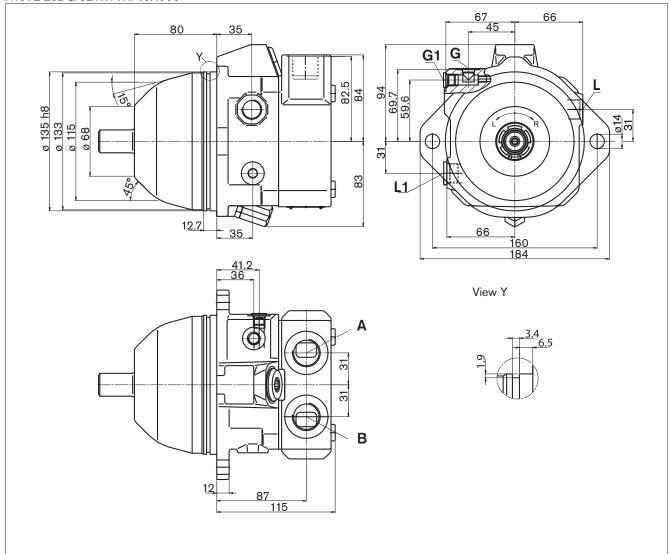

A10VM 85**DG**/52WX-VXC**10**N000


Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure sereis, code 62)	SAE J518C	1 in	350	0
	Fixing thread (port plate 10)	DIN 13	M12; 17 deep		0
L	Case drain	ISO 11926 ⁵⁾	1 1/16-12UN-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	1 1/16-12UN-2B	4	X ⁴⁾
G	external control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	external control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Х


- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position L oder L₁ must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)

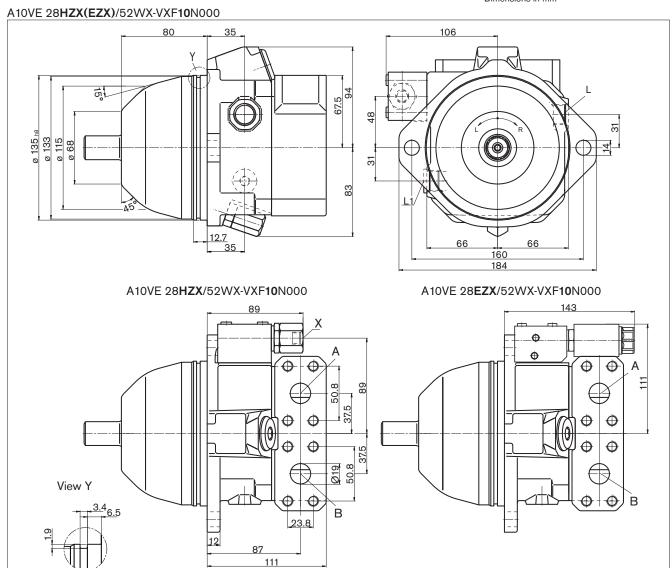
Before finalising your design please request a certifified installation drawing. Dimensions in mm

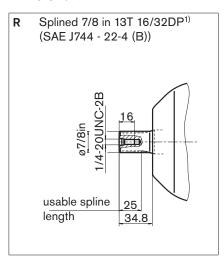
Drive shaft



Before finalising your design please request a certifified installation drawing.

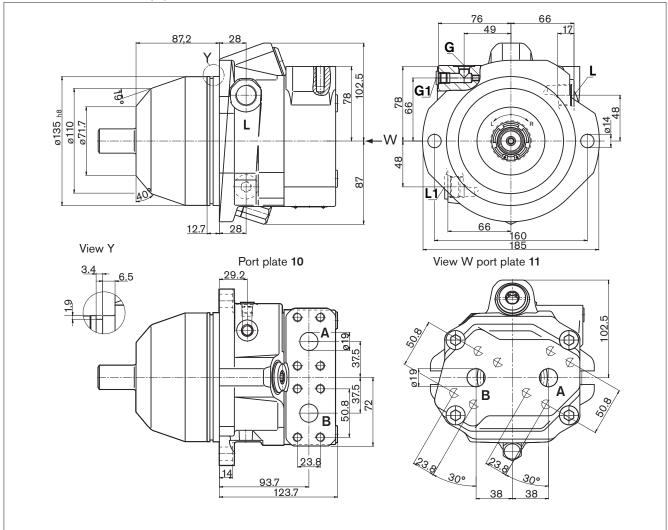
Dimensions in mm


A10VE 28**DG**/52WX-VXF**16**N000


Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	3/4-16UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	3/4-16UNF-2B	4	X ⁴⁾
G	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Χ
X	Pilot pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0

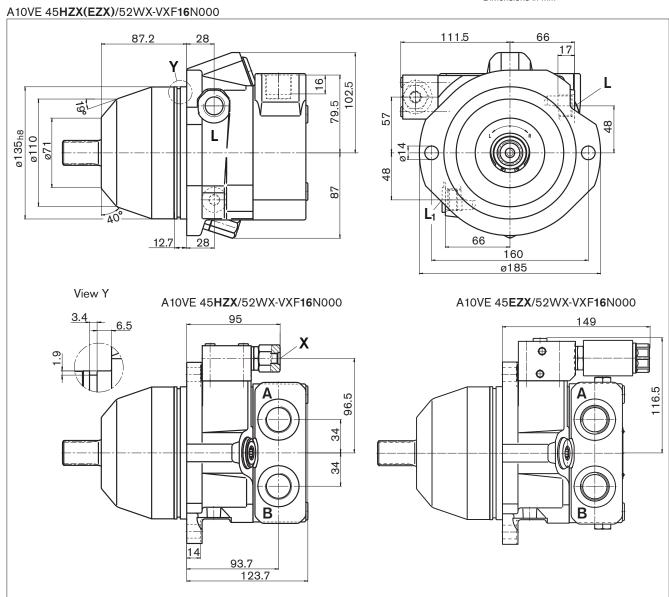
- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position L oder L_1 must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)

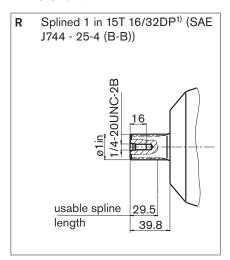
Before finalising your design please request a certifified installation drawing. Dimensions in mm

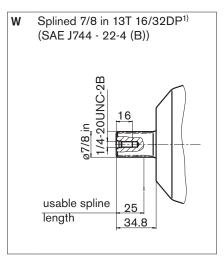

Drive shaft

Before finalising your design please request a certifified installation drawing.

Dimensions in mm

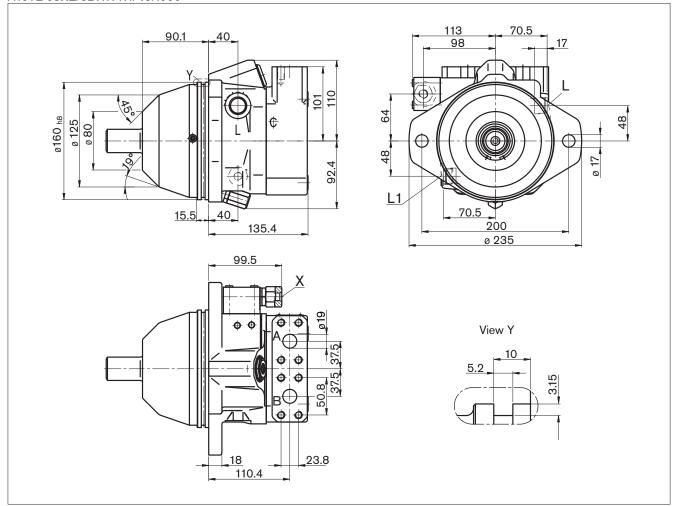

A10VE 45DG/52WX-VXF10(11)N000


Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10, 11)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	X ⁴⁾
G	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	0
G ₁	External control pressure	ISO 11926 ⁵⁾	7/16-20 UNF-2B; 12 deep	350	Χ
Х	Pilot pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0


- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- $^{4)}$ Depending on installation position L oder L_1 must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Before finalising your design please request a certifified installation drawing. Dimensions in mm

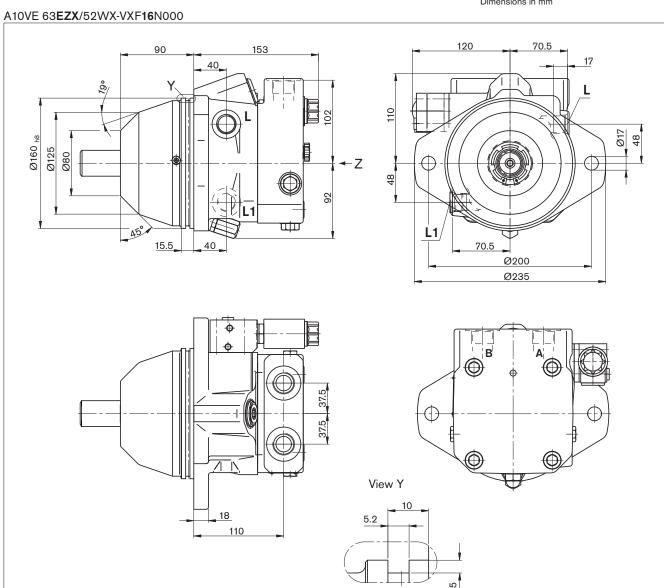
Drive shaft



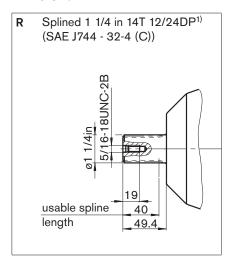
Before finalising your design please request a certifified installation drawing.

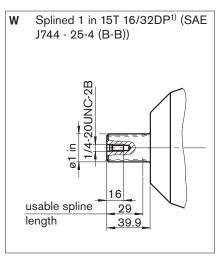
Dimensions in mm

A10VE 63HZ/52WX-VXF10N000



Designation	Port for	Standard	Size ²⁾	Max. press. [bar] ³⁾	State
A, B	Pressure (high pressure series, code 62)	SAE J518	3/4 in	350	0
	Fixing thread (port plate 10)	DIN 13	M10; 17 deep		0
A, B	Pressure (port plate 16)	DIN 3852-1 ⁵⁾	M27x2; 16 deep	350	0
L	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	O ⁴⁾
L ₁	Case drain	ISO 11926 ⁵⁾	7/8-14UNF-2B	4	X ⁴⁾
Χ	External control pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 10 deep	350	0


- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instruction on page 28 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position L oder L_1 must be connected (see also page 27).
- 5) The spot face can be deeper than specified in the appropriate standard.
- O = must be connected (plugged on delivery)
- X = Plugged (in normal operation)


Dimensions A10VE size 63

Before finalising your design please request a certifified installation drawing. Dimensions in mm

Drive shaft

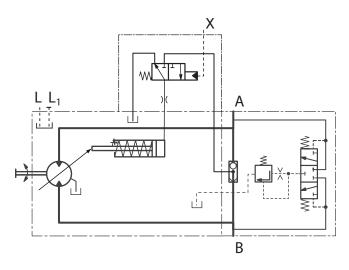
Integrated flushing and boost press. relief valve, N007

The flushing and boost pressure relief valve is used in closed circuits to flush an unacceptable heat load out of the circuit and to maintain a minimum boost pressure level (fixed setting). The valve is integrated into the port plate.

A built-in fixed orifice determines the flushing flow, which is taken out of the low pressure side of the loop and directed into the motor housing. It leaves the housing together with the case drain flow. This combined flow must be replenished with fresh, cool fluid by means of the boost pump.

Standard flushing flow

With a pressure of $p_{ND}=20$ bar in the low pressure side of the circuit and an orifice dia. of ø1.6 mm the flushing flow amounts to 5.5 L/min (Size 28 - 85).


Other orifice diameters can be ordered in clear text.

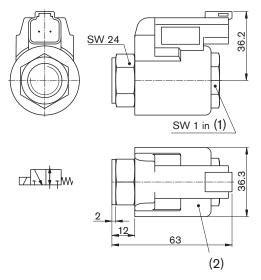
Further flushing flows for sizes 28 - 85 see table:

Flushing flow (L/min)	Orifice dia. in mm
3.5	1.2
5.5	1.6
7.2	1.8

Circuit diagram

e.g. A10VO..HZ/...N007

Ports for					
A, B	B pressure				
L, L ₁	case drain (L ₁ plugged)				
X	pilot pressure				


Connector for solenoids

DEUTSCH WKM08130D-01-C-V-XXDN, 2-pin

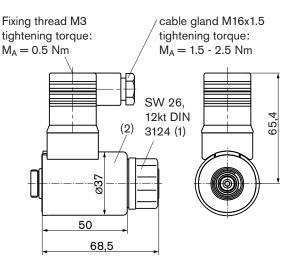
Molded, without bidirectionale suppressor diode						
(Standard)	P					
Rexroth part-No. R902650409	12V					
R902650408	24V					

Technical data of electric					
Voltage	Cocurrent flow				
Supply voltage	12 or 24 V				
Nominal current	1.5 A				
Voltage tolerance	-15 % bis +15 %				
Operating period	100 %				
Protection class IP 65					
Tochnical data of hydraul	lio				

Technical data of hydraulic						
Nominal pressure	maximum 350 bar					
Flow	maximum 25 L/min					
Sealing	FKM (flour-rubber)					
Operating temperature of fluid	-20 °C to +120 °C					
Viskosity range	10 mm ² /s to 420 mm ² /s					
Function	D					

The female connector is not part of the scope of supply. This can be supplied by Rexroth on request.

HIRSCHMANN DIN EN 175 301-803-A /ISO 4400


(not for new projects)

without bidirectional suppressor diode

Degree of protection to DIN/EN 60529: IP65

The sealing ring in the cable gland (M16x1,5) is suitable for cables 4.5 mm to 10 mm in diameter.

The HIRSCHMANN-connector is part of the scope of supply of the motor.

Note for round solenoids:

The position of the connector can be changed by turning the solenoid body.

Proceed as follows:

- 1. Loosen fixing nut (1)
- 2. Turn the solenoid body (2) to the desired position.
- 3. Tighten the fixing nut

Tightening torque of fixing nut: 5+1 Nm

Electronic controls

Control	Electronic function	Electronics		Further information		
Electric pressure control		RA	analogue	RD 95 230		
	Regulated current outout	VT2000	analogue	RD 29 904		
		RC2-2/21 1)	digital	RD 95 201		

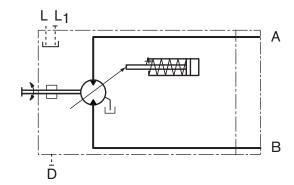
¹⁾ Current outputs for 2 valves, sparately controllable

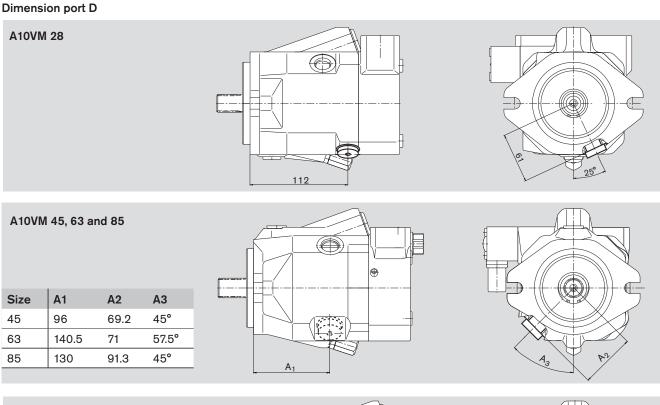
Speed pickup

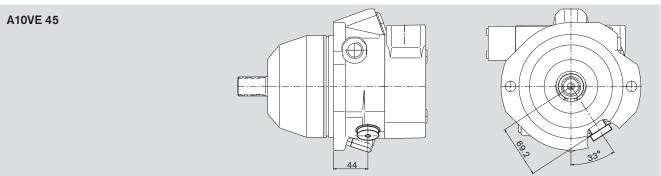
The version A10VM/E...D ("prepared for speed pickup") comprises gearing around the rotary unit.

In this case, the rotating cylinder barrel can provide a speed dependent signal, which can be picked up by a suitable sensor and processed for further evaluation. The sensor port will be plugged for delivery.

This preparation for speed pickup does not include the necessary working parts. They must be ordered separately as a kit with a corresponding part number.

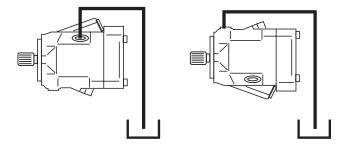

Inductive speed sensor ID R 18/20-L250 (see RE 95130) and mounting parts (spacer and 2 seals per kit) can be ordered separately under the following part numbers:


Size	Part Nr.	Number of teeth
28	R902428802	48
45	R902437557	48
63	R902428802	56
85	in preparation	

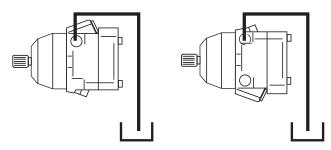

Before finalising your design please request a certifified installation drawing.

Dimensions in mm

Circuit diagram


Mounting position

The motor housing must be filled during start up and operation. The drain line must be arranged, so that the housing cannot empty itself when the motor is at standstill. The end of the drain line must enter the tank below the minimum fluid level.


In all installation positions the highest case drain port must be used to fill the housing and to connect the drain line.

In case of a vertical installation please consult us.

A10VM

A10VE

General instructions

- The A10VM/VE is designed for operation in open and closed circuits
- Systems design, installation and commissioning requires trained technicians or tradesmen.
- Be sure to read the entire operating instructions throughly and completely befor using the axial piston unit. If necessary, request them at Rexroth.
- All hydraulic ports can only be used for the fastening of hydraulic service lines.
- During and shortly after operation of a axial piston unit the housing and especially a solenoid can be extremely hot, avoid being burned; take suitable safety measures (wear protective clothing).
- Dependent on the operating conditions of the axial piston unit (operating pressure, fluid temperature) deviations in the performance curves can occur.
- Pressure ports:
 - All materials and port threads are selected and designed in such a manner, that they can withstand the maximum pressure. The machine and system manufacturer must ensure, that all connecting elements and hydraulic lines are suitable for the actual operating pressures.
- Pressure cut off and pressure control are not suitable for providing system protection against excessive pressures. A suitable
 overall main line relief valve must be incorporated.
- All given data and information must be adhered to.
- The following tightening torques are valid:
 - Female threads in the axial piston unit:
 the maximum permissible tightening torques M_{GMax} are maximum values for the female threads in the pump casting and may not be exceeded. Value see table below.
 - Fittings: please comply with the manufacturer's information regarding the max. permissible tightening torques for the used fittings.
 - Fastening bolts:
 for fastening bolts to ISO 68 we recommend to check the permissible tightening torques in each individual case to VDI 2230.
 - Plugs: for the metal plugs, supplied with the axial piston unit the following min. required tightening torques M_V apply (see table).

Threaded port sizes		Maximum permissible tightening torque of the threaded holes M _{G max}	Requiered tightening torque of the locking screws M _V	WAF hexagon socket of the locking screws	
7/8-14 UNF-2B	ISO 11926	240 Nm	127 Nm	3/8 in	
7/16-20UNF-2B	ISO 11926	40 Nm	15 Nm	3/16 in	
3/4-16 UNF-2B	ISO 11936	160 Nm	62 Nm	5/16 in	
1 1/16-12 UNF-2B	ISO 11926	360 Nm	147 Nm	9/16 in	
M14x1,5	DIN 3852	80 Nm	35 Nm	6 mm	
M16x1,5	DIN 3852	100 Nm	50 Nm	8 mm	
M18x1,5	DIN 3852	140 Nm	60 Nm	8 mm	
M22x1,5	DIN 3852	210 Nm	80 Nm	10 mm	
M27x2	DIN 3852	330 Nm	135 Nm	12 mm	

Bosch Rexroth AG
Hydraulics
Axial Piston Units
An den Kelterwiesen 14
72160 Horb a. N., Germany
Telephon +49 (0) 74 51 92-0
Fax +49 (0) 74 51 82 21
info.brm-ak@boschrexroth.de
www.boschrexroth.com/axial-piston-motors

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Rexroth Bosch Group

Reversible axial piston variable motor A10VER series 52 for hydrostatic fan drives

RE 91706

Issue: 09.2015 Replaces: -.-

- ▶ Sizes 30 to 45
- ▶ Nominal pressure 280 bar
- ► Maximum pressure 350 bar
- ▶ Open circuit

Features

- Variable motor with axial piston rotary group in swashplate design for hydrostatic fan drives in open circuits
- ▶ The output speed is proportional to the inlet flow
- ► The output torque increases proportionally with the pressure difference between the high- and low-pressure sides and increasing displacement
- ► Specially developed for hydrostatic fan drives
- ▶ The A10VER variable motor is equipped with a rotary group of the overcenter type with a maximum displacement of +/- 100% $V_{\rm g\ max}$. This permits reversing operation without the need for costly additional components for air flow reversal and the cleaning of contaminated coolers, and thus achieves fuel savings by means of improved cooling performance.
- ► The energy efficiency of hydraulic fan drives is increased due to the elimination of external reversing valves.
- Stable storage for long service life
- ► High permissible output speed
- ► Favorable power-to-weight ratio compact dimensions
- Low noise

Contents	
Ordering code	2
Hydraulic fluids	3
Operating pressure range	5
Technical data	6
EZ. – Two-point control, electric	8
Dimensions sizes 30, 37 and 45	S
Anti cavitation valve	11
Speed pickup	12
Connector for solenoids	13
Installation instructions	14
Project planning notes	16
Safety instructions	16

2 **A10VER series 52** | axial piston variable motor Ordering code

Ordering code

01	L	02	03	04	05		06	07		08	09	10	11	12	13	;	14
A10	οv	Е	R			/	52	R	-	V		F					
Axial	Axial piston unit 30 37 45																
01									A10V								
Opera	ation :	mode															
02	Moto	r, plug-	in versio	n, open c	circuit												Е
03	Reve	rsible +	-/- 100%)													R
Size ((NG) ¹⁾																
04	For g	eometi	ric displa	cement,	see table	of values	s, page 6							30	37	45	1
Contr	rol dev	vice															
05	Two-	point c	ontrol	,		U = 1	12 V	٧	vith shift	ing time	orifice			•	•	•	EZ6
	elect	ric with	n switchi	ng solenc	oid	U = 2	24 V	٧	vith shift	ing time	orifice			•	•	•	EZ7
Serie	s																
06	Serie	s 5, Ind	dex 2														52
Direc	tion o	f rotat	ion ²⁾														
07	Viewe	ed on c	drive shat	ft				C	lockwise	(cooling	operati	on)					R
Sealir	ng ma	terial															
80	FKM	(fluoro	elastome	er)													V
Drive	shaft																
09	09 Conical shaft with woodruff key and UNF threaded bolt						•	С									
	Conical shaft with woodruff key and metric threaded bolt					•	•	•	Υ								
Moun	nting f	langes															
10									F								
Work	ing po	ort															
11	SAE f	flange p	port faste	ening thre	ead, metr	ic		S	ame side	;				•	•	•	10N00
	Threa	aded po	ort, metr	ic				S	ame side					0	0	0	16N00
	SAE f	flange p	port faste	ening thre	ead, UNF			S	ame side	;				•	•	•	60N00
	Threa	aded po	ort, UNF					S	ame side	;				0	0	0	66N00
Valve	_													ı	_	ī	
12	witho													•	•	•	0
	integrated anti cavitation valve						•	•	•	2							
	integrated anti cavitation valve and pressure relief valve oo o							4									
	d sens													I	1	I	
13			ed sensi		tod DCV3)								•	•	•	
				sor moun										0	0	0	B M
				ou mouli	rea DOINI	-								0	0	0	IVI
			enoids		0 :				- /5- '	- 4	h I V						
14	14 DEUTSCH – molded connector, 2-pin – without suppressor diode (for electric controls)								P								

• = Available • = On request • = Not available

Note

Observe the project planning notes on page 16 or the project planning and commissioning instructions 90363.

- 1) Additional sizes available on request
- 2) Additional directions of rotation available on request
- 3) Specify ordering code of sensor in accordance with data sheet 95132 – DSM or 95133 – DSA separately and observe the requirements for the electronics.

Bosch Rexroth AG, RE 91706/09.2015

Hydraulic fluids

The A10VER variable motor is designed for operation with HLP mineral oil according to DIN 51524. For more hydraulic fluids please contact us.

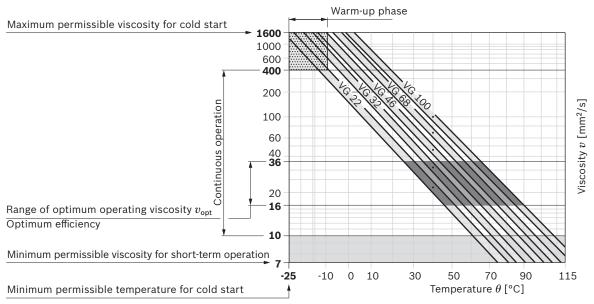
Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- ▶ 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids

Details regarding the selection of hydraulic fluid

The hydraulic fluid should be selected so that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt} , see selection diagram).

Note


At no point on the component may the temperature be higher than 115 °C. The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, please contact the responsible member of staff at Bosch Rexroth.

Viscosity and temperature of hydraulic fluids

	Viscosity	Temperature ¹⁾	Comment
Cold start $v_{\text{max}} \le 1600 \text{ mm}^2/\text{s}$		θ _{St} ≥ -25 °C	$t \le 1$ min, without load ($p \le 30$ bar), $n \le 1,000$ rpm
permissible temperature difference		$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid
Warm-up phase $v < 1600 \text{ to } 400 \text{ mm}^2/\text{s}$		θ = -25 °C to -10 °C ¹⁾	Observe the detailed information on operation at low temperatures, see data sheet 90300-03-B
Continuous operation	v = 400 to 10 mm ² /s		This corresponds, for example on the VG 46, to a temperature range of +5 °C to +85 °C (see selection diagram page 3)
		θ = -25 °C to +110 °C	measured at port ${\bf L}$ Observe the permissible temperature range of the shaft seal (ΔT = approx. 5 K between the bearing/shaft seal and port ${\bf L}$)
	$v_{\rm opt}$ = 36 to 16 mm ² /s		Range of optimum operating viscosity and efficiency
Short-term operation	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		<i>t</i> < 1 min, <i>p</i> < 0.3 • <i>p</i> _{nom}

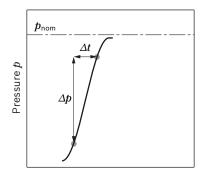
▼ Selection diagram

 $_{\mbox{\scriptsize 1)}}$ At temperatures from -40° C to -25° C please contact us

4 **A10VER series 52** | axial piston variable motor Ordering code

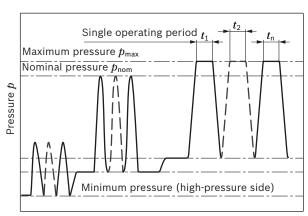
Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit. A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.


At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), at least cleanliness level 19/17/14 according to ISO 4406 is necessary.

Please contact us if the above classes cannot be observed.

Operating pressure range


Pressure at service line port B		Definition
Nominal pressure p_{nom}	280 bar absolute	The nominal pressure corresponds to the maximum design pressure. The series control of motors is not permissible.
Maximum pressure p_{\max}	350 bar absolute	The maximum pressure corresponds the maximum working pressure within the single operating period. The sum of the single operating periods must not exceed
Single operating period	2.5 ms	the total operating period.
Total operating period	300 h	_
Minimum pressure $p_{\rm MD~abs}$ (high-pressure side)	20 bar absolute	Minimum pressure on the high-pressure side (B) which is required in order to prevent damage to the axial piston unit.
Rate of pressure change $R_{ m A \ max}$	16000 bar/s	Maximum permissible rate of pressure build-up and reduction during a pressure change over the entire pressure range.
Pressure at low-pressure port A		
Minimum pressure Standard $p_{\rm ND\ min}$	2 bar absolute	Minimum pressure at low-pressure port A (outlet) that is required in order to avoid damage to the axial piston unit.
Maximum pressure $p_{\text{ND max}}$	10 bar absolute ¹⁾	
Leakage pressure at port L		
Maximum pressure $p_{\rm L\ max}$ Operation as a motor, open circuit	2 bar absolute	

▼ Rate of pressure change $R_{A \text{ max}}$

 $\mathsf{Time}\; t$

▼ Pressure definition

Time t

Total operating period = $t_1 + t_2 + ... + t_n$

Note

Working pressure range valid when using hydraulic fluids based on mineral oils. Please contact us for values for other hydraulic fluids.

Flow direction

Direction of rotation Motor with unchanged pressure side B	at $V_{\mathrm{g max}+}$ + 100%	$V_{ m g\;max}$ 100%
(de-energized) clockwise	B to A	
(energized) counter-		B to A
clockwise		

¹⁾ Higher pressures on request

Technical data

Size		NG		30	37	45
Displacement ged	ometric, per revolution	+ 100% $V_{ m g\ max}$	cm ³	30	37	45
		$-$ 100% $V_{ m g\ max}$	cm ³	30	37	45
Maximum rota- tional speed ¹⁾	at $V_{ m g\; max}$	n_{nom}	rpm	2400	2200	2000
Minimum rota- tional speed ¹⁾	at permanent operation	n_{nom}	rpm	250	250	250
Torque	at $V_{\rm gmax}$ and Δp = 280 bar	T	Nm	133.5	165	200
Rotary stiffness	С	С	Nm/rad	32380	32380	32380
of drive shaft	Υ	С	Nm/rad	32380	32380	32380
Moment of inertia	a for rotary group	J_{TW}	kgm²	0.0033	0.0033	0.0033
Maximum angular	r acceleration ²⁾	α	rad/s²	4000	4000	4000
Case volume		V	1	0.7	0.7	0.7
Weight without th	nrough drive (approx.)	m	kg	18	18	18

Determini	ng the		erating characteristics	•		
Inlet		Op	$V_{\rm g} \times n$	•	[1/:-1	
flow	q_{\scriptscriptstyleV}	= '	1000 × η _ν		[l/min]	
Torque	т		$1.59 \times V_{\rm g} \times \Delta p \times \eta_{\rm hm}$		[Nm]	
Torque	rque I =		100		[INIII]	
or	T	=	$T_K imes \Delta p imes \eta_hm$			
Power	Р		$2 \pi \times T \times n$	$q_{v} \times \Delta p \times \eta_{t}$	- [kW]	
Power P		_	60000	600	[KVV]	
Output	22		$q_{ m v} imes 1000 imes \eta_{ m v}$		[rpm]	
speed	n	_	V_{g}		[ibiii]	
Key						
V_{g}	=	Di	splacement per revolut	ion [cm³]		
Δp	=	Di	Differential pressure [bar]			

Rotational speed [rpm] Volumetric efficiency

Torque constant

Hydraulic mechanical efficiency

Total efficiency ($\eta_{\rm t}$ = $\eta_{\rm v} \times \eta_{\rm hm}$)

Note

- ► Theoretical values, without efficiency and tolerances; values rounded
- ▶ Exceeding the maximum or falling below the minimum permissible values can lead to a loss of function, a reduction in operational service life or total destruction of the axial piston unit. Bosch Rexroth recommends testing the load by means of experiment or calculation / simulation and comparison with the permissible values.

 η_{v}

 η_{hm}

 η_{t} T_{K}

The values apply

[–] At absolute pressure p_{abs} = 2 bar at low-pressure port ${\mathbf A}$

[–] For the optimal viscosity range of $v_{\rm opt}$ = 36 to 16 mm²/s

⁻ For hydraulic fluid based on mineral oils

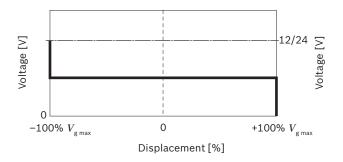
The data are valid for values between the minimum necessary and the maximum permissible drive speeds. Valid for external excitation (e. g. diesel engine 2 to 8 times rotary frequency, cardan shaft twice the rotary frequency). The limit value is only valid for a single pump. The load capacity of the connecting parts must be considered.

Permissible radial and axial forces of the drive shafts

Size		NG		30	37	45
Maximum radial force at a/2	a/2a/2	$F_{q\;max}$	N	1500	1500	1500
Maximum axial force	Fax $\stackrel{+}{\longleftarrow}$	± $F_{ax\;max}$	N	1500	1500	1500

Note

► The values given are maximum values and do not apply to continuous operation. For drives with radial loading (pinion, V-belt drives), please contact us!

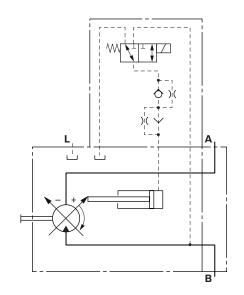

EZ. - Two-point control, electric

The variable motor is set to $V_{\rm g\ max}$ +100% or $V_{\rm g\ max}$ -100% by actuating the solenoid of the control valve. When deenergized, the axial piston units swivels to $V_{\rm g\ max}$ +100%, when energized, to $V_{\rm g\ max}$ -100%.

The response time is extended via the in-built orifice, thus enabling smooth swiveling.

With each direction of rotation of the motor, the control pressure is taken at the high-pressure side **B**.

▼ Characteristic curve EZ


Influencing the swivel position

Swivel direction + 100%		Swivel cradle position
De-energized	_	$V_{g\ max\ +}$
Swivel direction	- 100%	
Energized	<u></u>	$V_{g\;max}$ –

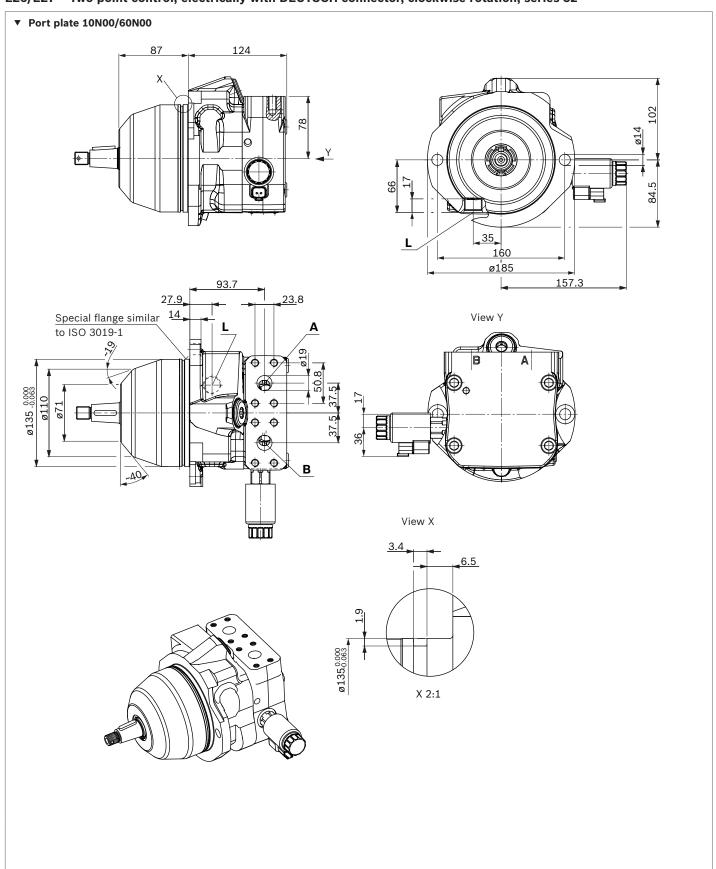
Note

Observe the project planning notes on page 16 or the project planning and commissioning instructions 90363.

▼ Circuit diagram EZ6/EZ7

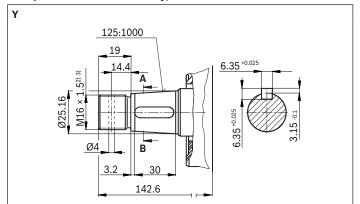
Solenoid data

EZ6	EZ7	
12 V DC	24 V DC	
1.5 A	0.8 A	
100%	100%	
	12 V DC 1.5 A	12 V DC 24 V DC 1.5 A 0.8 A

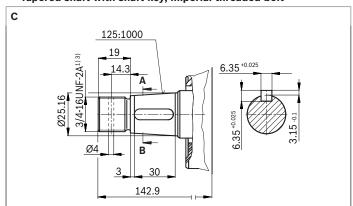

Type of protection: see connector version page 13

Ambient temperature range -20 °C to +60 °C

Please contact us if these temperatures cannot be observed.


Dimensions sizes 30, 37 and 45

EZ6/EZ7 - Two-point control, electrically with DEUTSCH connector, clockwise rotation, series 52



10

▼ Tapered shaft with shaft key, metric threaded bolt

▼ Tapered shaft with shaft key, imperial threaded bolt

Ports		Standard	Size ³⁾	$p_{\rm max\;abs}$ [bar] ⁴⁾	State ⁷⁾
Port pl	ate 10				
Α	Service line port (high-pressure series) Fastening thread	SAE J518 ⁵⁾ DIN 13	3/4 in M10 × 1.5; 17 deep	10	0
В	Service line port (high-pressure series) Fastening thread	SAE J518 ⁵⁾ DIN 13	3/4 in M10 × 1.5; 17 deep	350	0
L	Drain port	ISO 11926 ⁶⁾	7/8-14UNF-2B; 17 deep	2	0
Port pl	ate 60	,			
A	Service line port (high-pressure series) Fastening thread	SAE J518 ASME B1.1	3/4 in 3/8-16UNC-2B; 21 deep	10	0
В	Service line port (high-pressure series) Fastening thread	SAE J518 ASME B1.1	3/4 in 3/8-16UNC-2B; 21 deep	350	0
L	Drain port	ISO 11926 ⁶⁾	7/8-14UNF-2B; 17 deep	2	0

 $[\]scriptstyle{\mbox{\scriptsize 1)}}$ Thread according to ASME B1.1

²⁾ Thread according to DIN 13

 $_{\mbox{\footnotesize 3)}}$ For the maximum tightening torques, see instruction manual.

⁴⁾ Depending on the application, temporary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

⁵⁾ Metric fastening thread is a deviation from standard

 $_{
m 6)}$ The spot face can be deeper than as specified in the standard.

⁷⁾ O = Must be connected (plugged on delivery)

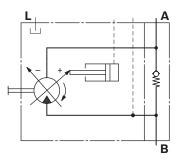
X = Plugged (in normal operation)

Anti cavitation valve

Without pressure cut-off Order option ...N002

When switching off the system, the anti cavitation valve ensures the motor of heavy-duty drives (e.g. hydrostatic fan drives) is supplied with hydraulic fluid until it comes to a standstill.

The valve is integrated in the port plate.


Note

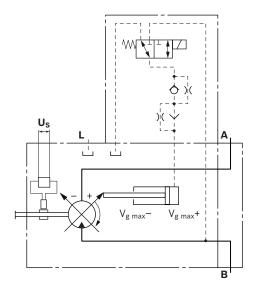
- Observe the direction of rotation of the unit during project planning.
- ► The standard rotation of direction is clockwise. Please contact us regarding counter-clockwise rotation.

The external unit dimensions correspond to the standard version, see the unit dimensions for the length dimensions.

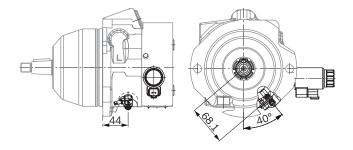
▼ Circuit diagram

Clockwise rotation

Speed pickup


12

Order option ...B or M

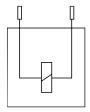

A signal proportional to the motor speed can be generated with the fitted DSA (B)/DSM (M) speed sensor. The DSA/DSM sensor measures the speed and/or direction of rotation. Ordering code, technical data, dimensions, and details on the connector, plus safety information about the sensor can be found in the relevant data sheet 95132 – DSM and 95133 – DSA.

The sensor is mounted on the port provided for this purpose with a mounting bolt.

▼ Circuit diagram

▼ Dimensions

Connector for solenoids


DEUTSCH DT04-2P-EP04

Molded connector, 2-pin, without bidirectional suppressor diode

The following type of protection ensues with a mounted mating connector:

- ▶ IP67 (DIN/EN 60529) and
- ► IP69K (DIN 40050-9)

▼ Switching symbol

▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation
1 housing	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902601804).

Note

If necessary, you can change the connector orientation by turning the solenoid housing.

The procedure is defined in the instruction manual.

System solution for hydrostatic fan drives with reversing function

AFC30 software

The BODAS AFC30 is a standard software solution integrated in the RC4-5/30 control unit from Rexroth for controlling hydrostatic fan drives with fixed or variable hydraulic pumps. The AFC30 is designed to control a fan drive in an open hydraulic circuit. The performance requirement of the fan can be modified for up to 6 temperature signals (analog//J1939). The AFC30 can be used with 12 V and 24 V systems. Since the AFC30 provides cooling capacity according to requirements, fuel consumption is significantly reduced compared with fan drive systems that are not proportionally controlled.

Further information on this can be found in data sheets

- ▶ 95362 (application software fan speed control AFC30) and
- ▶ 95205 (BODAS controller RC4-5, series 30)

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may empty via the hydraulic lines.

The drain in the housing area must be discharged to the reservoir via the highest available tank port (L). If this is not possible, separate drain lines must be installed if necessary. To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

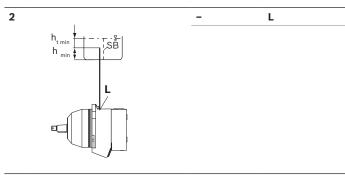
In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Note

In certain installation positions, an influence on the control characteristic can be expected. Gravity, dead weight and case pressure can cause minor shifts in characteristics and changes in response time.

For key, see page 15.

Installation Position


See the following examples 1 to 4.

Additional installation positions are available upon request. Recommended installation position: **2**

Below-reservoir installation (standard)

Below-reservoir installation is when the axial piston unit is installed outside of the reservoir below the minimum fluid level.


Insta	llation Position	Air bleeding	Filling
1	h _{t min} h sB	-	L
2		_	L

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Installation position	Air bleeding	Filling
3	-	L

4		F	L	
	h _{t min}			

Key	
F	Filling / air bleeding
L	Tank port
SB	Baffle (baffle plate)
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required distance to reservoir bottom (100 mm)

Note

Port **F** is part of the external piping and must be provided by the customer to make filling and air bleeding easier.

Project planning notes

- ► The A10VER variable motor is designed for fan drives used in open circuits.
- ► The project planning, installation and commissioning of the axial piston unit require the involvement of qualified skilled personnel.
- ▶ Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, request it from Bosch Rexroth.
- ▶ Before finalizing your design, request a binding installation drawing.
- ▶ The specified data and notes must be observed.
- ▶ Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- ▶ Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of these conditions can be found in the data sheet 90312 or the instruction manual.
- ▶ Not all variants of the product are approved for use in safety functions according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- ▶ Depending on the type of control used, electromagnetic effects can be produced when using solenoids. When a direct current is applied, solenoids do not cause electromagnetic interference nor is their operation impaired by electromagnetic interference.
 - Other behavior can result when a modulated direct current (e.g. PWM signal) is applied. Potential electromagnetic interference for persons (e.g. persons with a pacemaker) and other components must be tested by the machine manufacturer.

- Pressure controllers are not safeguards against pressure overload. A pressure relief valve is to be provided in the hydraulic system.
- Working ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the intended operating conditions (pressure, flow, hydraulic fluid, temperature) and the necessary safety factors.
 - The working ports and function ports can only be used to accommodate hydraulic lines.
- ► Further specific information on this product can be found in the project planning note 90363.

Safety instructions

- During and shortly after operation, there is a risk of burning on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- ▶ Moving parts in control and regulation systems (e.g. valve spools) may in certain circumstances become stuck in an undefined position due to contamination (e.g. contaminated hydraulic fluid, abrasion or residual dirt from components). As a result, the hydraulic fluid flow or torque build-up of the axial piston unit will no longer respond correctly to the operator's commands. Even the use of different filter cartridges (external or internal inlet filter) will not rule out a fault but merely reduce the risk. The machine/system manufacturer must check whether additional measures on the machine are required for the relevant application in order to bring the powered load into a safe position (e.g. safe stop) and ensure all appropriate measures are taken.

Bosch Rexroth AG

Mobile Applications An den Kelterwiesen 14 72160 Horb a.N., Germany Tel. +49 7451 / 92-0 info.ma@boschrexroth.de www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without our consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Axial piston motors Accessories

Designation	Туре	Size	Series	Data sheet	Page
Counterbalance valve for travel drives, winch drives and turas drives	BVD	20, 25	41	95522	637
Counterbalance valve for winch drives	BVE	25	51	95525	649
Counterbalance valve	BVD/BVE	32	51	95528	661

Product Catalog Mobile Hydraulics | Part 2: Motors, Gears

Counterbalance Valve BVD

RE 95522/10.08 1/12

Replaces: 04.08

Data sheet

Series 41 Size NG20, 25 Nominal pressure 350 bar Peak pressure 420 bar for travel drives, winch drives and track drives

Contents

Ordering Code / Standard Program	2
Design and Safety Instructions	4
Technical Data	4
Operation	6
Dimensions, Size 20	8
Dimensions, Size 25	9
Fixing the Counterbalance Valve	10
Port Types	11
Cross-References	11
General Instructions	12

Features

- Space-saving installation due to compact design and direct mounting on A2FM(E) and A6VM axial piston motors (series 63)
- Available as a complete set with A2FM(E) and A6VM axial piston motors (series 63) and GFT gear units; test stand run as standard.
- Standard service line ports according to SAE J518
- Integrated brake release valve, with and without pressure reduction
- High efficiency due to low flow resistance
- Easy optimization options during commissioning due to modular design.

BVD

25

Ordering Code / Standard Program

BVD					/	41		ı	V				
01	02	03	04	05		06	07		08	09	10	11	12

Va	ve	tv	DE

	Size	
02	Flow, max. q _{v max} 220 I/min	20

Flow, max. q_{v max} 320 l/min

	Control range (pressure when brake piston starts/stops opening)		
00	730 bar (travel drive)	F]
03	2040 bar (winch and track drive)	w	1

Ports (size classification)

01 Counterbalance valve, double-acting

	NG	A2FM/E./.181	A2FE./.171	A6VM./.370	A6VM./.380	
	20	28, 32, 45¹)				16
0.4		56, 63			55	17
04		80, 90			80	27
			107, 125	107		28
	25	107, 125, 160, 180			107, 140, 160	38

Ports for brake release

05	with high pressure	S	
05	with reduced high pressure 21 ⁺⁴ bar (brake release valve)	L	

Series

C	6 Sorios 4 Indox 1		<i>A</i> 1	
10	6 Series 4, Index 1		41	

Long cover

07	B-side (standard)	
07	A-side	Α

Seals

80	FKM (fluor-caoutchouc)	V	l

Piston version

	1 Island Version	
	100% of max. flow q _{v max} (see size)	01
09	75% of max. flow q _{v max} (see size)	02
	50% of max. flow q _{v max} (see size)	03

Residual opening in piston

	residual opening in piston						
	Without residual openi	ng (obligatory for winches)	K00				
	With residual opening	Ø 1.2	K12				
10		Ø 1.6	K16				
		Ø 1.8	K18				
		Ø 2.0	K20				

¹⁾ Intermediate plate necessary for all three sizes

Ordering Code / Standard Program

BVD					/	41		-	V				
01	02	03	04	05		06	07		08	09	10	11	12

Damping during closing

	Throttle pin	Comparative surface area 0.0361 mm ²	Designation on pin 25	D2500
		0.0520 mm ²	3	D0300
11		0.0836 mm ²	38 ²)	D0400
		0.1762 mm ²	55	D0600
		0.2798 mm ²	69 ³)	D0800

Flushing cavity

	Plugged		S00
	With ori-	Ø 1.2	S12
	fice (only for A6VM)	Ø 1.6	S16
	IOI AGVIVI)	Ø 1.8	S18

²⁾ Standard for travel drives

Ordering information

When placing the order, the following information is necessary to ensure correct settings at our test stands:

- Motor ordering code
- Counterbalance valve ordering code
- Flow
- Application (e.g. excavator, winch etc.)
- Pressure setting of the secondary pressure relief valves in the motor

Gear unit and/or counterbalance valve and axial piston motor can be ordered as ready-assembled and tested units.

Type selection (Ordering Code)

Size

depends on the necessary flow rate and the available motor port plates.

Control range

defines the pressure range at which the brake piston starts to open.

For travel drives in wheeled vehicles, use code "F":

The control piston opens at a differential pressure between A and B of 7 bar. In this case, the brake is not operated via the port for brake release on the counterbalance valve.

For winch and track drives, use code "W"

The control piston opens at a differential pressure between A and B of 20 bar. This ensures that the mechanical park brake actuated via the brake release port is fully opened (generally at 18 bar) before the brake piston opens.

Ports

depend on the motor size used.

The line ports A and B on the motor port plates are of different distance and diameter. To choose the appropriate connection, please refer to the table in the ordering code and on page 10.

For A2FM/E, sizes 28, 32 and 45, a intermediate plate is required between motor port plate 181 and the counterbalance valve. This intermediate plate is automatically included when motor and counterbalance valve are ordered as a set.

Brake release

The integrated pressure reduction valve is necessary when the mechanical brake on the gear unit cannot handle the full system pressure.

The maximum permitted brake release pressure must be agreed with the winch manufacturer. The brake release valve limits the high pressure to 21...25 bar (4 bar tolerance). It opens at about 10-14 bar.

Piston version ...

depends on the maximum flow across the counterbalance valve.

If for instance the maximum operational flow is only some 110 l/min while using a size 20 counterbalance valve which features a nominal flow of 220 l/min, then select the 50% control piston (code "03"). This ensures smooth operation.

If the desired flow is not within the range of the pistons supplied, please contact us.

Residual opening in piston ...

ensures soft stopping of wheeled vehicles. In winch applications, any residual opening is prohibited, since otherwise the load would not stay suspended. Therefore select code "K00".

Damping

defines the closing speed of the counterbalance valve. The higher the value, the faster the valve closes.

For the initial layout (prototype), we recommend the following damping:

- for wheel drives: D0400

- for winches and track drives: D0800

Flushing cavity

supplies motor flushing oil via an internal port. Only available for A6VM.

³⁾ Standard for winch and track drive

4/12 Bosch Rexroth AG BVD | RE 95522/10.08

Design and Safety Instructions

Failure to observe any of the following points can lead to uncontrolled working conditions with serious personal injury and material damage:

- The counterbalance valve does not replace the mechanical park brake. Provide appropriate mechanical brake systems.
- Counterbalance valves are only used in open circuit.
- System optimization for the first prototype is recommended with regard to the valve block, axial piston motor, counterbalance valve and park brake.
- The counterbalance valve and main control valve must be matched to one another.
- If a park brake is installed, it must not close until after the counterbalance valve has closed. Otherwise excessive wear will be caused to the brake linings.
- Comply with the maximum control pressure of the park brake. If necessary, use the integrated pressure reduction valve as a brake release valve with reduced high pressure (code "L")
- The counterbalance valve converts the entire kinetic energy/ potential energy into heat during the braking/lowering process.
 Consequently, ensure sufficient cooler and/or tank capacity.

- Counterbalance valves should be operated in combination with close-by secondary pressure relief valves, in order to protect the motor against pressure spikes. The motor port plates for direct installation of the counterbalance valve (A2FM: plate 181; A2FE: plate 171/181; A6VM: plate 370/380) already contain these secondary pressure relief valves.
- Auxiliary boost pressure at port S of the counterbalance valve reliably reduces the risk of cavitation due to lack of fluid in the low-pressure line. Ensure sufficient boost pressure and flow.
- The axial piston motor and counterbalance valve should always be ordered as a complete set. This ensures optimal matching and combined testing.
- If motor and counterbalance valve are ordered separately, consult our application engineers for the appropriate motor version

The above safety measures and instructions must be adapted to the application and extended if necessary.

Technical Data

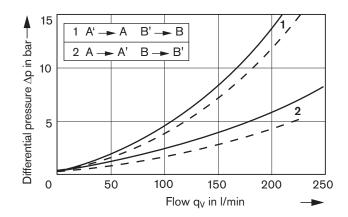
Hydraulic fluid

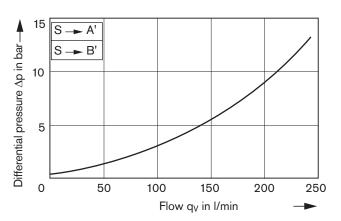
Please refer to the detailed information in our catalog sheets concerning the choice of hydraulic fluids and application conditions (see cross-references on page 11).

Table of values

Size				20	25
Operating pressure	р	bar	Nominal pressure	350	350
			Peak pressure	420	420
Flow, max.	q _{v max}	l/min		220	320
Opening pressure of brake piston	р	bar	BVD.F	7	7
			BVD.W	20	20
Pressure at which brake piston finishes opening	р	bar	BVD.F	30	30
			BVD.W	40	40
Pressure reduction valve for brake release (fixed values)	р	bar	BVDL/	21+4	21+4
Opening pressure			BVDL/	10+4	10+4
Weight, approx.	m	kg		9	15

Technical Data

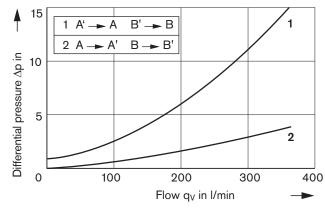

Characteristics

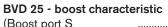

Size 20

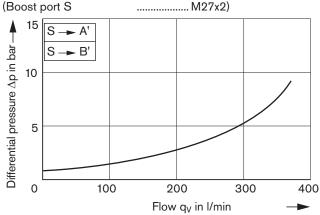
BVD 20...16 and 20...173/4 in) (Service line ports A, B BVD 20...27 and 20...28 (Service line ports A, B

..... 1 in)

BVD 20 - boost characteristic (Boost port S M22x1.5)






Size 25

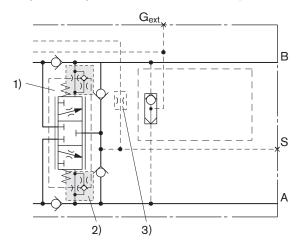
BVD 25...38

(Service line ports A, B 1 1/4 in)

The above specifications are based on:

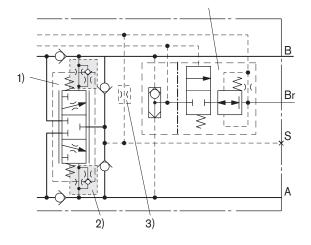
- Oil viscosity $v = 41 \text{ mm}^2/\text{s}$
- Oil temperature $\vartheta = 50$ °C
- Brake piston fully open
- Piston code 01 (100% q_{v max})

6/12 Bosch Rexroth AG BVD | RE 95522/10.08


Operation

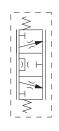
Travel/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open controls. Cavitation occurs if the motor speed is greater than it should be for the given flow during braking, downhill travel or decrease in motor load.

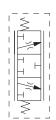
BVD circuit diagram


Counterbalance valve with shuttle valve and G_{ext} (plugged).

Ordering code designation "S" for brake release via port Gext-

Counterbalance valve with shuttle valve, brake release valve and port Br.

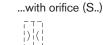

Ordering code designation "L" for brake release port Br.



1) Residual opening

Brake piston

with residual opening (K..) without residual opening (K00)



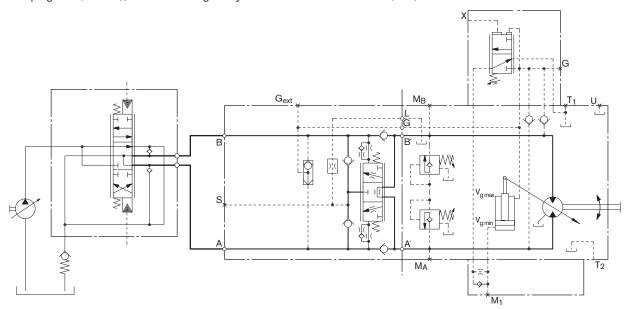
2) Damping

3) Flushing cavity... ...plugged (S00)

7/12

Operation

Circuit diagram - Travel counterbalance valve BVD..F


Application example

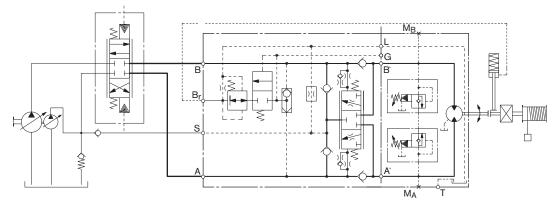
Travel drive for wheeled excavators e.g. A6VM80HA1T/63W-VAB380 + BVD20F27S/41B-V03K16D0400S12

Variable motor with high pressure related control and hydraulic override (HA1T), port plate with integrated pressure-relief valves, prepared for mounting a counterbalance valve (380).

Travel counterbalance valve, size 20 with 50% piston (03) for approx. 110 l/min, internal residual opening in piston for smooth braking (K16),

high damping rate (D0400), internal flushing cavity to motor with 1.2 mm orifice (S12).

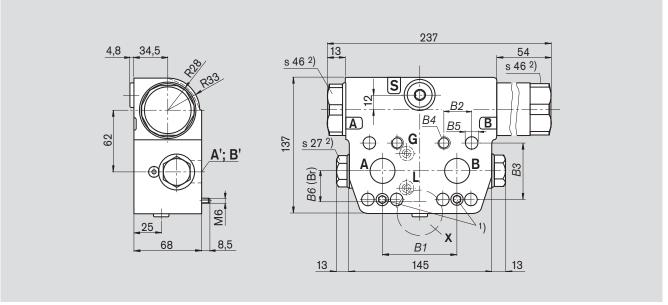
Circuit diagram - Winch counterbalance valve BVD..W


Application example

Winch drive in cranes; track drive in crawler excavators

e.g. A2FE160/61W-VAL181 + BVD25W38L/41B-V02K00D0600S00 mounted on a GFT-W Rexroth winch gear unit

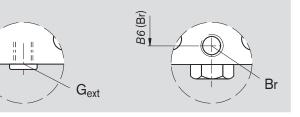
Fixed motor with port plate with integrated pressure-relief valves for mounting a counterbalance valve (181).


Winch counterbalance valve, size 25 with pressure reduction valves for brake release pressure (L), with 75% piston (02) for approx. 240 l/min, without internal residual opening (K00, obligatory for winches), low damping rate (D0800).

Other A6VM and A2FM/E axial piston motors can alternatively also be used.

8/12 Bosch Rexroth AG BVD | RE 95522/10.08

Dimensions, Size 20



- 1) Countersink ø 11x6.5 and through-hole ø 6.6 for 2x M6 mounting screws for fixing the counterbalance valve to the motor. In order to prevent incorrect assembly, the mounting screws must be used (included in the delivery contents)
- 2) Width across flats

Detail X

With shuttle valve and G_{ext} port (code S)

With shuttle valve, brake release valve and Br port (code L)

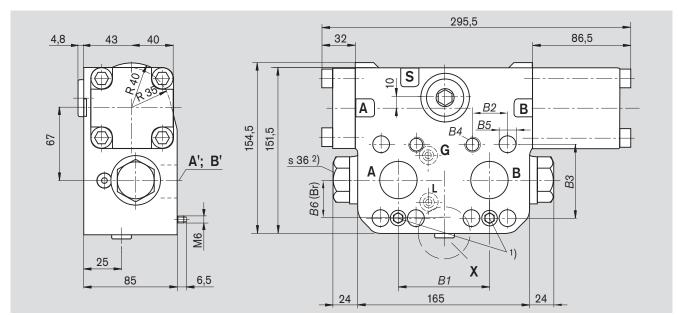
	B1	B2	ВЗ	B4	Ø B5	B6
BVD 2016	66	23.8	50.8	M10x1.5	10.5	25.5
BVD 2017	75	23.8	50.8	M10x1.5	10.5	27.0
BVD 2027	75	27.8	57.2	M12x1.75	13	27.0
BVD 2028	84	27.8	57.2	M12x1.75	13	27.0

Ports

Designa- tion	Operation		Standard	Size 1)	Peak pres- sure (bar) ²⁾	Status
A, B	Service line port, fixing thread A/B	Version 16, 17	SAE J518 ³⁾ DIN 13	3/4 in M10x1.5; 15 deep	420	Ο
		Version 27, 28	SAE J518 ³⁾ DIN 13	1 in M10x1.75; 16 deep	420	0
S	Boost port		DIN 3852	M22x1.5; 14 deep	30	Х
Br	Brake release, reduced high pressure	Version L	DIN 3852	M12x1.5; 12.5 deep	30	0
G _{ext}	Brake release, high pressure	Version S	DIN 3852	M12x1.5; 12.5 deep	420	Х

090	190 for confidence to mounted axial pictor motor							
A', B'	Service line port	Version 16, 17	AS 568 A	24.99x3.53 (S-FKM90)				
		Version 27, 28	AS 568 A	32.92x3.53 (S-FKM90)				
G	High pressure for A6VM motor HA control (with O-ring)		DIN 3771	9x2 (N-V80G1)				

DIN 3771

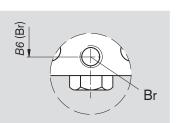

9x2 (N-V80G1)

- 1) Please observe the general instructions for the max. tightening torques on page 12
- ²⁾ Short-term pressure spikes may occur depending on the application. Please keep this in mind when selecting testers and armatures.
- 3) Only dimensions according to SAE J518
- O = open, must be connected (plugged on delivery)

Flushing (with O-ring)

X = plugged (in normal operation)

Dimensions, Size 25



- 1) Countersink ø 11x6.5 and through-hole ø 6.6 for 2x M6 mounting screws for fixing the counterbalance valve to the motor. In order to prevent incorrect assembly, the mounting screws must be used (included in the delivery contents)
- 2) Width across flats

Detail X

With shuttle valve and G_{ext} port (code S)

With shuttle valve, brake release valve and Br port (code L)

	B1	B2	В3	B4	ØB5	B6
BVD 2538	84	31.8	66.7	M14x2	15	31.6

Ports

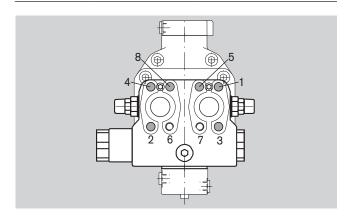
Designa- tion	Operation		Standard	Size 1)	Peak pres- sure (bar) ²⁾	Status
A, B	Service line port, fixing thread A/B	Version 38	SAE J518 ³⁾ DIN 13	1 1/4 in M14x2; 19 deep	420	0
S	Boost port		DIN 3852	M27x2; 16 deep	30	Х
Br	Brake release, reduced high pressure	Version L	DIN 3852	M12x1.5; 12 deep	30	0
G _{ext}	Brake release, high pressure	Version S	DIN 3852	M12x1.5; 12.5 deep	420	Х

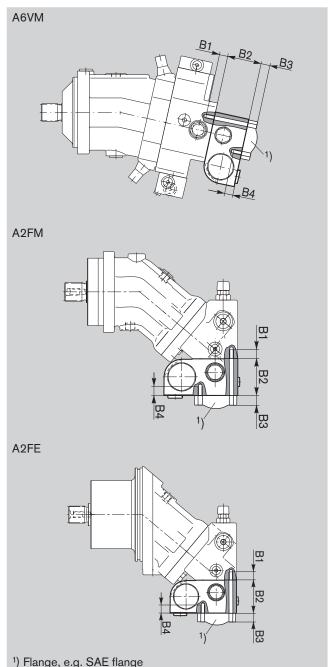
O-rings for connection to mounted axial piston motor

A', B'	Service line port	Version 38	AS 568 A	37.69x3.53 (S-FKM90)	
G	G High pressure for A6VM motor HA control O-rings)		DIN 3771	9x2 (N-V80G1)	
L	Flushing (with O-ring)		DIN 3771	9x2 (N-V80G1)	

- 1) Please observe the general instructions for the max. tightening torques on page 12
- ²⁾ Short-term pressure spikes may occur depending on the application. Please keep this in mind when selecting testers and armatures.
- 3) Only dimensions according to SAE J518
- O = open, must be connected (plugged on delivery)
- X = plugged (in normal operation)

10/12 Bosch Rexroth AG BVD | RE 95522/10.08


Fixing the Counterbalance Valve


When delivered, the counterbalance valve is attached to the motor using 2 tacking screws. Do not remove the tacking screws when connecting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be attached to the motor port plate using the provided tacking screws. In both cases, the final attachment of the counterbalance valve to the motor is by the connectio of the service lines, e.g. using SAE 4-bolt flanges. A total of 6 screws with thread lengths B1+B2+B3 and 2 screws with thread lengths B3+B4 are required.

When tightening the screws, it is imperative that the sequence 1 to 8 (as shown in the adjacent diagram) be adhered to and carried out in two phases.

In the first phase the screws should be tightened to 50% of their tightening torque before being tightened to maximum tightening torque in the second phase (see table below).

Thread	Strength class	Tightening torque in Nm
M10	10.9	75
M12	10.9	130
M14	10.9	205

Axial piston motor	A2FM/E	A2FM/E	A6VM	A2FM/E	A6VM	A2FE	A6VM	A2FM/E	A6VM
NG	28, 32, 45	56, 63	55	80, 90	80	107, 125	107	107, 125, 160, 180	107, 140 160
Dimension B1 ¹)	M10x1.5	M10x1.5	M10x1.5	M12x1.75	M12x1.75	M12x1.75	M12x1.75	M14x2	M14x2
	17 deep	17 deep	17 deep	18 deep	15 deep	17 deep	15 deep	19 deep	19 deep
Dimension B2	78 ²)	68	68	68	68	68	68	85	85
Dimension B3	Customer-specific								
Dimension B4	M10x1.5	M10x1.5	M10x1.5	M12x1.75	M12x1.75	M12x1.75	M12x1.75	M14x2	M14x2
	15 deep	15 deep	15 deep	16 deep	16 deep	16 deep	16 deep	19 deep	19 deep

¹⁾ Minimum necessary screw insertion depth 1xØ

²⁾ Including intermediate plate

Port Types

	NG20					NG25			
Ordering code	16	17		27		28		38	
Service line port A and B	3/4 in		1 in			1 1/4 in			
Boost port S (plugged)	M22x1.5; 14 deep			M27x2; 16 deep					
Spacing between service line ports (A´-B´)	66	66 75			84		84		
For mounting on axial piston motor	A2FM/E	A2FM/E	A6VM	A2FM/E	A6VM	A2FE	A6VM	A2FM/E	A6VM
Size	28, 32, 45	56,63	55	80, 90	80	107, 125	107	107, 125, 160, 180	107, 140, 160
Motor port plate required (with secondary pressure-relief valves, mutual bleed-off)	181	181	380	181	380	171	370	181	380

Cross-References

Mineral oil	RE 90220
Environmentally acceptable hydraulic fluids	RE 90221
HF hydraulic fluids	RE 90223
A2FM	_RE 91001
A2FE	RE 91008
A6VM	RE 91604
Hydrotrac GFT	_RE 77110
Mobilex GFT-W	RE 77502

Bosch Rexroth AG BVD | RE 95522/10.08

General Instructions

- The BVD counterbalance valve is designed to be used in open circuits.
- Project planning, assembly and commissioning of the axial piston unit with counterbalance valve require the involvement of qualified personnel.
- The service line ports and function ports are only designed to mounting hydraulic lines.
- During and shortly after operation, there is a risk of burns on the axial piston unit. Take suitable safety measures (e.g. wear protective clothing).
- There may be shifts in the characteristic depending on the operating state of the axial piston unit (operating pressure, fluid temperature).
- The data and note contained herein must be adhered to.
- The following tightening torques apply:
 - Threaded hole in axial piston unit:

 The maximum permissible tightening torques M_{Gmax} are the maximum values for the threaded holes that must not be exceeded.

 For values, refer to the following table.
 - Armatures:

12/12

Observe the manufacturer's instruction regarding tightening torques for the used armatures.

- Fixing screws:
- For fixing screws according to DIN 13, we recommend checking the tightening torque in individual cases as per VDI 2230.
- Locking screws:

For the metallic locking screws supplied with the axial piston unit, the required tightening torques of locking screws M_V apply. For values, refer to the following table.

Thread size at ports		Max. permissible tightening torque of the threaded holes M _{Gmax}	Required tightening torque of the locking screws M _V	WAF hexagon socket	
M12x1.5	DIN 3852	50 Nm	25 Nm	6 mm	
M22x1.5	DIN 3852	210 Nm	80 Nm	10 mm	
M27x2	DIN 3852	330 Nm	135 Nm	12 mm	

Bosch Rexroth AG
Hydraulics
Axial Piston Units
Glockeraustraße 2
89275 Elchingen, Germany
Phone: +49-7308-82-0

Fax: +49-7308-72-74 info.brm-ak@boschrexroth.de

www.boschrexroth.com/axial-piston-pumps

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Rexroth Bosch Group

Counterbalance Valve BVE

RE 95525/11.11 1/12

Data sheet

Series 51 Size 25 Nominal pressure 350 bar Maximum pressure 420 bar For winch drives, open circuit

Contents

Ordering code for standard program 2 Project planning and safety instructions 3 Technical data 4 Choosing the counterbalance spool version 5 Functional description 6 7 Application example of winch Dimensions size 25 8 Installation versions 10 Mounting the counterbalance valve 11 General instructions 12

Features

- Single-action counterbalance valve especially for winch drives in open circuits
- Sensitive damping for stable lowering
- Simple adaptation to application
- Compact design and direct fitting to axial piston motors A2FM, A2FE and A6VM, A6VE
- Available in a set with axial piston motors A2FM, A2FE and A6VM, A6VE.
- Standard service line ports according to SAE J518
- Integrated brake release valve optional, with or without pressure reduction
- Good efficiency through reduced flow losses

Ordering code for standard program

BVE 2	5	38		/	51	N			v		0	K00		T30	S 00		
01 0		04	05		06	07	08		09	10	11	12	13	14	15		16
			_ 00	1		0.	_ 00	_		10			-10		1.0	1 L	
Valve t	rbalance	valve o	sinale-s	side												Г	BVE
		vaive, .	single c														
Size (N		20	0 1/min	ot An	_ 20 h	or										Г	25
02 Flow, r																	
	range (p	ressure	e when				ol star	ts/stop	s open	ing)						—-г	
O3 Spring (withou	value ıt return p	ressure	e)	-	18 to 3												W V
	· ·		<u> </u>		9 10 38	Dai											
Ports			44													Г	
04 Size al	ocation: s	see pag	ge 11														38
	or brake i		•														
05	igh pressi				, .			`									S
With re	educed hi	gh pres	ssure 2	1 ⁺⁴ bar	(brake	releas	se valve	e)									L
Series																	
06 Series	5, index 1																51
Config	uration of	ports	and fa	stenin	g threa	ıds											
07 Metric	port thre	ads wit	h profil	ed sea	ling ring	g acco	rding t	o DIN 3	3852								N
Long s	oring cov	er (des	sign: se	e page	8)											_	
On po	t side C,	lift via p	ort C														С
On po	t side D,	lift via p	ort D														D
Seals																	
09 FKM (luor-caou	tchouc)														٧
Counte	rbalance	spool	versio	n (sele	ction: s	ee pag	ge 5)										
10		•		-			<u>, </u>										10
20																	20
Openir	g charac	teristic	s of co	unterb	alance	spoo	ı										
11 Standa																	0
Posidu	al openin	a in co	untarh	valance	e spoo	ı										•	
12 Withou		g III CC	unter	Jaiaiice	Spool											Г	K00
		1				1\											
	ng D1 (ch e pin, com				nce spo Inlet	001)			Out	ot .						$\overline{}$	
11110111	5 piii, 00ii	ιραιατίν	o diam	-	0.4 mn				2.0							Ī	D4599
13				-	0.4 mn				0.4								D4545
				-	0.4 mn				0.7								D4580
Damei	ng D2 (re:	earvoir	Outlot)						'								
	rifice ø0.3		Juliel)														T30
15 Plugge	g cavity															Г	S00
																	300
	rd / spec		sion													г	
	rd version		notella:	lon	ont -		- or -:-	o# cla -		*************		طميط					0 V
16 Standa	ird version	ı With II	nstallat	ion vari	ant, e.ç	J. ports	s open	or clos	ea, cor	itrary to	stan	uard				\dashv	Y S
Specia	1 ACL21011															L	

Note

Short designation X on a feature refers to a special version not covered by the ordering code.

Project planning and safety instructions

Order details

When placing the order, the following information is necessary to ensure correct acceptance at our test stands:

- Motor ordering code
- Counterbalance valve ordering code
- Flow
- Application (e.g winch)
- Pressure setting of the secondary pressure relief valves in the motor
- For the design of the brake release valve, we must know the following data for the mechanical park brake:
 - the cracking pressure
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Counterbalance valve and axial piston motor can be ordered as a ready-assembled and tested unit.

Type selection (ordering code)

Control range

The control range defines the pressure range at which the counterbalance spool starts to open.

The control range of the counterbalance spool is to be chosen so that the mechanical park brake is fully open before the counterbalance spool starts to open.

Brake release

The integrated pressure reduction valve is necessary when the mechanical brake on the gear unit cannot handle the full system pressure.

The maximum permissible brake release pressure must be agreed with the winch manufacturer. The brake release valve reduces the high pressure to the value stated.

Counterbalance spool version

The counterbalance spool version depends on the maximum flow required through the counterbalance valve.

Counterbalance spool selection for required flow as per diagram on page 5.

If the desired flow is not within the range of the counterbalance spool supplied, please contact us.

Residual opening in counterbalance spool

In winch applications, any residual opening is prohibited, since otherwise the load would not stay suspended. For that reason, version "K00" is prescribed.

Damping

The throttle pin from D1 (inlet) and the orifice D2, plus the return pressure to the reservoir, define the actual cracking pressure of the counterbalance spool in M_{P1}.

The damping D1 (outlet) and D2 define the closing speed of the counterbalance spool. The larger the comparative diameter D1 (outlet), the faster the counterbalance spool will close (see table on page 4).

For the initial equipment (prototype), we recommend damping D1 = D4599 and D2 = T30.

Safety instructions

Failure to observe any of the following points can lead to uncontrolled operating conditions with serious personal injury and material damage.

- The counterbalance valve does not replace the mechanical park brake. If necessary, provide mechanical brake systems.
- Counterbalance valves are usually only used in open circuits.
- System optimization (reduction) for the first prototype is recommended with regard to the valve block, axial piston motor, counterbalance valve and park brake.
- The opening and closing characteristics of the counterbalance valve and control piston in the directional valve must be mutually compatible.
- The mechanical park brake in winch drives must only be effective after the counterbalance valve spool has closed. Otherwise, the brake will be subject to wear.
- Note the maximum permissible cracking pressure of the park brake. If necessary, use the integrated pressure reduction valve as a brake release valve with reduced high pressure (version "L").
- The counterbalance valve converts the entire kinetic energy/potential energy into heat during the braking/lowering process. Consequently, ensure sufficient cooler and/or tank capacity.
- Counterbalance valves should only be operated in combination with close-by secondary pressure relief valves in order to protect the motor against pressure spikes. The table on page 11 lists the motor and port plate types for the counterbalance valve BVE25. The port plates already contain the secondary pressure-relief valves.
- Feeding at port S of the counterbalance valve reduces the risk of cavitation. Ensure sufficient pressure and flow for feeding.
- We recommend ordering an axial piston motor and counterbalance valve as a single unit. This ensures optimal matching and combined testing.
- If motor and counterbalance valve are ordered separately, we recommend that you consult our application engineers for the appropriate motor version.

Further safety-relevant measures for the application must be added as necessary by the customer.

Technical data

Hydraulic fluid

The axial piston motor used is decisive for the choice of hydraulic fluid.

Further information should be taken from our data sheets during project planning.

Operating pressure range

Pressure at service line port C or D

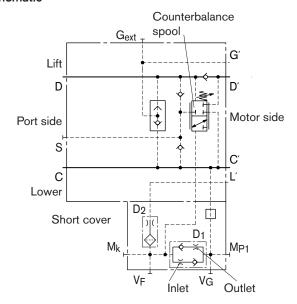
Nominal pressure p _{nom}	 350 bar absolute
Maximum pressure p _{max} Single operating period	 420 bar absolute
Total operating period	300 h

Definition

Nominal pressure p_{nom}

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}


The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Identification of cracking pressure p₁

(value without return pressure)

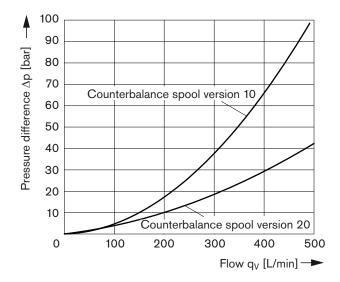
The throttle chain from D_1 and D_2 is used to damp the opening and closing speeds of the counterbalance spool. The actual working pressure, measured at M_{P1} , is reduced by the throttle chain from D_1 and D_2 and actuates the counterbalance spool. The dependence of the actual pressure value at M_{P1} for the opening of the counterbalance spool on the cross-sectional area of the orifice at D_1 and D_2 is stated in the table below.

Schematic

Table of values (theoretical values, without efficiency and tolerances; values rounded)

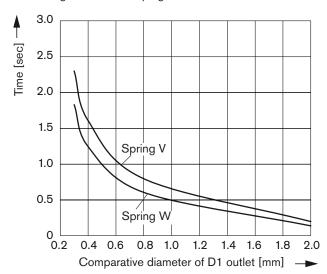
·				-		
Size		NG			BVE.W	BVE.V
Operating pressure		р	bar	Nominal pressure	350	350
				Maximum pressure	420	420
Flow, nominal, at $\Delta p = 20$ bar			L/min		320	320
Start of opening of counterbalance	spool at port M _k	∆р _{КВ}	bar		18	9
End of opening of counterbalance	spool at port M _k	∆р _{к Е}	bar		38	39
Pressure reduction valve for brake release (fixed values)	Maximum control pressure	р	bar	BVEL/	21+4	21+4
	Start of control	р	bar	BVEL/	10+4	10+4
Mass approx.		m	kg		18	18

Cracking pressure p₁

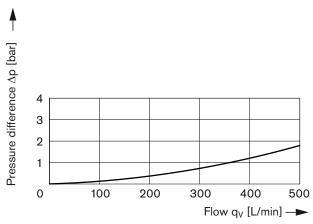

			Pressure value at co	ounterbalance spool	Pressure value at port M _{P1}		
Pressure spring	inlet channel	Orifice in reservoir outlet D2	Start of opening ∆p _{K B} [bar] (approx.)	End of opening ∆p _{K E} [bar] (approx.)	Start of opening Δp_1 [bar] (approx.)	End of opening ∆p₁ [bar] (approx.)	
W	0.45	0.3	18	38	24	51	
V	0.45	0.3	9	39	12	52	

Choosing the counterbalance spool version

Characteristic valid for BVE.../51.D). Schematic: see page 4


Pressure difference D → D'

(counterbalance spool at maximum opening)

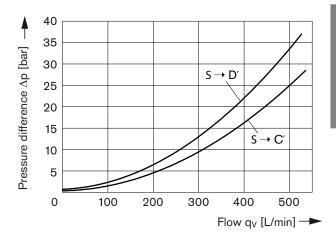


Counterbalance spool closing time

(for choosing D1 outlet damping)

Pressure difference C′ → C

The above specifications are based on:


- Oil viscosity $v = 10 \text{ mm}^2/\text{s}$
- Oil temperature 9 = 50 °C
- Counterbalance spool fully open

Note

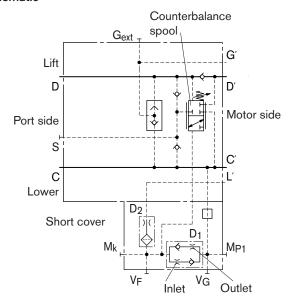
Pressure Δp of approx. 20 to 50 bar is normal for regulating the maximum flow in winch systems.

If the desired flow is not within the range of the two counterbalance spool supplied, please contact us.

Feed pressure at port S

Functional description

Winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if during braking or the load-lowering process the motor speed is greater than it should be for the given inlet flow and therefore the inlet pressure collapses. If the inlet pressure drops below the given value $\Delta p_{K\,E}$ (see table on page 4), the counterbalance spool will move towards the close position. The cross-sectional area of the counterbalance valve return channel is then reduced, creating a bottleneck in the return flow of the hydraulic fluid. The pressure increases and brakes the motor until the rotational speed of the motor is again as it should be for the given inlet flow.

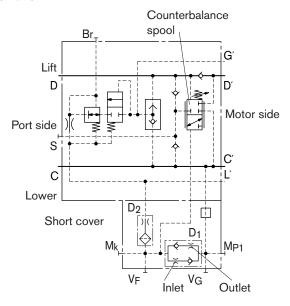

Brake release

Version S

Counterbalance valve with shuttle valve and port G_{ext} (plugged), without brake release valve (pressure reduction).

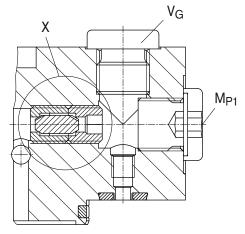
The respective high pressure is balanced via the shuttle valve and is available at port G_{ext} for release of the mechanical park brake. The brake release function without pressure reduction via the brake release valve is only employed if the mechanical park brake is approved for the maximum operating pressure.

Schematic


Version L

Counterbalance valve with shuttle valve, brake release valve for pressure reduction and port Br (plugged).

The respective high pressure is balanced and fed to the brake release valve (pressure reducing valve) via the shuttle valve. This opens from about 10 bar and reduces the respective operating pressure to approx. 21⁺⁴ bar. This brake release function is employed when the mechanical brake on the gear unit cannot handle the full system pressure.

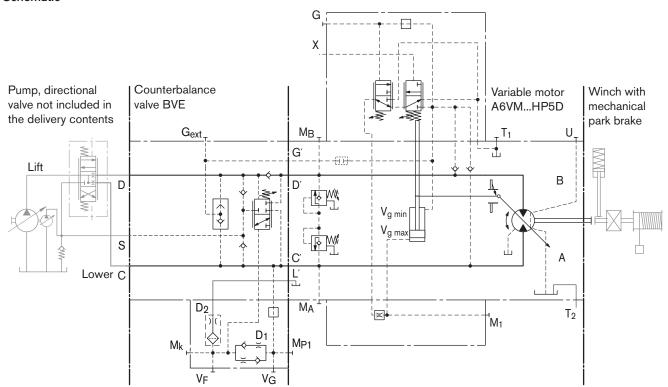

The maximum permissible brake release pressure must be agreed with the winch manufacturer.

Schematic

Damping D1

Installation position of throttle pin in short cover

View X
Throttle pin Inlet Outlet

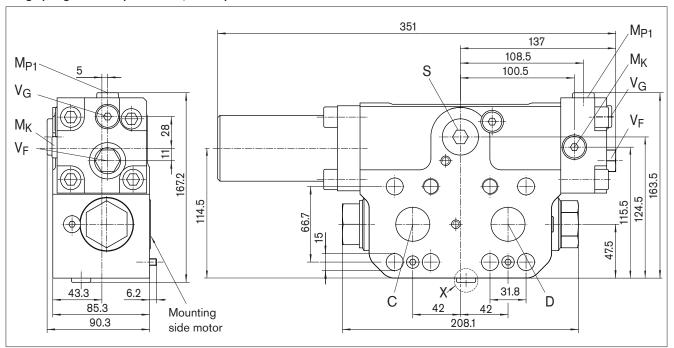

Application example of winch

Variable motor with integrated pressure-relief valves in the port plate and mounted counterbalance valve.

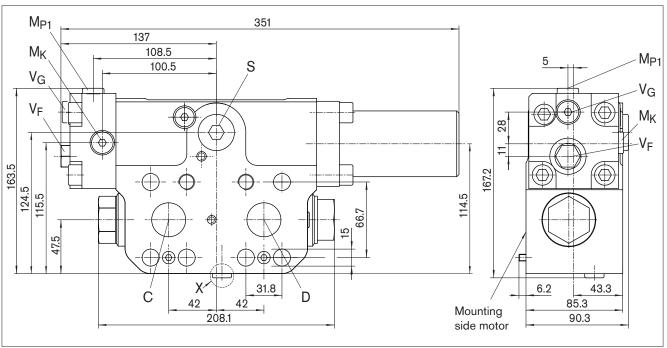
Winch counterbalance valve, size 25, without brake release valve (S), with counterbalance spool (10), without internal residual opening (K00, mandatory for winches), with weak damping (D4599).

e.g.: A6VM170HP5D10001F/71MWV0R4T28W0-0 + BVE25W38S/51ND-V100K00D4599T30S00-0 fitted to a Rexroth winch drive

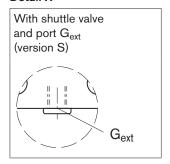
Schematic

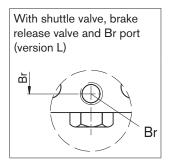


As an alternative to the above example, other axial piston motors from Bosch Rexroth (A2FM, A2FE and A6VM, A6VE) can also be used.


Dimensions size 25

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Long spring cover on port side C, lift via port C



Long spring cover on port side D, lift via port D

Detail X

Dimensions size 25

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports with profiled sealing ring (ordering code designation N)

Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State
C, D	Service line	SAE J518 ³⁾	1 1/4 in	420	0
	Fastening thread C/D	DIN 13	M14 x 2; 19 deep		
S	Infeed	DIN 3852	M27 x 2; 16 deep	5)	Χ
Br	Brake release, reduced high pressure	DIN 3852	M12 x 1.5; 12.5 deep	8	X
G _{ext}	Brake release, high pressure	DIN 3852	M12 x 1.5; 12 deep	420	Χ
C´, D´	Service channel to motor ⁴⁾		ø30	420	0
G′	Selected high pressure, channel to motor ⁴⁾		ø4.2	420	0
L'	Leakage channel to motor ⁴⁾		ø4.2	10	0
M _{P1}	Measuring pressure A, before filter	DIN 3852	M14 x 1.5; 12 deep	420	Χ
V_{G}	Plug for threaded channel ⁴⁾	DIN 3852	M14 x 1.5; 12 deep	420	Х
V _F	Threaded plug for filter channel ⁴⁾	DIN 6149	M16 x 1.5; 13 deep	420	Х
M _K	Measuring pressure at counterbalance spool	DIN 3852	M14 x 1.5; 12 deep	420	Χ

O-ring fo	r sealing to axial piston motor		
C', D'	Service line port	AS 568 A	37.69 x 3.53 (-S-FKM90)
G′	Selected high-pressure channel for HA control of A6VM motor	DIN 3771	9 x 2 (-N-V80G1)
L'	Leakage channel	DIN 3771	9 x 2 (-N-V80G1)

¹⁾ Observe the general instructions on page 12 for the maximum tightening torques.

²⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

³⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

⁴⁾ No customer ports. Subject to technical change

⁵⁾ Application-specific. Please contact us

O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Installation versions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Design: A6VM

Direction of rotation: lift	Cloc	kwise	Counter-clockwise		
Flow direction at motor	At	οВ	B to A		
Counterbalance valve effect at motor port	,	A	В		
Installation version of port plate	Start of control V _{g max} Lifting winch	Start of control V _{g min} Pulling winch – not permissible for lifting winch	Start of control V _{g max} Lifting winch	Start of control V _{g min} Pulling winch – not permissible for lifting winch	
Long spring cover at BVE	On port side D	On port side C	On port side C	On port side D	
Counterbalance valve ordering code	BVE25/51.D	BVE25/51.C	BVE25/51.C	BVE25/51.D	
	CODD	D C	COOD	D	

Start of control $V_{g\ max}$, negative control HP5, HP6, EP5, EP6, HZ5, HZ7, EZ5, EZ6, EZ7, EZ8, DA0, DA1, DA2

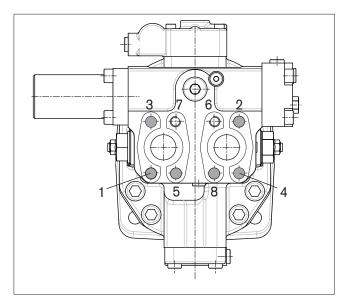
Start of control $\mathbf{V}_{\text{g min}},$ positive control – not permissible for lifting winch HP1, HP2, EP1, EP2, HA1, HA2

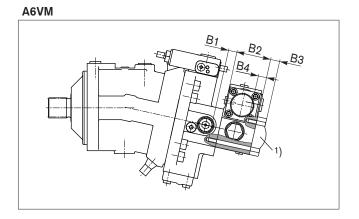
Design: A2F

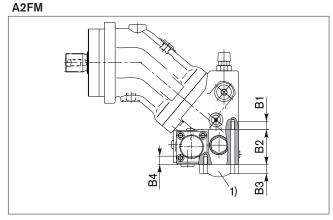
Direction of rotation: lift	Clockwise	Counter-clockwise
Flow direction at motor	A to B	B to A
Counterbalance valve effect at motor port	А	В
Long spring cover at BVE	On port side C	On port side D
Counterbalance valve ordering code	BVE25/51.C	BVE25/51.D
	C	C

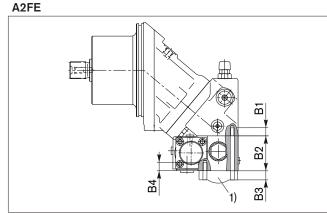
Mounting the counterbalance valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines! If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:


6 screws (1, 2, 3, 4, 5, 8)	length B1+B2+B3
2 screws (6, 7)	length B3+B4


Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).


In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M10	10.9	75
M12	10.9	130
M14	10.9	205

Axial piston motor	A2FM, A2FE	A6VM/63,	A6VE/63	A6VM/71	A6VE/71	
Size	107, 125, 160, 180	107, 140, 160	107, 160	115, 150, 170	115, 170	
Motor port plate required (with secondary pressure-relief valves, mutual bleed-off)	181	380	380	8	8	
Dimension B1 ¹⁾		M14 x 2; 19 deep				
Dimension B2		85				
Dimension B3		Customer-specific				
Dimension B4			M14 x 2; 19 deep)		

¹⁾ Minimum necessary thread length 1 x Ø

General instructions

- The BVE counterbalance valve is designed to be used in an open circuit.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the counterbalance valve, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the counterbalance valve and the axial piston unit. Take appropriate safety measures (e.g. by wearing protective clothing).
- Depending on the operating conditions of the counterbalance valve (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure of the counterbalance valve. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.
- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instructions regarding the tightening torques of the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads of the counterbalance valve or axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values of the female threads and must not be exceeded.
- For values, see the following table.

- Threaded plugs:

For the metallic threaded plugs supplied with the counterbalance valve or axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports		Maximum permissible tightening torque of the	Required tightening torque of the	WAF hexagon socket of the
Standard	Size of thread	female threads M _{G max}	threaded plugs M _V ¹⁾	threaded plugs
ISO 3852	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm
	M14 x 1.5	80 Nm	35 Nm	6 mm
	M27 x 2	330 Nm	135 Nm	12 mm

¹⁾ The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.

Bosch Rexroth AG
Axial piston units
Glockeraustraße 2
89275 Elchingen, Germany
Tel.: +49-7308-82-0

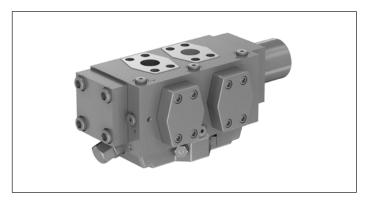
Tel.: +49-7308-82-0 Fax: +49-7308-72-74 info.brm-ak@boschrexroth.de

www.boschrexroth.com/axial-piston-motors

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.


 $_{\rm 2)}$ In the "lightly oiled" state, the M_V is reduced to 17 Nm for M12 x 1.5.

Rexroth Bosch Group

Counterbalance valve BVD/BVE Series 52

RE 95528

Edition: 05.2016

▶ Size 32

Nominal pressure Motor side 450 bar
 Pump side 350 bar

► For winches and track drives in open circuit

Features

- ▶ Damping for stable lowering and safe downhill movement
- ► Simple adaptation to application
- ► Compact design and direct mounting to axial piston motors A6VM and A6VE
- ▶ Available in a set with axial piston motors A6VM and A6VE
- ▶ Standard working ports according to SAE J518
- ► Integrated brake release port, with or without pressure reduction
- ► Good efficiency through reduced flow losses
- ► Four working ports (see type code, pos. 04)
- ► Rotationally symmetric
- ► Suitable for high flow rates

Contents

0011101113	
Type code	2
Technical data	4
Characteristic curves for counterbalance spool 33	Ę
Functional description	6
Example applications	-
Dimensions	8
BVE installation variants for winch drives	11
Mounting of the counterbalance valve	12
Project planning notes	13
Safety instructions	15

Type code

	01	02	03	04	05		06	07	08	¥	09	10	11	12	13	14		15
						/	52			_	V	0	1	K00		T03	_	
/alve	type																	
01	1	terbalan	ce valve	, double	-acting													BVD
	Count	terbalan	ce valve	, one-sid	led													BVE
Size																		
02	Flow,	nominal						η _{ν nom} 650	0 I/min									32
Cont	rol ran	7A						ZV IIOIII								BVD	BVE	
03	_		pening	of count	erbalan	ce spoc	ol :	20 to 38	bar							•	•	w
				return f		-	_	10 to 30	bar							•	_	v
Work	king po	rt						SAE J51	R		Н	ole dist	ance				I	
04	ling po							1 1/4 in	<u> </u>			4 mm	uncc					38
							_	1 1/4 in					bearing	g 90° off:	set) ¹⁾			31
Porte	for hr	ake rele	250															
05	1	nigh pres																S
				essure 2	1 ⁺⁴ bar	(brake r	elease	valve)										L ²⁾
Serie) C																	
06	1	5, inde	x 2															52
				na thuas	da													
07	1	_		ng threa with prof		ling rin	g accor	ding to [OIN 385:	2								N
						6	5 4000.			_								
1000		cover (a port C														С
00		_		a port C												-		D
	On po	i side i	5 , 1110 VIO	a port D														
Seal 09	FKM (fluoroel	astomor	-1												-1		V
)												-		
	Versio	ance spo	ool															22
10	1																	33
			stics of	counter	balance	spool												
11	Stand	ard																0
	1		counte	rbalance	e spool													
12	Witho	ut																K00
	1	_		unterbal														
13	BVE			stalled o														C4599
			-	stalled o	-													D4599
	BVD	Thrott	le pin, c	omparat	ive dian	neter	_!	nlet				O	utlet					
							_	0.4 mm					0 mm					D4599
							(0.4 mm				0.	7 mm					D4580

• = Available - = Not available

Bosch Rexroth AG, RE 95528/05.2016

¹⁾ The screws are not included in the scope of delivery. These can be supplied by Bosch Rexroth on request.

²⁾ On request

01	02	03	04	05		06	07	80		09	10	11	12	13	14		15
					/	52			-	V	0	1	K00		T03	-	

Damping D2 (reservoir outlet)

14	Without	T00
	With orifices on port side C and D ø0.3 mm (D1 max. D45XX)	T03
	With orifice installed on port side C	C03
	With orifice installed on port side D	D03

Standard / special version

15	Standard version	0
	Standard version with installation variant, e.g. ports open or closed, contrary to standard	Υ
	Special version	S

• = Available - = Not available

Notice

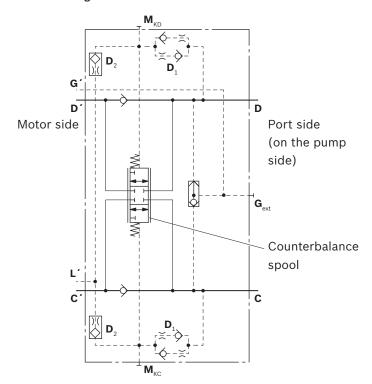
- ▶ Note the project planning notes on page 13.
- ► In addition to the type code, please specify the relevant technical data when placing your order.

Technical data

Hydraulic fluid

The axial piston motor used is decisive for the selection of hydraulic fluid. For further information, please refer to our data sheets during project planning.

Note: At no point of the component may the temperature be higher than $115 \, ^{\circ}\text{C}$.


Working pressure range

	working port pump side) or e motor side)	Definition
Nominal pressure p_{nom}	On the pump side: 350 bar On the motor side: 450 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p_{max}	On the pump side: 400 bar ¹⁾ On the motor side: 500 bar	Restrictions: ▶ maximum acceleration 7g ▶ maximum 1 million load changes

Determination of cracking pressure p_1 (values without return flow)

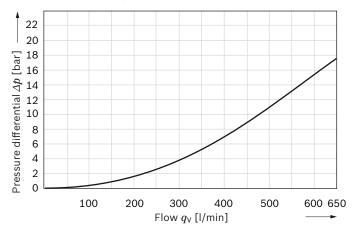
The throttle chain from \mathbf{D}_1 and \mathbf{D}_2 is used to damp the opening and closing speeds of the counterbalance spool. The actual pump pressure is reduced by the throttle chain from \mathbf{D}_1 and \mathbf{D}_2 and controls the counterbalance spool.

▼ Circuit diagram BVD

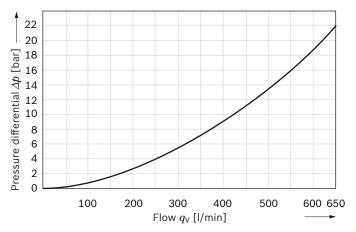
Table of values

Valve type				,	BVDW	BVDV	BVEW
Nominal pressure		þ	bar	On the pump side	350	350	350
				motor side	450	450	450
Flow, nominal		$q_{ m v\; max}$	l/min		650	650	650
Start of opening of counterbala	ance spool at port M _K	Δp_{KB}	bar		20	10	20
End of opening of counterbalar	nce spool at port M _K	Δp_{KE}	bar		38	30	38
Pressure reducing valve for	Maximum control pressure	p	bar	BVEL/	21+4	21+4	21+4
brake release (fixed setting)	Beginning of control	p	bar	BVEL/	10+4	10+4	10+4
Weight approx.		m	kg		37	37	42

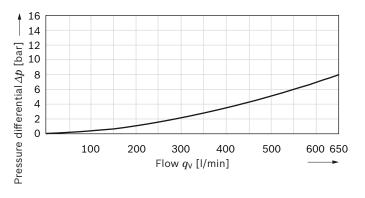
Notice

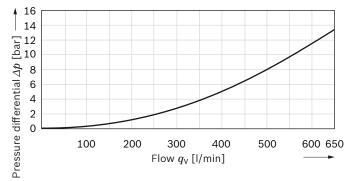

- ► Theoretical values, without efficiency and tolerances; values rounded
- Exceeding the maximum or falling below the minimum permissible values can lead to a loss of function, a reduction in operational service life or total destruction of the valve.

Bosch Rexroth AG, RE 95528/05.2016


¹⁾ With versions "T03", "C03" and "D03" (concerns damping "D2", for reservoir outlet), pressures that are higher than the nominal pressure are **not** permitted

Characteristic curves for counterbalance spool 33


Pressure differential at the outlet (via valve spool) D' → D or C' → C working port at rear (38)


▼ Pressure differential D´ → D or C´ → C (via valve spool) with working port offset by 90° (31)

▼ Pressure differential at the inlet (via check valve) C → C' or D → D' working port at rear (38)

▼ Pressure differential C → C' or D → D' (via check valve), with working port offset by 90° (31)

The above parameters are based on:

- Oil viscosity $v = \text{approx. } 21 \text{ mm}^2/\text{s}$
- ▶ Oil temperature 9 = 50 °C
- ► Counterbalance spool fully open

Notice

- ▶ Pressure Δp of approx. 20 to 50 bar is normal for determining the maximum flow in winch drives.
- ► If the desired flow (pressure difference) does not match the counterbalance spool described here, please contact us.

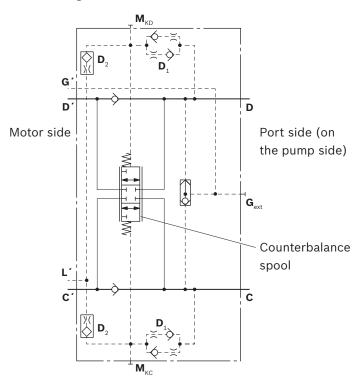
Functional description

Counterbalance valves are designed to reduce the danger of overspeed and cavitation of axial piston motors in open circuits. Cavitation occurs if, during braking or load-lowering, the rotational speed of the motor is greater than it should be for the given inlet flow, causing the supply pressure to fall sharply. If the supply pressure drops below the given value $\Delta p_{\rm K\,E}$, the counterbalance spool will move towards the close position. The cross-sectional area in the counterbalance valve return channel is then reduced, creating a bottleneck in the return flow of the hydraulic fluid. The pressure increases and brakes the motor until the rotational speed of the motor reaches the specified value for the given inlet flow.

The counterbalance valve is available in two versions.

BVD: Throttling effect in both flow directions, e.g. for moving forward and backward

BVE: Throttling effect in one flow direction, e.g. for lowering with pulling loads


See BVE circuit diagram on page 7

Brake release

Version S

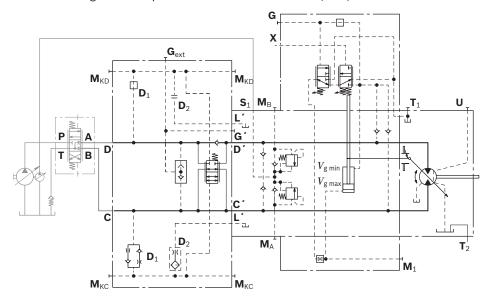
Counterbalance valve with shuttle valve and port \mathbf{G}_{ext} (plugged), without brake release valve (pressure reduction). The respective high pressure is balanced via the shuttle valve and is available at port \mathbf{G}_{ext} for venting the mechanical holding brake. The brake vent function without pressure reduction via the brake release valve is only employed if the mechanical holding brake is approved for the maximum working pressure.

▼ Circuit diagram BVD...S

Version L

Counterbalance valve with shuttle valve, brake release valve for pressure reduction and port **Br** (plugged).

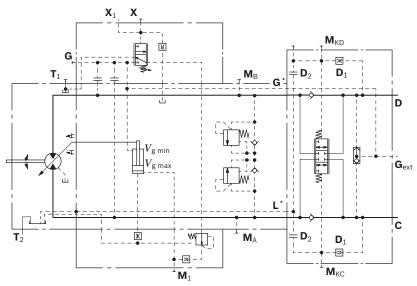
The respective high pressure is balanced and fed to the brake release valve (pressure reducing valve) via the shuttle valve. This opens from approx. 10 bar and reduces the respective working pressure to approx. 21⁺⁴ bar. This brake vent function is employed when the mechanical brake on the gear unit cannot handle the full system pressure.


The maximum permissible brake release pressure must be agreed with the winch or track drive manufacturer.

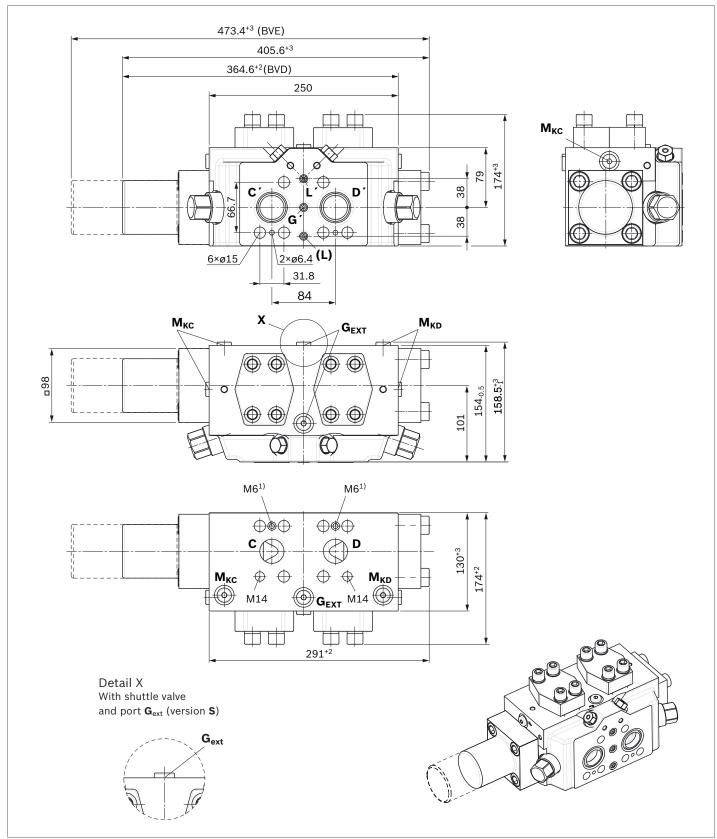
Example applications

Variable motor with integrated pressure relief valve in the port plate and mounted counterbalance valve. Counterbalance valve for size 32 winches, without brake release valve (S), with counterbalance spool (pos. 10), without internal residual opening (K00, mandatory for winches), with weak damping (D4599). E.g.: A6VM215HP5D1P001B/71MWV0S4A29W0-0 + BVE32W38S/52ND-V330K00C4599D03S00 mounted to a Rexroth winch gearbox

Winch drive application

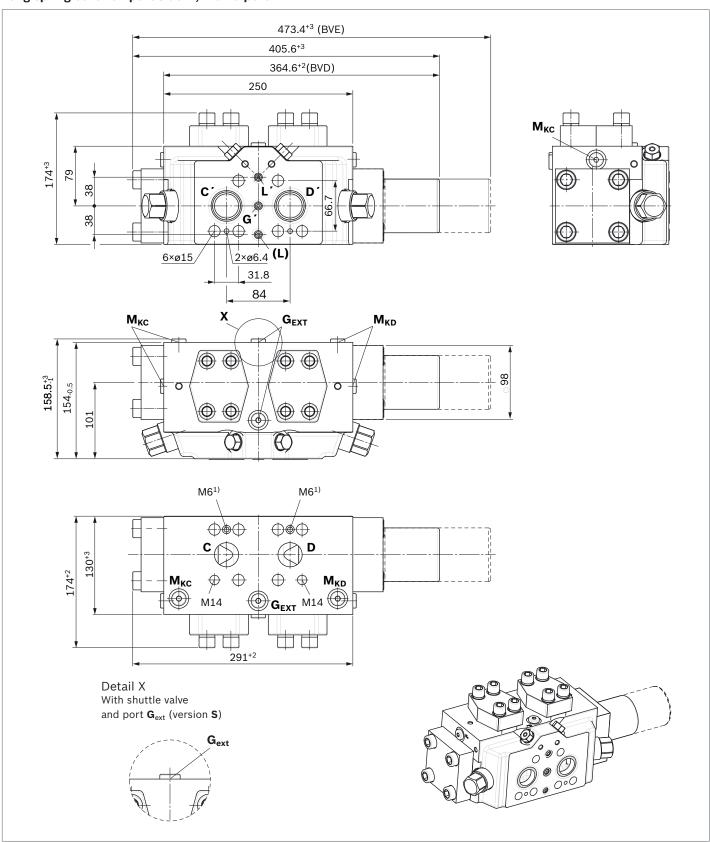

► Circuit diagram example for winch drive in cranes (BVE)

As an alternative to the above example, other Bosch Rexroth axial piston motors (A6VM and A6VE) can also be used.


Track drive application

► Circuit diagram example for track drive in excavator crawlers (BVD)

Dimensions


Long spring cover on port side C, lift via port C

1) DIN912

Bosch Rexroth AG, RE 95528/05.2016

Long spring cover on port side D, lift via port D

1) DIN912

10 **BVD/BVE Series 52** | Counterbalance valve Dimensions

Ports		Standard	Size	$p_{\sf max}$ [bar] $^{1)}$	State ⁵⁾
C, D	Working port	SAE J518 ²⁾	1 1/4 in	400	0
	Fastening thread	DIN 13	M14 × 2; 19 deep		
G _{ext}	Brake release, high pressure	DIN 3852 ³⁾	M14 × 1.5; 12 deep	400	X
C', D'	Working channel to motor ⁴⁾		ø32	500	0
G′	Balanced high pressure, channel to motor ⁴⁾		ø4.2	400	0
L′	Drain channel to motor ⁴⁾		ø4.2	10	0
V_{F}	Threaded plug for filter channel ⁴⁾	DIN 6149	M16 × 1.5; 13 deep	400	X
M _K	Measuring pressure in counterbalance spool	DIN 3852 ³⁾	M14 × 1.5; 12 deep	400	Х

Depending on the application, momentary pressure peaks can occur.

Keep this in mind when selecting measuring devices and fittings.

 $_{
m 2)}$ Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard.

³⁾ The countersink can be deeper than as specified in the standard.

⁴⁾ No customer ports. Subject to technical change

⁵⁾ O = Must be connected (plugged when delivered)

X = Plugged (in normal operation)

BVE installation variants for winch drives

Motor direction of rotation (lift)	Clockwise	Counter-clockwise
Flow direction at motor (lift)	A to B	B to A
Braking effect at the motor port plate	А	В
Beginning of control, motor	Beginning of control $V_{\sf gmax}$	Beginning of control V_{gmax}
Counterbalance valve type with long spring cover on port side D ¹⁾	BVE32/52.D	BVE32/52.D
Installation variants	C O O O O O O O O O O O O O O O O O O O	M _{KD} G _{EXT} M _{KC}
Counterbalance valve type with long spring cover on port side C ¹⁾	BVE32/52.C	BVE32/52.C
Installation variants	M _{KD} G _{EXT} M _{KC}	C O O O O O O O O O O O O O O O O O O O

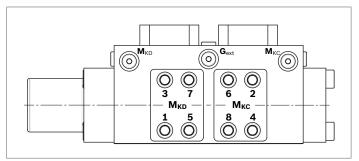
¹⁾ The throttling effect is always on the side with the long spring cover

Mounting of the counterbalance valve

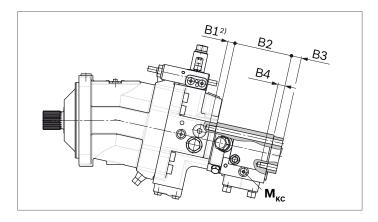
When delivered, the counterbalance valve is fastened to the motor with two tacking screws (transport lock). The tacking screws may not be removed while mounting the working lines! If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be fastened to the motor port plate using the provided tacking screws.

The counterbalance valve is finally mounted to the motor by fitting the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8)


Length B1+B2+B3

2 screws (6, 7)


Length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see figure below).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see table below).

Thread	Property class	Tightening torque [Nm] ¹⁾
M14	10.9	172

Axial piston motor	A6VM/65	A6VE/65	A6VM/71	A6VE/71		
Size	200	200	215, 280	215		
Dimension B1	M14 × 2; (19 deep ¹⁾)					
Dimension B2		154	1 -0.5			
Dimension B3	Customer-specific					
Dimension B4		M14 × 2	; 19 deep			

Notes on the motor port plate

- ► All four threaded bores at the SAE port and additional bores for tacking screws must always be present
- ▶ Drain bores and port **G**_{ext} must be present
- Minimum thread reach according to VDI2230

¹⁾ The tightening torque applies to the thread friction rate of μ = 0.10 (corresponds to the "lightly oiled" state of the screws)

 $_{
m 2)}$ The depth depends on the motor

Project planning notes

- ► The BVD/BVE counterbalance valve is intended for use in an open circuit.
- The project planning, installation and commissioning of the counterbalance valve require the involvement of qualified skilled personnel.
- ▶ Before using the counterbalance valve, please read the corresponding motor instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- ► Before finalizing your design, please request a binding installation drawing.
- ► The specified data and notes contained herein must be observed.
- For safety reasons, controls with beginning of control at $V_{\rm g\,min}$ (e.g., HA) are not permissible for winch drives, e.g. anchor winches.
- ▶ Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- ▶ Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the motor instruction manual.
- ▶ Not all versions of the product are approved for use in a safety function according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- ▶ Please note the details regarding the tightening torques of port threads and other threaded joints in the motor instruction manual.
- ▶ Working ports:
 - The ports and fastening threads are designed for the specified maximum pressure of the counterbalance valve. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The working ports and function ports are only intended to accommodate hydraulic lines.

- ► System optimization (reduction) for the first prototype is recommended with regard to the valve block, axial piston motor, counterbalance valve and holding brake.
- ► The counterbalance valve converts the entire kinetic energy/potential energy into heat during the braking/ lowering process. For this reason, sufficient cooling and/ or reservoir capacity must be provided.
- ► We recommend ordering an axial piston motor and counterbalance valve as a single unit. This guarantees optimum configuration and joint examination.

To avoid cavitation in the axial piston motor, the following must be observed:

- ► The complete system must be designed in the customer vehicle so that the counterbalance valve closes more quickly than the control block in the customer vehicle. The recommendation is a proportional valve with programmable ramp.
- ► Control block: the control spool should be designed with a throttled A-B-T connection in the neutral position.
- ► An oil supply at port S of the motor reduces the risk of cavitation. Ensure sufficient supply pressure and quantity. An oil supply on the motor is recommended.
- During commissioning, it must be ensured that all boundary conditions, e.g. minimum pressure at the motor input, are observed.

Ordering details

When placing the order, the following parameters are necessary to ensure correct acceptance at our test benches:

- ► Motor type code
- ► Counterbalance valve type code
- ► Flow
- Application (e.g. winch, track drive)
- ► Pressure setting of the secondary pressure relief valves in the motor

For the design of the brake release valve, we require the minimum pressure for releasing the mechanical holding brake. Counterbalance valve and axial piston motor can be ordered as a ready-assembled and tested assembly group.

Type selection (type code)

Control range

The control range defines the pressure range at which the counterbalance spool starts to open. The control range of the counterbalance spool is to be chosen so that the mechanical holding brake is fully open before the counterbalance spool starts to open.

Brake release

The integrated pressure reducing valve is necessary when the mechanical brake on the gearbox cannot handle the full system pressure. The maximum permissible brake release pressure must be agreed with the gearbox manufacturer. The counterbalance valve reduces the high pressure to the value stated.

Counterbalance spool version

The counterbalance spool version depends on the maximum flow required through the counterbalance valve.

Selection of the counterbalance spool for the required flow in accordance with characteristic curves on page 5.

If the desired flow is not within the range of the counterbalance spool supplied, please contact us.

Residual opening in counterbalance spool

In winch drive and track drive applications, any residual opening is prohibited, since otherwise the load would not stay suspended. For that reason, version "K00" is prescribed.

Damping

The throttle pin from D1 (inlet) and the orifice D2 (reservoir outlet), plus the counter pressure at the counterbalance spool, determine the actual cracking pressure of the counterbalance spool at the working port.

The damping D1 (outlet) and D2 determine the closing speed of the counterbalance spool. The larger the comparative diameter D1 (outlet), the faster the counterbalance spool will close (see table on page 4).

For the initial equipment (prototype), we recommend damping D1 = D4599 and D2 = T03 for winch drives. For the initial equipment (prototype), we recommend damping D1 = D4599 and D2 = T00 for track drives.

Safety instructions

Failure to observe any of the following points can lead to uncontrolled operating conditions with serious personal injury and material damage.

- ► The counterbalance valve does **not** replace the mechanical holding brake. If necessary, provide mechanical braking systems.
- ► The mechanical holding brake in the winch gearbox must only be effective after the counterbalance spool has closed. Otherwise, the brake will be subject to wear.
- ▶ Note the maximum permissible cracking pressure of the holding brake. If necessary, use the integrated pressure reducing valve as a brake release valve with reduced high pressure (version "L").
- Counterbalance valves should only be operated in combination with close-by secondary pressure relief valves in order to protect the motor against pressure peaks. The motor port plate already contains the secondary pressure relief valves.
- Cavitation must be prevented for safety reasons see project planning notes for remedial measures
- During and shortly after operation, there is a risk of getting burnt on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- ▶ Moving parts in control equipment (e.g. valve spools) can, under certain circumstances get stuck in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filter) will not rule out a fault but merely reduce the risk.

The machine/system manufacturer must test whether remedial measures are needed on the machine for the application concerned in order to set the consumer being driven to a safe position (e.g. safe stop) and if necessary to ensure it is properly implemented.

- Moving parts in high-pressure relief valves may in certain circumstances become stuck in an undefined position due to contamination (e.g. contaminated hydraulic fluid). This can result in restriction or loss of the load holding function in lifting winches. The machine/system manufacturer must check whether
 - The machine/system manufacturer must check whether additional measures are required on the machine for the relevant application in order to keep the load in a safe position and ensure they are properly implemented.
- ▶ When using the axial piston motor in winch drives, make certain that the technical limit values are not exceeded under all operating conditions. If the axial piston motor is extremely overloaded (e.g., if the maximum permissible rotational speeds are exceeded during weighing of the anchor while the ship is in motion), the rotary group may be damaged and, in the worst case, the axial piston motor may burst. The machine manufacturer/system manufacturer is to undertake additional measures, up to and including encapsulation.

Bosch Rexroth AG

Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 95528/05.2016

External gear motors

Designation	Туре	Size	Serie	Data sheet	Page
External gear motor High Performance	AZMB	17.1	3x	14027	679
External gear motor High Performance	AZMF AZMN AZMG	822 2528 2245	1x	14026	697

Product Catalog Mobile Hydraulics | Part 2: Motors, Gears

External gear motor High Performance AZMB

RE 14027

Edition: 03.2016

▶ Platform B

- ► Fixed displacement
- ▶ Sizes 2.5 to 7.1
- ► Continuous pressure up to 220 bar
- ▶ Intermittent pressure up to 250 bar

Features

- ► Consistently high quality due to high-volume series production
- ▶ Long service life
- ▶ Large speed range
- ► Slide bearings for high loads
- ► Optional reversible version for 2-quadrant and 4-quadrant operation
- ► Variety of versions available
- Output shafts conform to ISO or SAE and customerspecific solutions
- ▶ Line connections: Connection flange or screw thread
- High pressures with small installation space and low weight
- ► Large viscosity and temperature range

Contents	
Functional description	2
Type code	3
Technical data	4
Flow and power characteristic curves	6
Output drives	8
Gear motors with integrated valves	8
Dimensions – drive shafts	9
Dimensions – front cover	9
Dimensions – line connections	10
Dimensions – preferred series	11
Accessories	13
Spare parts	14
Notes on commissioning	15
Order number overview	16
AZ configurator	17
Fit4SILENCE app	17

Functional description

General

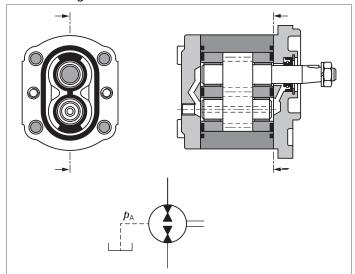
If pressurized oil is fed into the motor, a torque can be obtained from the shaft leading out of the housing.

Motors can be either for one direction of rotation or reversible.

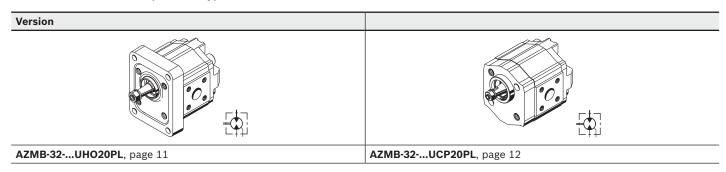
Gear motor for one direction of rotation


These gear motors are designed asymmetrically, i.e., fixed high-pressure and low-pressure ends. This means they cannot be reversed. Motors require a special start-up sequence to ensure good efficiency. Any leakage oil is drained internally. The shaft seal limits drainage pressure.

Reversible gear motor


The displacement principle of external gear motors is the opposite of that of pumps. Reversible motors are an exception to this concept. Due to their symmetrical layout, the high-pressure and low-pressure chambers are separate from the bearing and shaft seal chambers. Any leakage oil is drained through a separate drain port in the housing cover. This drainage allows the motor to run in reverse, making series connections possible. Standard motors and pumps can only withstand up to approx. 3 bar due to the connection between the shaft seal and the low-pressure end.

The figure shows a reversible motor for four-quadrant operation, i.e., output torque and drive torque in both directions (hydraulic motor functions as a pump when the load is reversed).


▼ Gear motor for one direction of rotation

▼ Reversible gear motor

▼ Product overview AZMB preferred types

Bosch Rexroth AG, RE 14027/03.2016

Type code

01	L 02		03	04		05	06	07	. 08		09	10	11			12
ΑZ	М В				_										-	
Exter	nal gear ui	nit														
01	External g		-													AZM
Serie	<u> </u>															
02		rmance,	Platform B													В
Serie															,	
03	Bearing p	n Ø12 mr	m													3
Versi			··													
04	Corrosion	resistant.	, pinned													2
Size (<u> </u>													,	<u>'</u>
05		displace	ment V_{g} [cm	³ 1 see "T	echnical	data" on r	nage 5		2.5	3.1	4.0	4.5	5.0	6.3	7.1	٦
			one vg Lon		- Janneur	OII p			0		1 -2.0	1 7.0	1 0.0	1 3.0	1	J
06	tion of rot					Clocky	wiso								-	R
00	viewed of	i urive siia	ai t				er-clockwi	20								L
						Univer		36								U
Duine	shaft														-	
07	Tapered s	haft	1:5			P	le front c	over							-	С
07 1	rapered share	1:8			0										Н	
	Dihedral,	claw				M										N
Front	cover															
	Rectangul	ar flange	Ø25.38	mm												0
	2-bolt mo		Ø32 mn			with O)-ring									М
			Ø32 mn	า											-	Р
l ine d	connection															
09			ipe thread													01
	DIN 3852-															02
	Square fla	nge for IS	O 8434-1 fit	ting												20
Sealir	ng materia															•
	NBR (nitri)													М
	FKM (fluo															Р
	NBR (nitri	le rubber)), shaft seal	made of F	KM (fluo	roelastom	er)									К
Rear	cover					,										
11		(for non-r	eversible mo	otors)												В
			reversible n													L
			suction por													А
			valve, interr		al current	t, 3-digit c	racking pr	essure in	bar, e.	g., 180	bar					D18
Speci	al version															
-heel	u. 10131011	nber, e.g.,														_

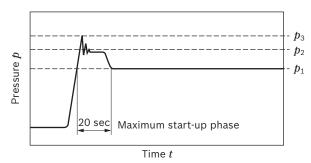
Notice

- ► Not all of the variants according to the type code are possible.
- ► Special options are available on request.
- ► Please select the desired motor with the help of the selection table (preferred types) or after consulting with Bosch Rexroth.

Technical data

General				
Weight			kg	See dimensions starting on page 11
Installation position	on			No restrictions
Mounting type				Flange or through-bolting with spigot
Line connections				Flange, thread
Direction of rotation	on (viewed on drive shaft)			Non-reversible or reversible
Drive shaft load				Radial and axial forces only after consultation
Ambient temperature range $ heta$			°C	-30 to +80 with NBR seals (NBR = nitrile rubber)
				-20 to +110 with FKM seals (FKM = fluoroelastomer)
Hydraulic				
Hydraulic fluid				Mineral oil according to DIN 51524 1–3, with higher load however at least HLP-compliant according to DIN 51524 Part 2 recommended. HEES according to DIN ISO 15380, FKM seals recommended. Observe data sheets 90220 and 90221. Other hydraulic fluids on request
Hydraulic fluid tem	nperature range	θ	°C	-30 to +80 with NBR seals (NBR = nitrile rubber) -20 to +110 with FKM seals (FKM = fluoroelastomer)
Viscosity range	Minimum for continuous operation	ν	mm²/sec	12 to 800
	Recommended for continuous operation	$ u_{opt}$	mm²/sec	20 to 100
	Minimum for cold start	v_{max}	mm²/sec	≤ 2000
Maximum admissible degree of contamination of the hydraulic fluid Cleanliness level according to ISO 4406 (c)				Class 20/18/15 ¹ , filter with min. retention rate of $\beta_{20} \ge 75$ recommended

Notice


- ► Observe applicable safety requirements for the entire system.
- ► Please contact us for applications with frequent load changes.

Bosch Rexroth AG, RE 14027/03.2016

¹⁾ For hydraulic systems or devices with function-related critical failure effects, such as steering and brake valves, the type of filtration selected must be adapted to the sensitivity of these devices.

AZMB-3x			NG	2.5	3.1	4.0	4.5	5.0	6.3	7.1
Geometric displacement	cm ³	2.5	3.15	4.0	4.5	5.0	6.3	7.1		
Maximum drain port	abs.	p_{L}	bar	3	3	3	3	3	3	3
pressure ¹⁾	On start-up	p_{L}	bar	10	10	10	10	10	10	10
Minimum motor input pressure ²⁾	abs.	p_{min}	bar	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Maximum continuous pressure		p_1	bar	220	220	220	220	220	220	200
Maximum intermittent pressure p_2		p_2	bar	250	250	250	250	250	250	230
Motor output pressure p_{A}			bar		For reversible motors: ≤ working pressure For non-reversible motors: max. 3 bar absolute, 10 bar on start-up					start-up
Minimum speed		n_{min}	rpm	750	750	750	750	750	750	750
Maximum speed	At p_1	n_{max}	rpm	5000	4000	4000	4000	4000	3500	3500

▼ Pressure definition

 p_1 Maximum continuous pressure

Maximum intermittent pressure p_2

Maximum pressure peak p_3

Design calculations for motors								
Inlet flow	a	_	$V_{g} \times n$	[l/min]				
	q_{v}	_	1000 × η _ν		[1/11111]			
Rotational	n	_	$q_{ m V}$ × 1000 × $\eta_{ m V}$	_	[rpm]			
speed			V_{g}		[[biii]			
Torque	M	_	$V_{g} \times \Delta p \times \eta_{hm}$	[Nm]				
	171	_	20 × π		[18111]			
Power	P	_	$2 \pi \times M \times n$ $q_{v} \times \Delta p \times \eta_{t}$		- [kW]			
rowei		_	60000	600	[KVV]			
Pressure	Δp	_	<i>M</i> × 20 × <i>π</i>		[bar]			
riessure	Δ <i>p</i>	_	$V_{g} \! imes \! \eta_{hm}$		[Dai]			
	Δp	_	P × 600		[bar]			
	Δρ		q_V × η_t	$q_{V} imes \eta_{t}$				
Displacement	V_{g}	=	$q_{ m V}$ × 1000 × $\eta_{ m V}$		[cm ³]			
Displacement	<i>v</i> g		n		[CIII]			
	V_{g}	_	$M \times 20 \times \pi$		[cm ³]			
	V g	_	$\Delta p imes \eta_{hm}$		[CIII]			

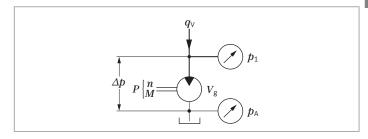
Key

 V_{g} Displacement per revolution [cm³]

 Δp Differential pressure [bar] ($\Delta p = p_1 - p_A$) n

Rotational speed [rpm]

Inlet flow [I/min] q_{v}

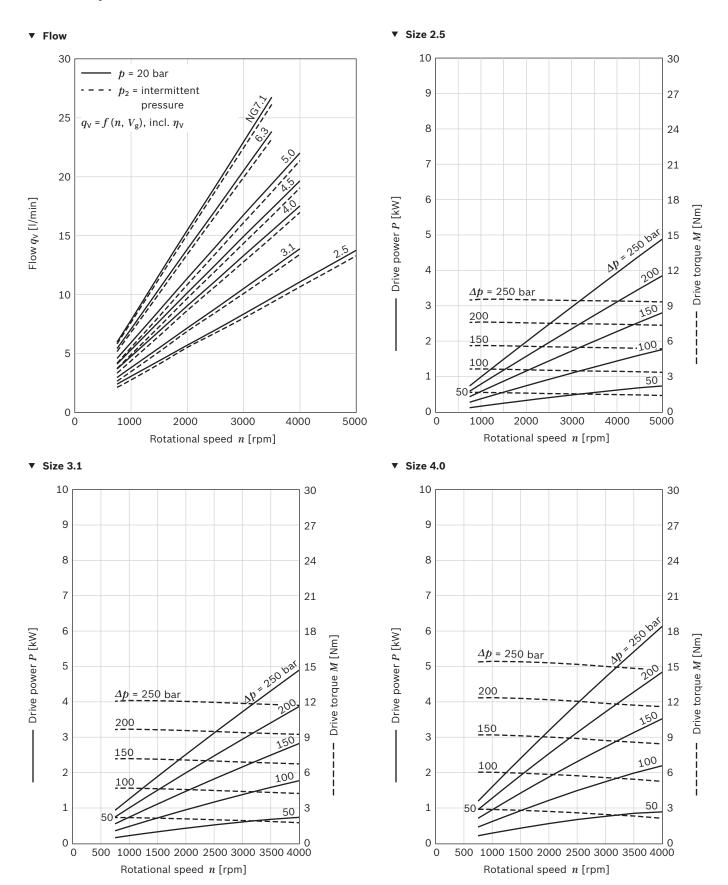

Torque [Nm] M

P Power [kW]

Volumetric efficiency²⁾ η_{v}

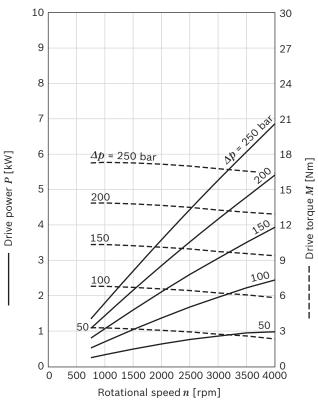
Hydraulic-mechanical efficiency²⁾ $\eta_{\rm hm}$

Total efficiency $(\eta_{\rm t}$ = $\eta_{\rm v} \times \eta_{\rm hm})^{2)}$ η_{t}

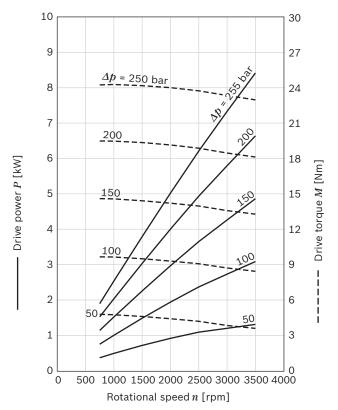

Notice

On the following pages you can find diagrams for a rough calculation.

¹⁾ For reversible motors

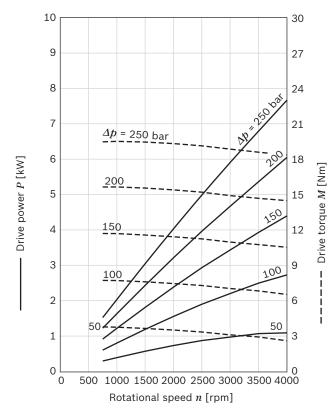

²⁾ Parameter as a decimal, e.g., 0.9

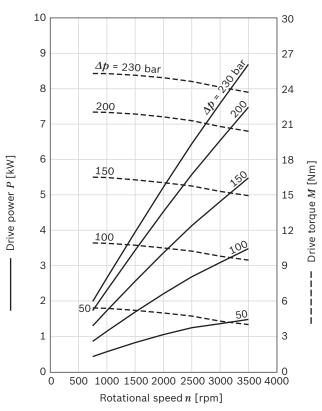
Flow and power characteristic curves



Bosch Rexroth AG, RE 14027/03.2016

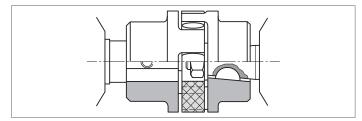
▼ Size 4.5


▼ Size 6.3


Notice

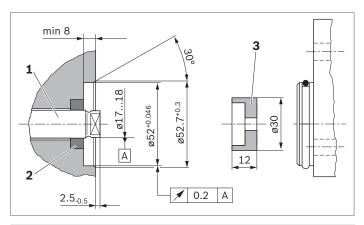
Characteristic curves measured at ν = 32 mm²/sec and θ = 50 °C.

▼ Size 7.1



P = f(n, p), incl. η_t M = f(n, p), incl. η_{hm}

Output drives


1. Elastic couplings

- ► The coupling should not transfer any radial or axial forces to the motor.
- ► The maximum radial run-out from the shaft to the spigot should not exceed 0.2 mm.
- ► See the coupling manufacturer's assembly instructions for permissible shaft misalignments.

2. Coupling dog

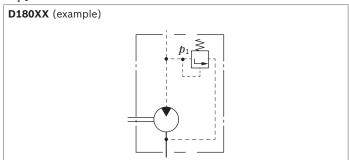
- ▶ For attaching the motor directly to a gear, etc.
- ▶ Motor drive shaft with special coupling dog and driver (3)
- ▶ No shaft seal
- Output side installation and sealing according to following recommendations and dimensions

Drive shaft	M _{max} [Nm]	Size	p _{max} [bar]
С	26	2.5 to 5.0	270
		6.3	230
		7.1	205
Н	30	2.5 to 6.3	270
		7.1	235
N	25	2.5 to 5.0	270
		6.3	225
		7.1	200

▶ Output shaft on the customer side (1)

- Case-hardening steel as per DIN 17210 e.g., 20 MnCrS 5 case-hardened 0.6 deep; HRC 60^{±3}
- Seal ring running surface ground without rifling $R_{\rm max} \le 4~\mu{\rm m}$

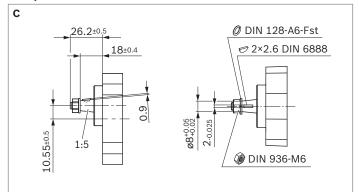
► Radial shaft seal on the customer side (2)

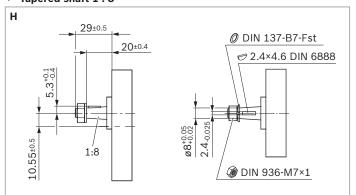

- Provide with rubber cover (see DIN 3760, type AS, or double-lipped ring)
- When designing the installation space, note the seal manufacturer's design guidelines.

Gear motors with integrated valves

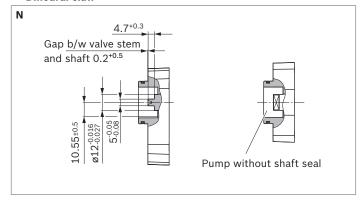
In order to reduce pipework, a pressure relief valve can be integrated into the cover of the gear motor.

▼ Pressure relief valve, pressure guide in suction line

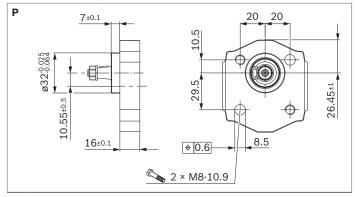

 p_1 = 5 to 250 bar


Dimensions - drive shafts

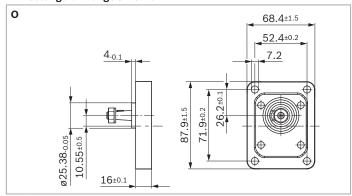
Difficusions – drive snar


▼ Tapered shaft 1:5

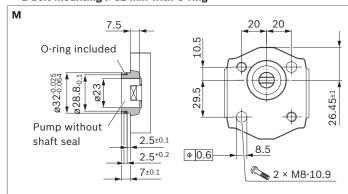
▼ Tapered shaft 1:8



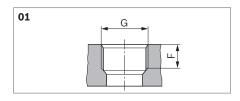
▼ Dihedral claw



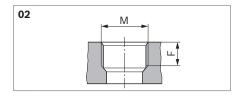
Dimensions - front cover


▼ 2-bolt mounting Ø32 mm

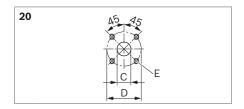
▼ Rectangular flange Ø25.28 mm



▼ 2-bolt mounting Ø32 mm with O-ring

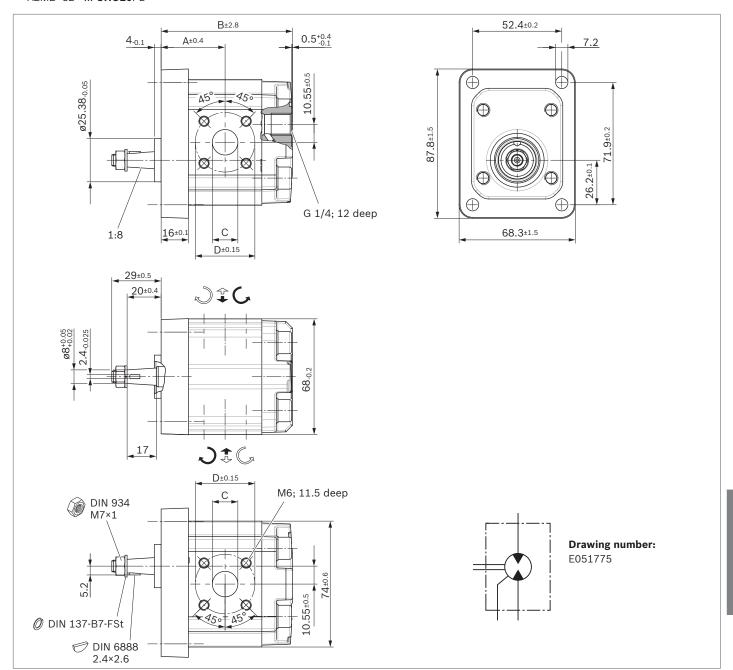

Dimensions - line connections

▼ ISO 228/1 pipe thread (limited service life compared to line connection 20)


Size	Upstream si	de	Downstream	Downstream side		
	G	F	G	F		
2.5 to 3.1	G 3/8	13	G 3/8	13		
4.0 to 7.1	G 3/8	13	G 1/2	13		

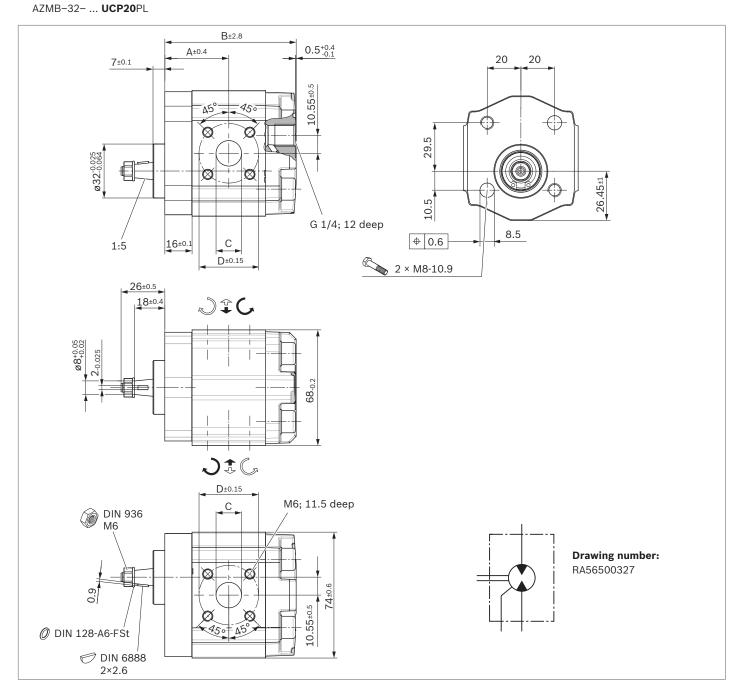
▼ ISO 9974-1 pipe thread (limited service life compared to line connection 20)

Size	Upstream side		Downstream side		
	М	F	М	F	
2.5 to 3.1	14 × 1.5	13	M18 × 1.5	13	
4.0 to 7.1	14 × 1.5	13	M22 × 1.5	13	


▼ Square flange

Size	Upstr	eam side		Down	Downstream side				
	С	D	E	С	D	E			
2.5	12	30	M6; 13 deep	12	30	M6; 11.5 deep			
3.1 to 7.1	15	35	M6; 13 deep	15	35	M6; 11.5 deep			

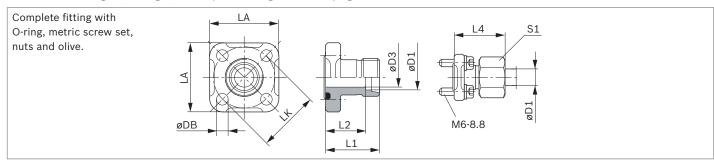
Dimensions - preferred series


▼ Tapered shaft 1:8 with rectangular flange Ø25.38 mm AZMB-32- ... UHO20PL

NG	Order number	Maximum intermittent	Maximum rotational	Weight	Dimensions [mm]			
	Direction of rotation	pressure p_2 [bar]	speed [rpm]	[kg]				
	universal				Α	В	С	D
2.5	R979106592	250	5000	1.5	33.8	69.6	12	30
3.1	R979106593	250	4000	1.5	35.0	72.1	15	35
4.0	R979106594	250	4000	1.6	36.6	75.3	15	35
4.5	R979106252	250	4000	1.6	37.6	77.2	15	35
5.0	R979106595	250	4000	1.6	38.6	79.3	15	35
6.3	R979106596	250	3500	1.7	41.0	84.0	15	35
7.1	R979106597	230	3500	1.7	42.5	87.1	15	35

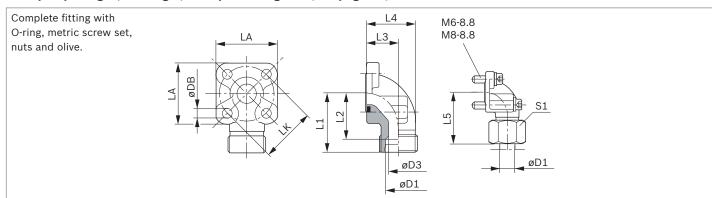
12

▼ Tapered shaft 1:5 with rectangular flange Ø32 mm



NG	Order number Direction of rotation	Maximum intermittent pressure p_2 [bar]	Maximum rotational speed [rpm]	Weight [kg]	Dimensions [mm]			
	universal				Α	В	С	D
2.5	R979106804	250	5000	1.5	33.8	69.6	12	30
3.1	R979106805	250	4000	1.5	35.0	72.1	15	35
4.0	R979106806	250	4000	1.6	36.6	75.3	15	35
4.5	R979106807	250	4000	1.6	37.6	77.2	15	35
5.0	R979106808	250	4000	1.6	38.6	79.3	15	35
6.3	R979106809	250	3500	1.7	41.0	84.0	15	35
7.1	R979106810	230	3500	1.7	42.5	87.1	15	35

Bosch Rexroth AG, RE 14027/03.2016


Accessories

Gear motor flanges, straight, for square flange 20 (see page 10)

LK	D1	D3	L1	L2	L4	LA	S1	DB	Screws 4x	O-ring NBR	Weight [kg]	Order number	p [bar]
35	10L	8	30	23.0	39.0	40	19	6.4	M6 × 22	20 × 2.5	0.09	1 515 702 064	315
35	12L	10	30	23.0	39.0	40	22	6.4	M6 × 22	20 × 2.5	0.10	1 515 702 065	315
35	15L	12	30	23.0	38.0	40	27	6.4	M6 × 22	20 × 2.5	0.10	1 515 702 066	250

Gear pump flanges, 90° angle, for square flange 20 (see page 10)

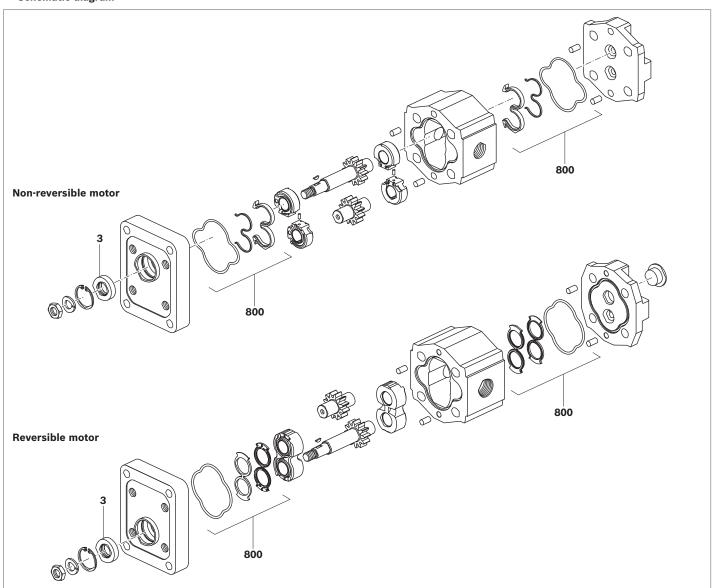
LK	D1	D3	L1	L2	L3	L4	L5	LA	S1	DB	Screws		O-ring	Weight	Order number	p [bar]
											2x	2x	NBR	[kg]		
35	10L	8	38	31.0	16.5	26.5	47.0	40	19	6.4	M6×22	M6 × 35	20 × 2.5	0.16	1 515 702 070	315
35	12L	10	38	31.0	16.5	26.5	47.0	40	22	6.4	M6 × 22	M6 × 35	20 × 2.5	0.16	1 515 702 071	315
35	15L	12	38	31.0	16.5	26.5	46.0	40	27	6.4	M6 × 22	M6 × 35	20 × 2.5	0.15	1 515 702 072	250
35	16S	12	38	29.5	20.0	31.0	48.0	40	30	6.4	M6 × 22	M6 × 40	20 × 2.5	0.18	1 515 702 002	315
35	18L	15	38	29.5	20.0	31.0	47.0	40	32	6.4	M6 × 22	M6 × 40	20 × 2.5	0.18	1 545 702 006	250
35	20S	16	45	34.5	25.0	38.0	56.0	40	36	6.4	M6×22	M6 × 45	20 × 2.5	0.24	1 515 702 017	315

Notice

You can find the permissible tightening torques in our publication 07012-B1 "General Instruction Manual for External Gear Units".

Spare parts

Notice


14

Spare parts can be found online at www.boschrexroth.com/spc

AZMB-32 R	AZMB-32 L	AZMB-32 U
AZN	AZN	AZN

Item	Designation	Order number	Dimensions	Material	Ą	- AZ	AZ
3	Shaft seal	1 510 283 074	22 × 12 × 6	NBR	Х	Х	Х
		1 510 283 071	22 × 12 × 6	FKM	Х	Х	Х
800	Seal kit	1 517 010 248		NBR	Х	Х	-
		1 517 010 269		FKM	Х	Х	-
		1 517 010 251		FKM	-	_	Х

▼ Schematic diagram

Bosch Rexroth AG, RE 14027/03.2016

Notes on commissioning

General

Motors delivered by Bosch Rexroth are tested for function and performance. Any modifications will void the warranty. The motor should only be operated with the permissible data (see page 4).

Technical data

All specified technical data depends on manufacturing tolerances and apply under certain general conditions. Note that this can result in some variance and that technical data may also vary under certain general conditions (e.g., viscosity).

Characteristic curves

When dimensioning the gear motor, observe the maximum possible application data based on the characteristic curves starting on page 6.

Scope of delivery

The scope of delivery includes the components with the characteristics described under type codes and dimensions starting on page 11.

Further information

- ► Further information on installation, commissioning, and operation can be found in the publication 07012-B1: "General Instruction Manual for External Gear Units".
- ► Extensive notes and suggestions can be found in the Hydraulic Trainer Vol. 3: "Project planning recommendations and design of hydraulic systems", order number R900018547.

Filter recommendation

Since the majority of premature failures in gear motors occur due to contaminated hydraulic fluid, filtration should maintain a cleanliness level of 20/18/15 as defined by ISO 4406. Cleanliness level 20/18/15 can reduce contamination to an acceptable degree in terms of particle size and concentration.

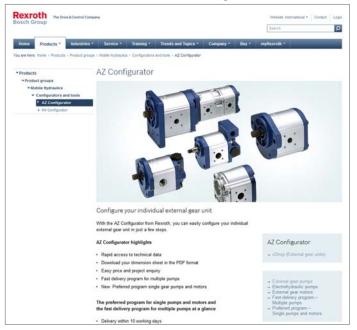
Bosch Rexroth generally recommends full-flow filtration. Basic contamination of the hydraulic fluid should not exceed class 20/18/15 as defined by ISO 4406. New fluids are often above this value. In such instances, a filling device with a special filter should be used.

Bosch Rexroth is not liable for wear due to contamination.

Order number overview

Order number	Туре	Page
R979106252	AZMB-32-4.5UHO20PL	11
R979106592	AZMB-32-2.5UHO20PL	11
R979106593	AZMB-32-3.1UHO20PL	11
R979106594	AZMB-32-4.0UHO20PL	11
R979106595	AZMB-32-5.0UHO20PL	11
R979106596	AZMB-32-6.3UHO20PL	11
R979106597	AZMB-32-7.1UHO20PL	11
R979106804	AZMB-32-2.5UCP20PL	12
R979106805	AZMB-32-3.1UCP20PL	12
R979106806	AZMB-32-4.0UCP20PL	12
R979106807	AZMB-32-4.5UCP20PL	12
R979106808	AZMB-32-5.0UCP20PL	12
R979106809	AZMB-32-6.3UCP20PL	12
R979106810	AZMB-32-7.1UCP20PL	12

AZ configurator


With our practical product selector, it will take you next to no time to find the right solution for your applications, no matter whether it is High Performance or another external gear unit.

The selector guides you through a selection of features to all of the products available for order. By clicking on the order number, you can view and download the following product information: Data sheet, dimension sheet, instruction manual, operating conditions, and tightening torques. You can order your selection directly via our online shop and at the same time benefit from an additional discount of 2%. And if you need something really quickly, simply use our fast delivery and preferred programs (GoTo). Then the goods will be sent within 10 business days.

You also have the possibility to easily and conveniently configure your individual external gear unit with our AZ configurator. All the necessary data that you need for the project planning of external gear units is requested by means of the menu navigation.

For an already existing configuration you receive as a result the order number, the type code, as well as further information. If your configuration does not lead to a product that is available for order, our online tools provide you with the possibility of sending a project request directly to Bosch Rexroth. We will then get in contact with you.

Link: www.boschrexroth.com/az-configurator

Fit4SILENCE app

You want to quickly determine the noise level of an application but don't have a measuring device at hand? No problem with Fit4SILENCE! Our new noise measurement app for all Android devices can be immediately downloaded free of charge. After calibration, you can start using it straight away and conduct fast, accurate noise measurements with different weightings in no time at all. An additional measuring device is no longer necessary, because calibrated smartphones using the app can achieve an accuracy that approximates professional measuring devices.

Last but not least, the app contains interesting information about the SILENCE PLUS technology, including an audio

Link: www.boschrexroth.com/silence-plus

▼ Download the Android app:

Bosch Rexroth AG

Mobile Applications Robert-Bosch-Straße 2 71701 Schwieberdingen, Germany Phone +49 711 811-10063 brm-az.info@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 14027/03.2016

Rexroth Bosch Group

External Gear Motors

RE 14 026/05.09 Replaces: RE 14 026/01.05

AZMF ..., AZMN ..., AZMG ...

Model F = 8 ... 22.5 cm³/rev N = 25 und 28 cm³/rev G = 22.5 ... 45 cm³/rev

Contents	Page
Function	2
Overview	3
Ordering code	4
Drive shaft	6
Front cover	7
Port connections	8
Motors with integral Valves and Sensors	9
Design calculations for Motors	10
Diagrams	10
Specifications	14
Drive arrangement	16
Connectors	17
Dimension Drawings	19
Notes	40

General

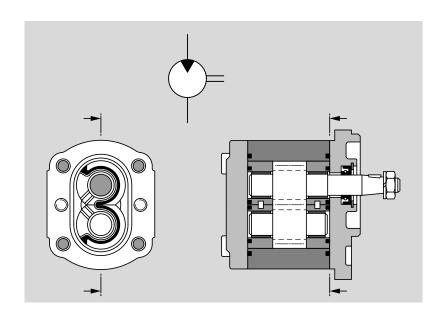
Rexroth external gear motors are produced in 3 different models, with different displacements being produced by means of gears of differing widths.

Different versions of motors are achieved by the use of different flanges, shafts, valves and integrated speed sensors.

Features

- High pressures combined with small size and low weight
- Large speed ranges
 - Broad viscosity and temperature ranges
- Reversible motors for 2- and 4-quadrant operation

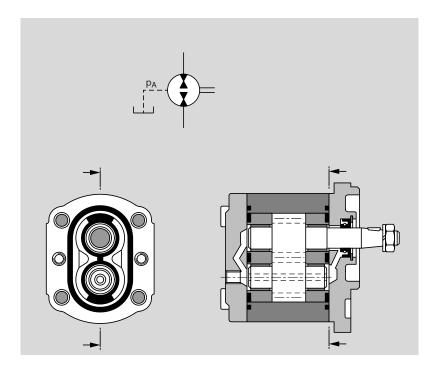
Fields of application


- Road construction machines as road rollers and pavers
- Agricultural machines and forestry technology as harvesters and forestry machines
- Street vehicles such as busses, trucks and special vehicles and above all in hydrostatic fan drives.

Function

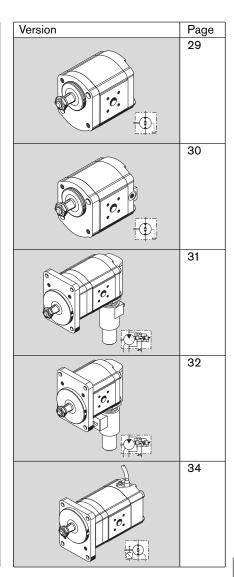
If pressurized oil is fed into the motor, a torque can be obtained from the shaft leading out of the housing. Here, a distinction is made between motors that rotate on one direction and reversible motors.

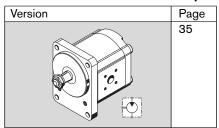
External gear motors that rotate in one direction

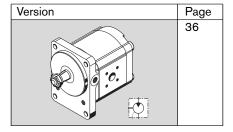

These are of asymmetrical design, i.e. the high and low pressure sides are defined and not interchangeable at will. In this case, reversible operation is not possible. In order to ensure a high efficiency level, a special running-in method is used for motors. Leakage oil is discharged internally to the outlet side. Pressure loading of the outlet is limited by the shaft seal.

Reversible external gear motors

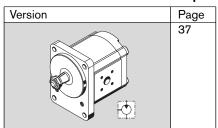
The displacement method in external gear motors is the reverse of the pump process. Reversible motors have a special feature, however. Their symmetrical construction means that the high or low pressure chambers are separate from the bearing and shaft seal chamber. The resulting leakage oil is routed through a separate oil drain gland in the housing cover. This oil drainage enables the motor to be subjected to load via the return line, which in turn allows the use of series connections. Due to the connection between the shaft seal and the low-pressure end, however, standard motors and pumps can only withstand a pressure of up to approx. 3 bar.

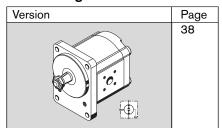

The figure shows a reversible gear motor for 4-quadrant operation, i.e. both output and input torque in both directions. (Hydraulic motor becomes a pump if load reversal occurs.)

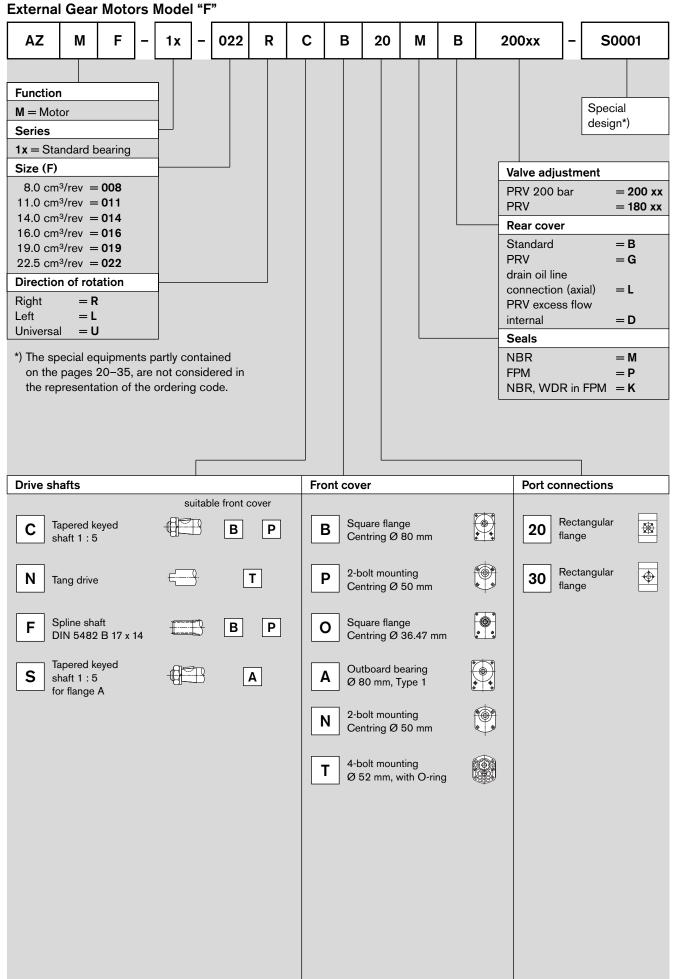

Product overview "Model F" preferential range

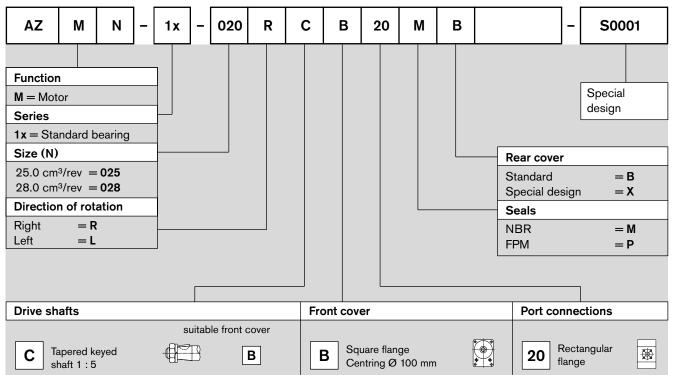

Version	Page
ioi	19
	20
i.ė.	21
ic.	22
	23

rential range	
Version	Page
io.	24
io.	25
	26
	27
ic.	28

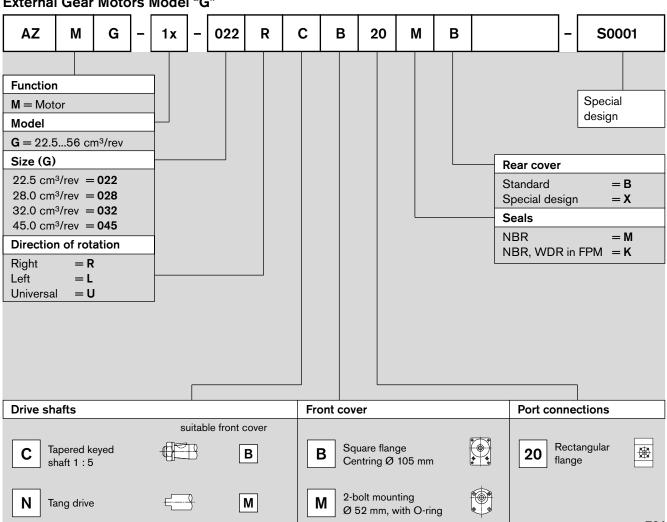



Product overview "Model N" preferential range

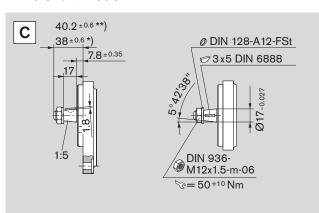

Product overview "Model G" preferential range

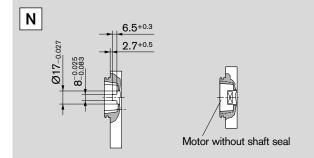

Version	Page 39
io.	39

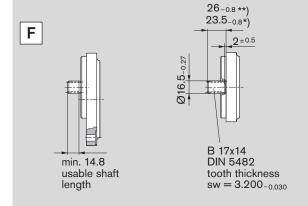
Ordering code

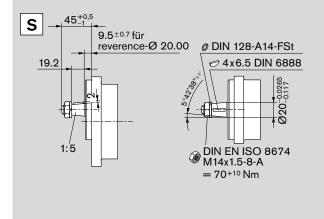


Ordering code

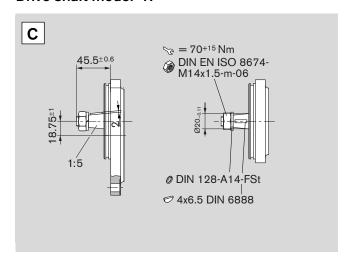

External Gear Motors Model "N"

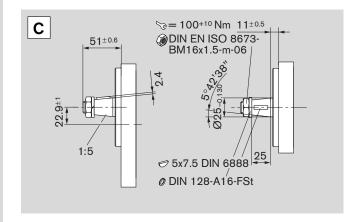


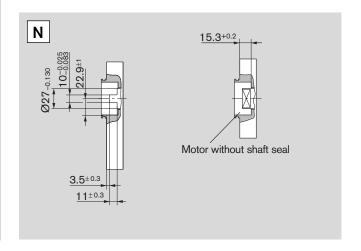

External Gear Motors Model "G"

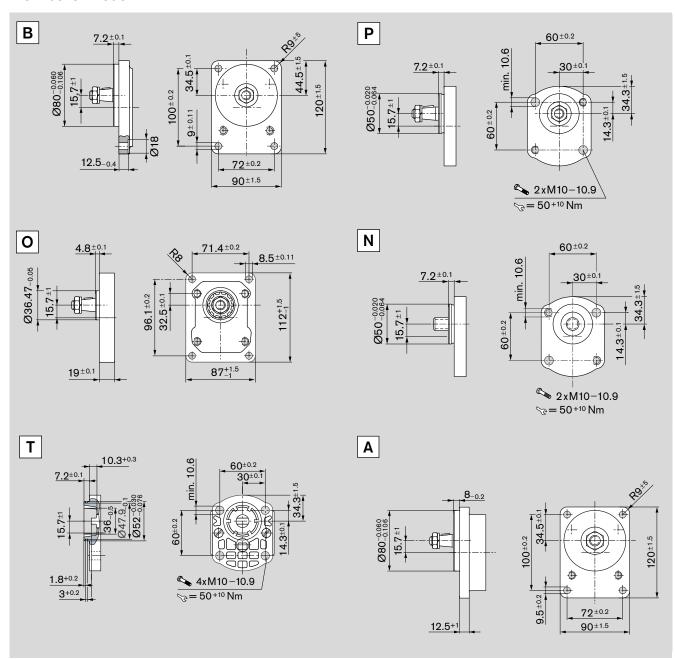


Drive shaft model "F"

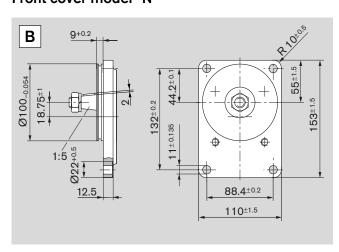


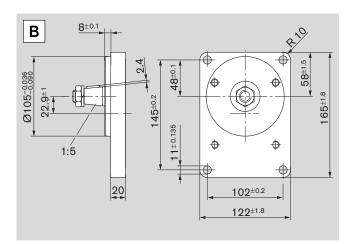


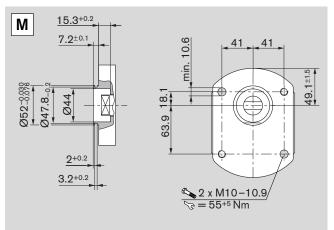

Drive shaft model "N"


- *) in combination with front cover B
- **) in combination with front cover P

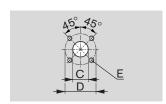
Drive shaft model "G"



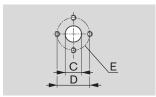

Front cover model "F"



Front cover model "N"



Front cover model "G"


Port connections

20 Rectangular flange

Synopsis	Size	Inlet side			Outlet side			
of Type		С	D	E	С	D	E	
20	8.0 22.5 cm ³	15	35	M6 utilizable depth 13	20	40	M6 utilizable depth 13	
	22.5 45.0 cm ³	18	55	M8 utilizable depth 13	26	55	M8 utilizable depth 13	

Syno	psis	Size	Port connections (direction of rotation universal)				
of Ty	pe		C D E				
20	0		15	35	M6 utilizable depth 13		
22.5 45.0 cm ³		18	55	M8 utilizable depth 13			

30 Rectangular flange

Synopsis	Size	Inlet side			Outle	t side	
of Type		С	D	E C	D	E	
30	4 8 cm ³	13.5	30.2	M6 utilizable depth 13	13.5	30.2	M6 utilizable depth 13
=	11 28 cm ³				20.0	39.7	M8 utilizable depth 13

External gear motors with integrated valves, sensors

Gear motor with integrated, pilot-operated proportional pressure relief valve and rotary shaft seal relieved of load thanks to the three-chamber design.

The use of gear motors without this relief of the rotary shaft seal is not recommended due to the loads from the oil return line, particularly when the oil is cold. The basis of this drive unit is a motor model "F". The pilot proportional pressure relief valve is integrated in the rear end cover. This unit has the following advantages:

- No pipework necessary for the functioning of the prop. pressure relief valve
- Integrated pressure relief
- Fail-safe function in the event of power loss
- Drag speed virtually zero
- Motor speed prop. controllable
- Unaffected by pressure loads from the outlet Additional information see:

Hydrostatic fan drives 1 987 761 700 http://www.boschrexroth.com/brm

External gear motors with pressure relief valve

External gear motors with integrated speed sensor

The DSM1-10 Hall-effect speed sensor was specially developed for tough use in mobile work machines. The sensor detects the speed signal of ferromagnetic gear wheels. In this process, as an active sensor, it supplies a signal with constant amplitude independent of the rotational speed.

Due to its compact, sturdy design, the gear motor with integrated sensor is suitable for the applications such as

- In fan drives for buses, trucks and construction machinery from 7 to 20 kW
- As a vibration drive for road rollers and road construction machinery

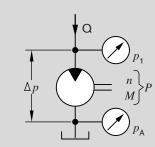
For additional information see: Speed Sensor DSM RE 95 132 http://www.boschrexroth.com/brm

Design calculations for motors

The design calculations for motors are based on the following parameters:

V [cm³/rev] Displacement [l/min] Inlet flow rate Pressure (p_1, p_A) p [bar] M [Nm] Output torque [rev/min] Output speed [kW] Output power

It is also necessary to allow for different efficiencies such as:


Volumetric efficiency

Mechanical-hydraulic efficiency

Total efficiency

The following formulas describe the various relationships. They include correction factors for adapting the parameters to the usual units encountered in practice.

Note: Diagrams providing approximate selection data can be found on subsequent pages. These graphs contain the levels of efficiency in each case.

$$Q = \frac{V \cdot n}{\eta_{\rm v}} \cdot 10^{-1}$$

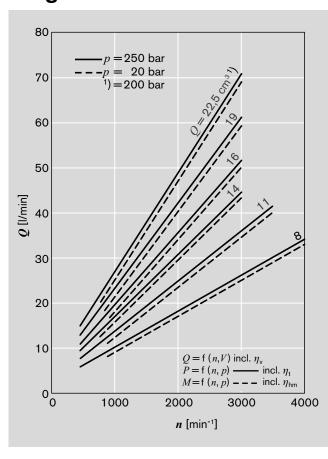
$$V = \frac{Q \cdot \eta_{\rm v}}{n} \cdot 10$$

$$V = \frac{Q \cdot \eta_{\text{v}}}{n} \cdot 10 \qquad \qquad n = \frac{Q \cdot \eta_{\text{v}}}{V} \cdot 10$$

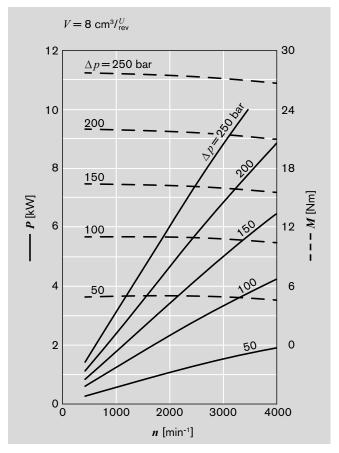
$$\Delta p = \frac{M}{1.59 \cdot V \cdot \eta_{\rm hm}} \cdot 10^4$$
 $V = 1.59 \cdot \frac{M}{\Delta p \cdot \eta_{\rm hm}} \cdot 10^4$ $M = 1.59 \cdot V \cdot \Delta p \cdot \eta_{\rm hm} \cdot 10^{-4}$

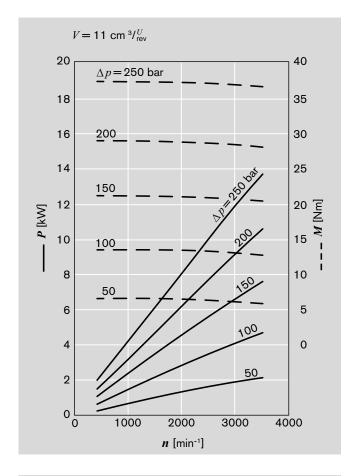
$$V = 1.59 \cdot \frac{M}{\Delta p \cdot \eta_{\rm hm}} \cdot 10$$

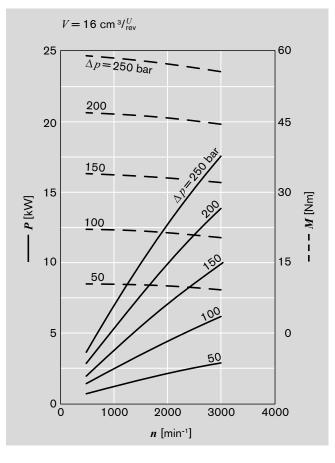
$$M = 1.59 \cdot V \cdot \Delta p \cdot \eta_{\text{hm}} \cdot 10^{-1}$$

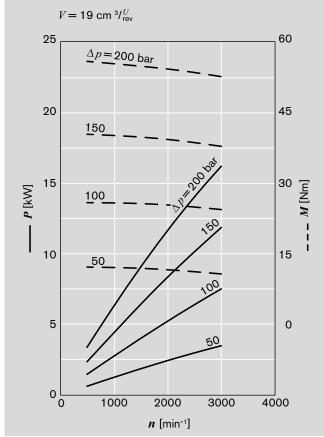

$$P = \frac{Q \cdot \Delta p \cdot \eta_t}{6} \cdot 10^{-4}$$

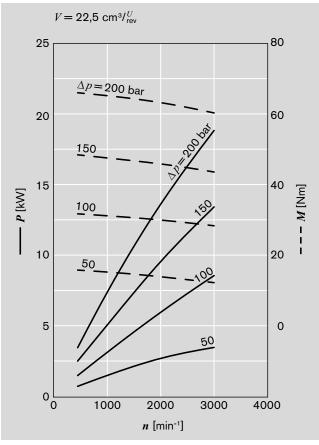
$$V [\mathrm{cm^3/rev}] \quad Q [\mathrm{l/min}] \quad \Delta p [\mathrm{bar}]$$

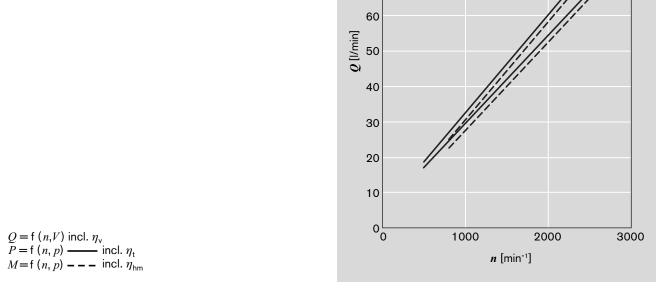

$$\begin{array}{cccc} Q & & & & & & & \\ \Delta p & & & & & & \\ \Delta p & & & & & \\ \Delta p \cdot Q & & & & & \\ & & & & & \\ \end{array} \begin{array}{cccc} \eta_{\text{v}} & \longrightarrow & M \\ & & & & \\ \end{array}$$


n [rev/min] P[kW]M [Nm]


Diagrams Model "F"



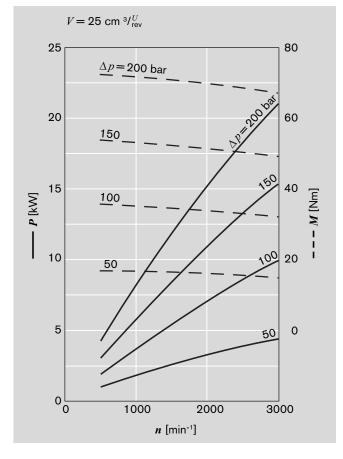

$$v = 35 \text{ mm}^2/\text{s}, T = 50 \,^{\circ}\text{C}$$

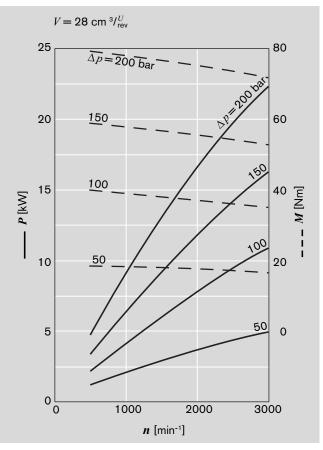


Diagrams Model "N"

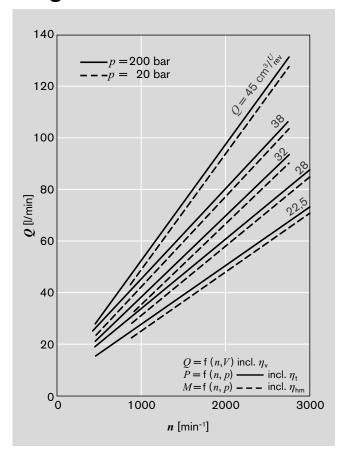
$$v = 35 \text{ mm}^2/\text{s}, T = 50 \text{ }^{\circ}\text{C}$$

100

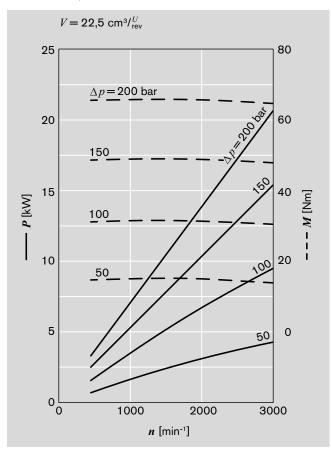

90

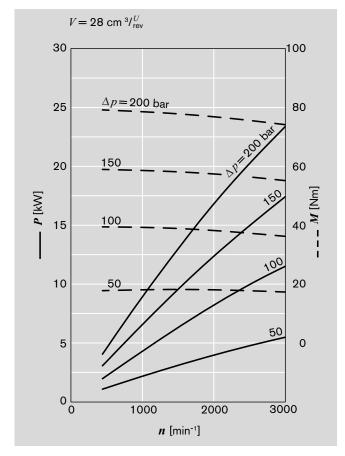

80

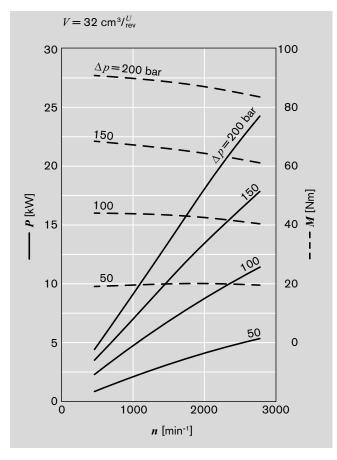
70

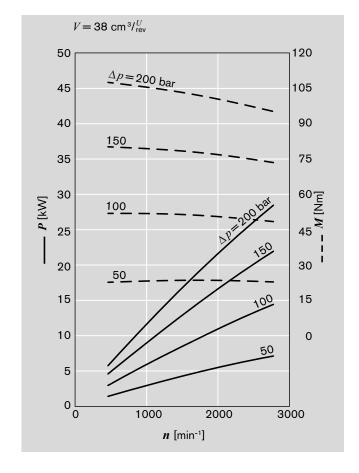

p = 200 bar

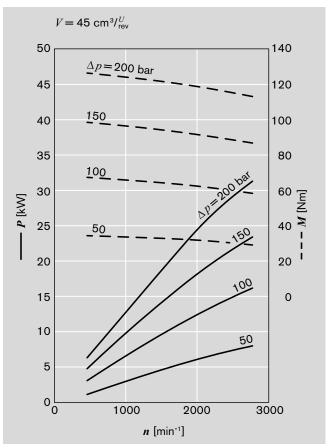
= 20 bar






Diagrams Model "G"




 $v = 35 \text{ mm}^2/\text{s}, T = 50 \text{ }^{\circ}\text{C}$

Specifications

General					
Construction	external gear motor				
Mounting	Flange or through-bolting with spigot				
Port connections	screw, flange				
Direction of rotation (looking on shaft)	One direction of rotation or reversible				
Mounting position	any				
Load on shaft	radial and axial forces after consulting				
Ambient temperature range	-30 °C+80 °C with NBR seals*) -20 °C+110 °C with FPM seals**)				
Fluids	mineral oil-based hydraulic fluids to DIN/ISO, other fluids upon request				
Viscosity	12800 mm ² /s permitted range 20100 mm ² /s recommended range 2,000 mm ² /s permitted for starting				
Fluid temperature range	max. +80 °C with NBR seals*) max. 110 °C with FPM seals**)				
Filter ***)	contamination at least class 19/16 according to ISO 4406 to be obtained with filter b20 = 75. For higher lifespan demands we recommend a corre spondingly higher filter class.				

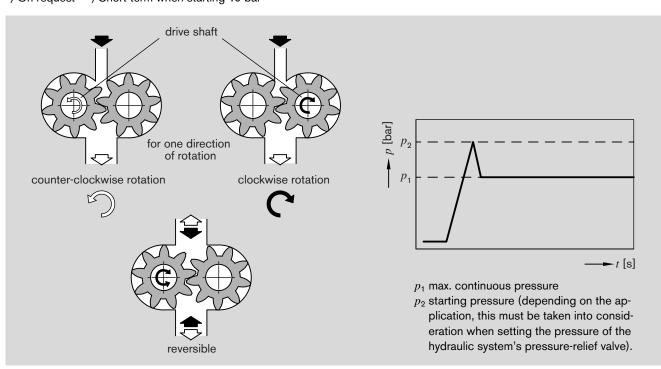
- *) NBR = Perbunan®
- **) $FPM = Viton^{\mathbb{R}}$
- ***) During the application of control systems or devices with critical counter-reaction, such as steering and brake valves, the type of filtration selected must be adapted to the sensitivity of these devices/systems.

Safety requirements pertaining to the whole systems are to be observed.

In the case of applications with frequent load cycles please consult us.

Model F

Displacement	cm ³ /rev	5.5 1)	8	11	14	16	19	22.5
max. continuous pressure p_1	bar	250					180	
max. starting pressure p_2		280					210	
min. rotational speed	min ⁻¹	500						
max. rotational speed p_1		4,000		3,500	3,000			
Motor outlet pressure $p_{\rm A}$ Leakage-oil line pressure $p_{\rm L}$	bar	P ₁	3 bar*)	p ₁ — ► − − − − − − − − − − − − − − − − − −	X ≤ p ₁			


Model N

Displacement	cm ³ /rev	25	28
max. continuous pressure p_1	bar	210	200
max. starting pressure p_2		240	230
min. rotational speed	min ⁻¹	500	
max. rotational speed p_1		3,000	
Motor outlet pressure $p_{\rm A}$ Leakage-oil line pressure $p_{\rm L}$	bar	P1 PAS	≤ 3 bar*)

Model G

Widdel G						
Displacement	cm ³ /rev	22.5	28	32	38	45
max. continuous pressure p_1	bar	180				
max. starting pressure p_2		210				
min. rotational speed	min ⁻¹	500				
max. rotational speed p_1		3,000		2,800	2,600	
Motor outlet pressure $p_{\rm A}$ Leakage-oil line pressure $p_{\rm L}$	bar	p ₁ (3 bar*)			

1) On request *) Short-term when starting 10 bar

Power take-off

1. Flexible couplings

The coupling must not transfer any radial or axial forces to the motor.

The maximum radial run out of shaft spigot is 0.2 mm.

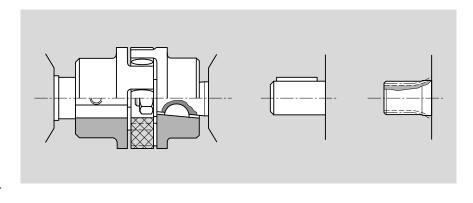
Refer to the fitting instructions provided by the coupling manufacturer for details of the maximum permitted shaft misalignment.

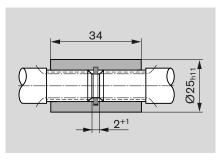
2. Sleeve couplings

Used on shafts with DIN or SAE splining. **Note:** There must be no radial or axial forces exerted on the motor or sleeve coupling. The sleeve must be free to move axially. The distance between the motor shaft and drive shaft must be 2⁺¹. Oil-bath or oil-mist lubrication is necessary.

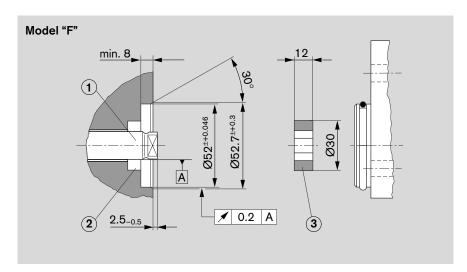
3. Drive shaft with tang

For the close-coupling of the motors to gearboxes, etc. the motors shaft has a special drive shaft with tang which combines with a center coupling ③. There is no shaft seal.


The recommended arrangements and dimensions for the drive end and sealing are as follows.

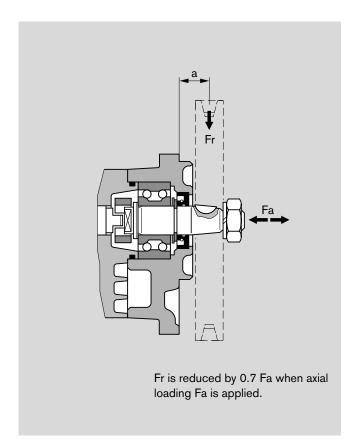

① Drive shaft

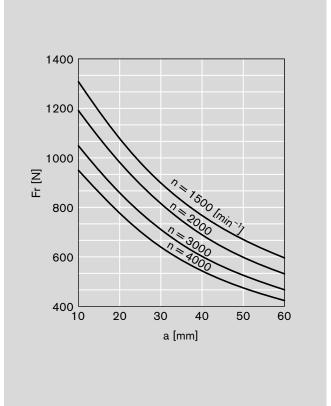
Case-hardened steel DIN 17 210, e.g. 20 MnCrS 5 case-hardened 0.6 deep; HRc 60 ± 3 . Surface for sealing ring ground without rifling $R_{\text{max.}} \leq 4 \mu \text{m}$


(2) Radial shaft seal

Rubber-covered seal (see DIN 3760, Type AS or double-lipped ring). Cut 15° chamfer or fit shaft seal with protective sleeve.

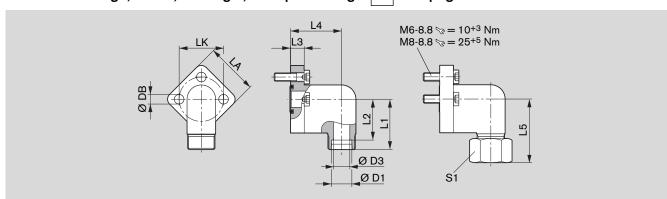
Spline	M_{max}	V	p_{max} .
shaft	[Nm]	[cm ³ /rev]	[bar]
DIN	190	822.5	$p_{max.}$
SAE	130		




M_{max}	V	$p_{max.}$
[Nm]	[cm ³ /rev]	$p_{\sf max.}$ [bar]
65	814	280
	16	230
	19	190
	22.5	160

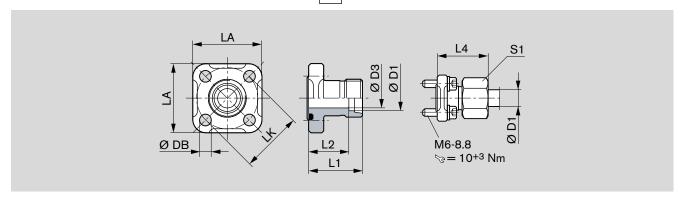
4. Outboard bearing Model "F"

Outboard bearings eliminate possible problems when the motors are driven by V-belts or gearwheels. The diagrams below show the maximum overhung and thrust loads that can be tolerated, referring to a bearing life of $L_{\rm H}=1,000$ hours.


M _{max.} [Nm]	V [cm ³ /rev]	p _{max.} [bar]
65	16	230
	19	190
	22.5	160

Connectors

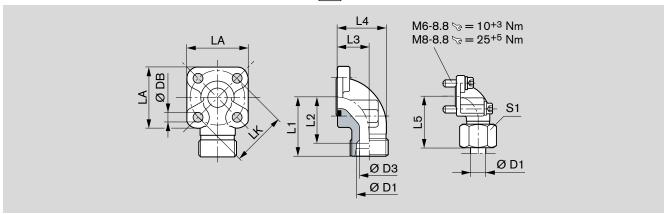
Gear motor flange, 3-bolt, 90° angle, for square flange 30 see page 8



LK	D1	D3	L1	L2	L3	L4	L5	LA	S1	DB	Screws	O-ring	Weight	Ordering-No.	p
											3 pieces	NBR *)	[kg]		[bar]
30	12L	10	37	30.0	10	37.5	46	38	22	6.4	M6x22	16x2.5	0.13	1 515 702 146	250
30	15L	12	37	30.0	10	37.5	47	38	27	6.4	M6x22	16x2.5	0.14	1 515 702 147	250
30	18L	15	37	30.0	10	37.5	47	38	32	6.4	M6x22	16x2.5	0.17	1 515 702 148	160
40	22L	19	43	35.5	14	41.0	53	48	36	8.4	M8x30	24x2.5	0.29	1 515 702 149	160
40	28L	24	43	35.5	14	41.0	53	48	41	8.4	M8x30	24x2.5	0.40	1 515 702 150	160

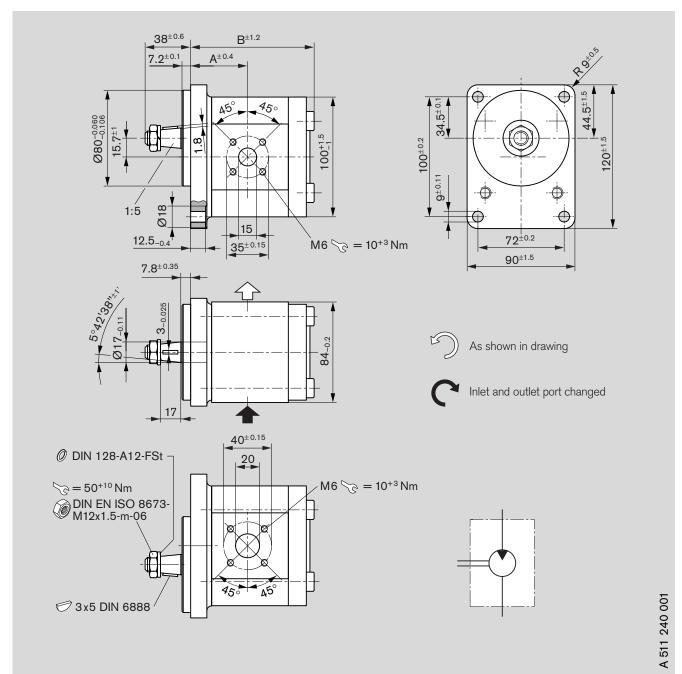
Complete screw connection with O-ring, metric screw set, nut/mother and sleeve fitting *) NBR = Perbunan®

Connectors (continuation)


Gear motor flange, straight, for square flange 20 see page 8

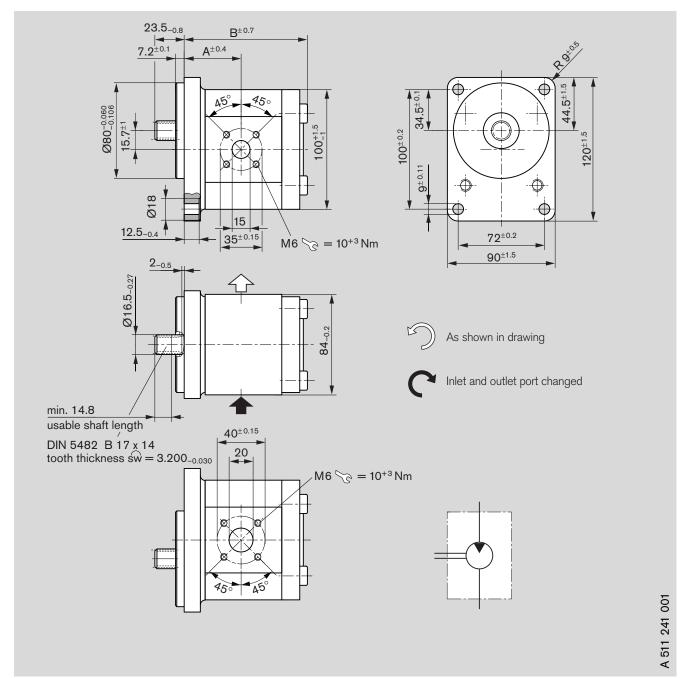
LK	D1	D3	L1	L2	L4	LA	S1	DB	Screws	O-ring	Weight	Ordering-No.	p
									4 pieces	NBR *)	[kg]		[bar]
35	10L	8	30	23.0	39.0	40	19	6.4	M6x22	20x2.5	0.09	1 515 702 064	315
35	12L	10	30	23.0	39.0	40	22	6.4	M6x22	20x2.5	0.10	1 515 702 065	315
35	15L	12	30	23.0	38.0	40	27	6.4	M6x22	20x2.5	0.10	1 515 702 066	250
40	15L	12	35	28.0	43.0	42	27	6.4	M6x22	24x2.5	0.12	1 515 702 067	100
40	18L	15	35	27.5	44.0	42	32	6.4	M6x22	24x2.5	0.13	1 515 702 068	100
40	22L	19	35	27.5	44.5	42	36	6.4	M6x22	24x2.5	0.12	1 515 702 069	100
40	28L	24	42	27.5	34.5	42	41	6.4	M6x22	24x2.5	0.15	1 515 702 008	100

Complete screw connection with O-ring, metric screw set, nut/mother and sleeve fitting *) NBR = Perbunan®


Gear motor flange, 90° angle, for square flange 20 see page 8

LK	D1	D3	L1	L2	L3	L4	L5	LA	S1	DB	Screws	O-ring	Weight	Ordering-No.	p
											2 pcs. 2 pcs.	NBR *)	[kg]	-	[bar]
35	10L	8	38	31.0	16.5	26.5	47.0	40	19	6.4	M6 x 22 M6 x 3	5 20 x 2.5	0.16	1 515 702 070	315
35	12L	10	38	31.0	16.5	26.5	47.0	40	22	6.4	M6 x 22 M6 x 3	5 20 x 2.5	0.16	1 515 702 071	315
35	15L	12	38	31.0	16.5	26.5	46.0	40	27	6.4	M6 x 22 M6 x 3	5 20 x 2.5	0.15	1 515 702 072	250
35	16S	12	38	29.5	20.0	31.0	48.0	40	30	6.4	M6 x 22 M6 x 4	0 20 x 2.5	0.18	1 515 702 002	315
35	18L	15	38	29.5	20.0	31.0	47.0	40	32	6.4	M6 x 22 M6 x 4	0 20 x 2.5	0.18	1 545 702 006	250
35	20S	16	45	34.5	25.0	38.0	56.0	40	36	6.4	M6 x 22 M6 x 4	5 20 x 2.5	0.24	1 515 702 017	315
40	15L	12	38	31.0	22.5	36.5	46.0	42	27	6.4	M6 x 22 M6 x 2	2 24 x 2.5	0.15	1 515 702 076	100
40	18L	15	38	30.5	22.5	36.5	47.0	42	32	6.4	M6 x 22 M6 x 2	2 24 x 2.5	0.17	1 515 702 074	100
40	20S	16	40	29.5	22.5	35.5	50.0	42	36	6.4	M6 x 22 M6 x 4	5 24 x 2.5	0.20	1 515 702 011	250
40	22L	19	38	30.5	22.5	36.5	47.5	42	36	6.4	M6 x 22 M6 x 2	2 24 x 2.5	0.17	1 515 702 075	100
40	28L	22	40	32.5	28.0	43.0	49.0	42	41	6.4	M6 x 20 M6 x 5	0 24 x 2.5	0.24	1 515 702 010	100
40	35L	31	41	30.5	34.0	55.0	52.0	42	50	6.4	M6 x 22 M6 x 6	0 24 x 2.5	0.33	1 515 702 018	100
55	20S	17	45	34.5	24.0	40.0	56.0	58	36	8.4	M8 x 25 M8 x 5	0 33 x 2.5	0.44	1 515 702 004	250
55	30S	26	49	35.5	32.0	50.0	62.0	58	50	8.4	M8 x 25 M8 x 5	0 33 x 2.5	0.50	1 515 702 006	250
55	35L	31	49	38.5	32.0	51.5	62.0	58	50	8.4	M8 x 25 M8 x 6	0 33 x 2.5	0.47	1 515 702 005	100
55	42L	38	49	38.0	40.0	64.5	61.0	58	60	8.4	M8 x 25 M8 x 7	0 33 x 2.5	0.60	1 515 702 019	100

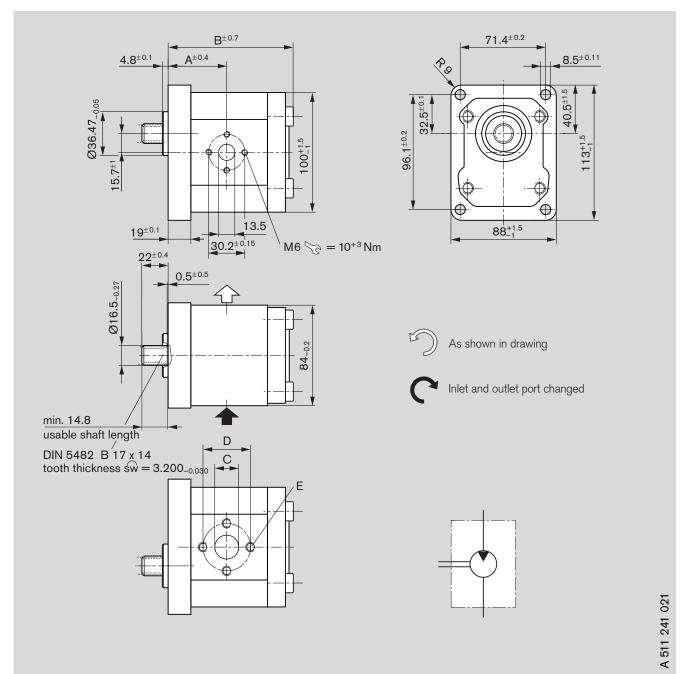
Complete screw connection with O-ring. metric screw set. nut/mother and sleeve fitting *) NBR = Perbunan®


F-Motor

Ordering code
AZMF – 1x – 🔲 🔲 🔲 C B 20 M B
AZMF – 10 – 🔲 🔲 🔲 C B 20 K B*
AZME = 10 = \bigcap \b

	<u> </u>							
Displace-	Orderi	ng-No.	Max.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B
8	0 511 425 300	0 511 425 001	210	500	4,000	2.9	43.2	91.1
11	0 511 525 300	0 511 525 001	210	500	3,500	3.0	47.0	96.3
14	0 511 525 304	-	210	500	3,000	3.2	47.5	101.3
16	_	0 511 625 005	210	500	3,000	3.4	47.5	104.7
19	0 511 625 308	0 511 625 003	180	500	3,000	3.6	47.5	109.7
19	_	0 511 625 009 *	180	500	3,000	3.6	47.5	109.7
22.5	0 511 725 304 **	0 511 725 005 **	210	500	3,000	3.9	61.1	125.3

F-Motor

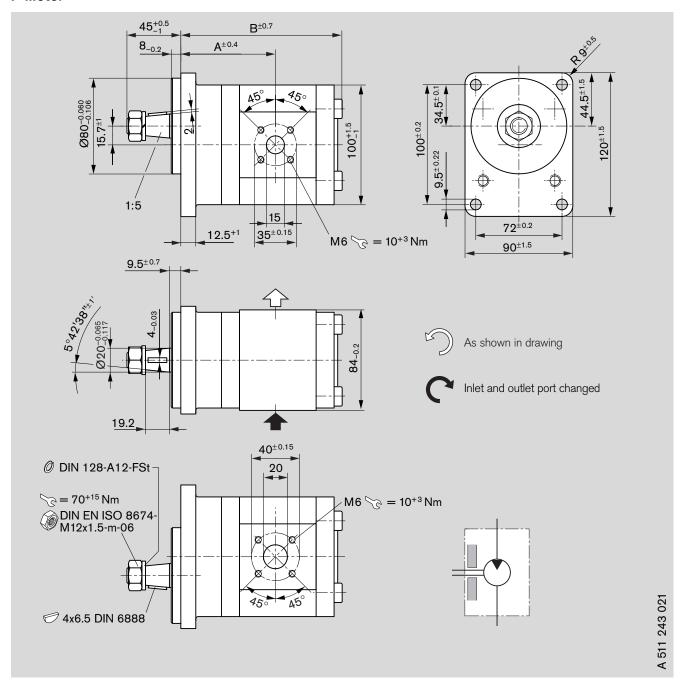


Ordering code

AZMF – 10 – 🔲 🔲 🔲 F B 20 M B

Displace-	Orderi	ng-No.	Max.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B
8	0 511 425 301	0 511 425 002	210	500	4,000	2.9	43.2	91.0
11	0 511 525 301	0 511 525 002	210	500	3,500	3.0	47.0	96.0
14	0 511 525 303	-	210	500	3,000	3.2	47.5	101.0
16	0 511 625 301	0 511 625 001	210	500	3,000	3.4	47.5	104.4
19	0 511 625 300	0 511 625 002	180	500	3,000	3.6	47.5	109.4
22.5	0 511 725 303	0 511 725 004	180	500	3,000	3.8	61.1	126.8

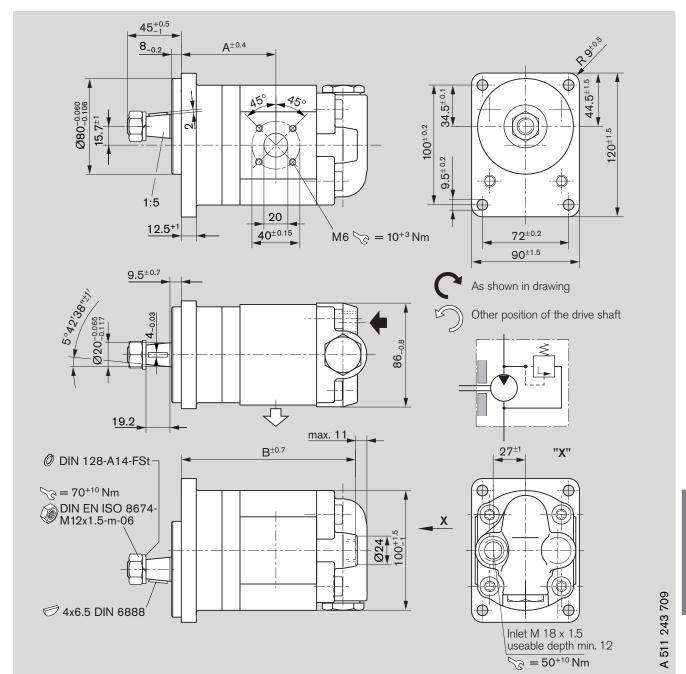
F-Motor



Ordering code

AZMF - 10	0 – 🔲 🔲 🔲 F O 30 M B
Displace-	Ordering-No.

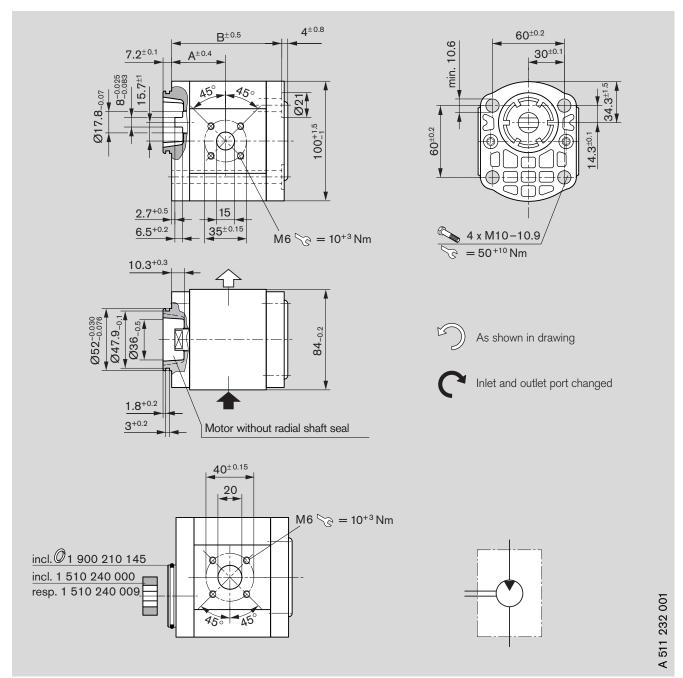
Displace-	Orderi	ng-No.	Max.	Min.	Max.	kg	Dimen	sion			
ment				rotation	rotation						
			pressure	speed	speed		[mm]				
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В	C	D	E
8	-	0 511 425 003	210	500	4,000	2.9	44.9	90.7	13.5	30.2	$M6 = 10^{+3}$
19	0 511 625 303	_	180	500	3,000	3.7	49.0	109.1	20.0	39.7	$M8 = 25^{+5}$
22.5	-	0 511 725 305	180	500	3,000	3.9	56.6	114.5	20.0	39.7	$M8 = 25^{+5}$


F-Motor

Ordering code	
AZMF - 10 - 🔲 🔲	☐ S A 20 M B
∆ 7ME _ 10 _ □ □ □	☐ C A 20 M B _ C0012

Displace-	Orderi	ng-No.	Max.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B
8	0 511 445 300	0 511 445 001	250	500	4,000	3.5	74.7	120.6
11	0 511 545 300	0 511 545 001	250	500	3,500	3.6	78.5	125.6
14	0 511 545 301	-	250	500	3,000	3.7	79.0	130.6
16	0 511 645 300	0 511 645 001	250	500	3,000	3.8	79.0	134.0
16	-	0 511 645 003	230	500	3,000	3.8	93.0	134.0
19	0 511 645 302	-	190	500	3,000	4.2	79.0	139.0
22.5	0 511 745 300*	0 511 745 001*	160	500	2,500	4.8	92.6	156.4

F-Motor



Ordering code

AZMF - 10 - _ _ _ _ S A 20 M D XXXXX - S0076

Displace-	Orderir	ng-No.	Max.	Min.	Max.	kg	Dimension	
ment		operating	rotation	rotation				
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В
8	0 511 445 301	0 511 445 003	200	500	4,000	3.6	74.7	133.1
11	0 511 545 302	0 511 545 003	150	500	3,500	3.8	79.1	138.1

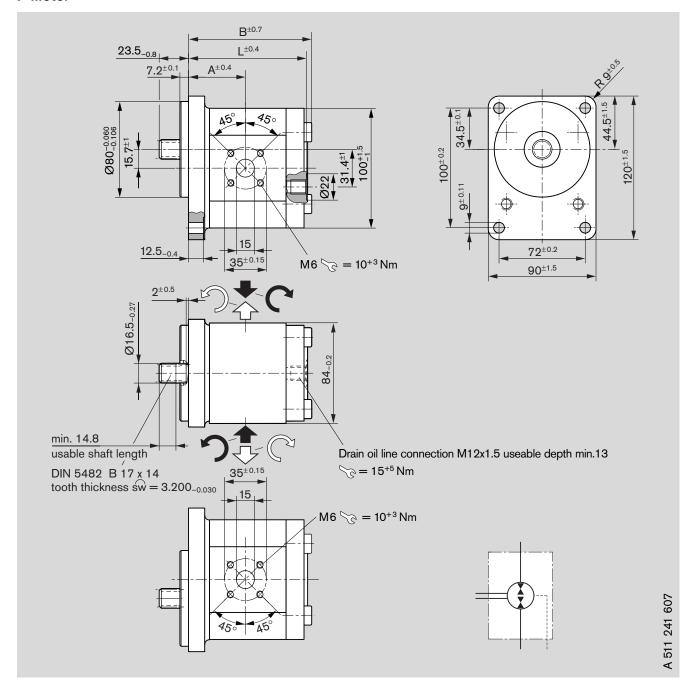
F-Motor

Ordering code

AZMF - 10 -					N	Т	20	M	В
-------------	--	--	--	--	---	---	----	---	---

/ L=		=						
Displace-	Ordering-No.		Max.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B
8	0 511 415 300	0 511 415 001	250	500	4,000	2.5	40.7	80.3
11	0 511 515 300	0 511 515 001	250	500	3,500	2.6	44.5	85.3
16	0 511 615 301	0 511 615 002	230	500	3,000	3.0	45.0	93.7
19	0 511 615 300	0 511 615 001	190	500	3,000	3.2	45.0	98.7
22.5	0 511 715 300	0 511 715 001	160	500	3,000	3.4	52.6	104.1

F-Motor

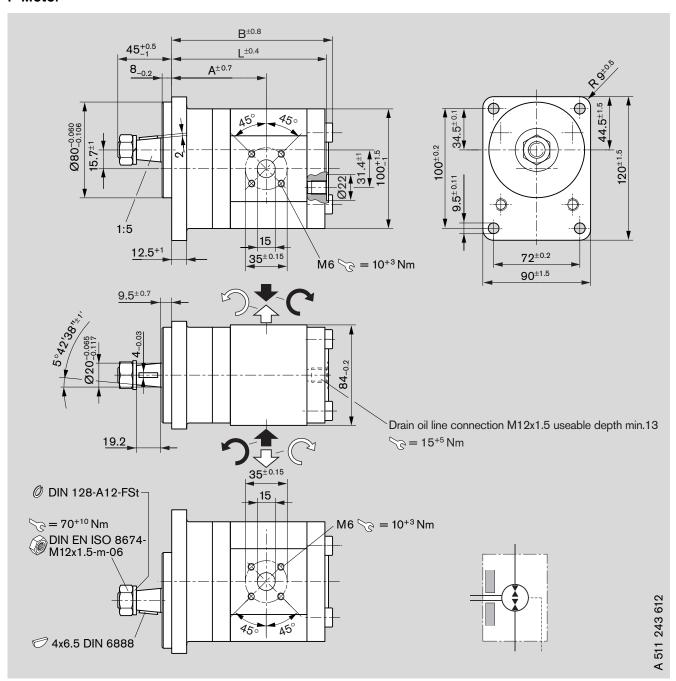


Ordering code

AZMF - 10 - _ _ _ U C B 20 M L AZMF - 10 - _ U C B 20 K L*

Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimension		
ment		operating-	rotation	rotation				
		pressure	speed	speed		[mm]		
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В	L
8	0 511 425 601	210	500	4,000	3.4	43.2	90.7	85.8
11	0 511 525 604	210	500	3,500	4.2	47.0	95.9	90.8
16	0 511 625 602	210	500	3,000	3.9	47.5	104.3	99.2
22.5	0 511 725 601 *	180	500	3,000	3.9	55.1	114.6	109.6

F-Motor

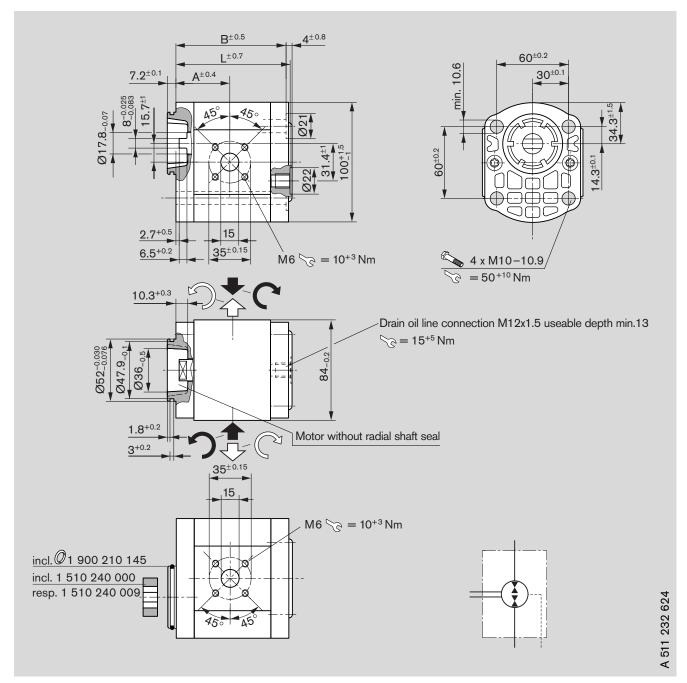

Ordering code AZMF - 10 - _ _ _ U F B 20 M L

AZIVII IU									
Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimension	Dimension		
ment		operating	rotating	rotating					
		pressure	speed	speed		[mm]			
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B	L	
8	0 511 425 603	210	500	4,000	2.9	43.2	91.0	85.8	
11	0 511 525 601	210	500	3,500	3.0	47.0	96.0	90.8	
16	0 511 625 603	210	500	3,000	3.4	47.5	104.4	99.2	
19	0 511 625 605	180	500	3,000	3.6	47.5	109.4	104.2	
22.5	0 511 725 602	180	500	3,000	3.8	55.1	114.8	109.6	

27/40

Dimensions in mm

F-Motor



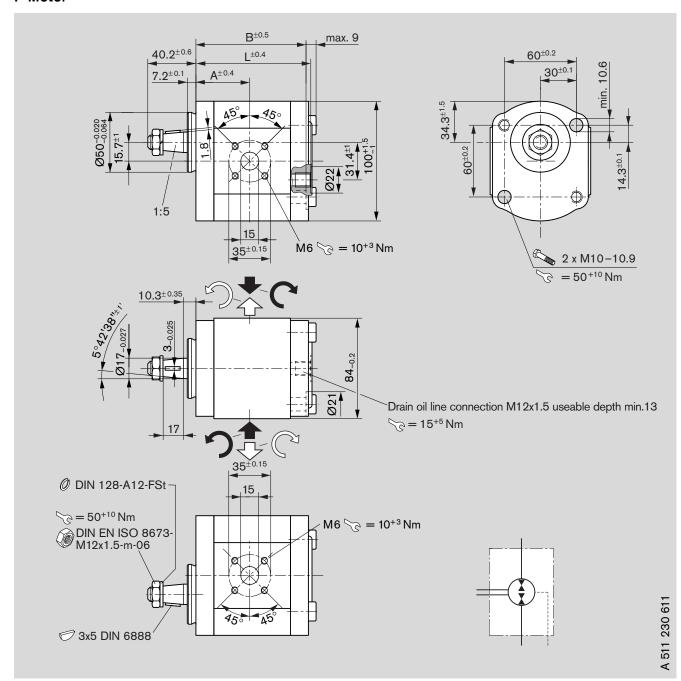
Ordering code

AZMF - 10 - | | U S A 20 M L

	<u> </u>									
Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimension	Dimension			
ment		operating	rotation	rotation						
		pressure	speed	speed		[mm]				
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В	L		
8	0 511 445 601	250	500	4,000	3.5	74.8	120.8	116.9		
11	0 511 545 601	250	500	3,500	3.6	78.6	125.8	121.9		
16	0 511 645 601	230	500	3,000	4.0	79.1	134.2	130.3		
19	0 511 645 603	190	500	3,000	4.2	79.1	139.2	135.3		

F-Motor

Ordering code

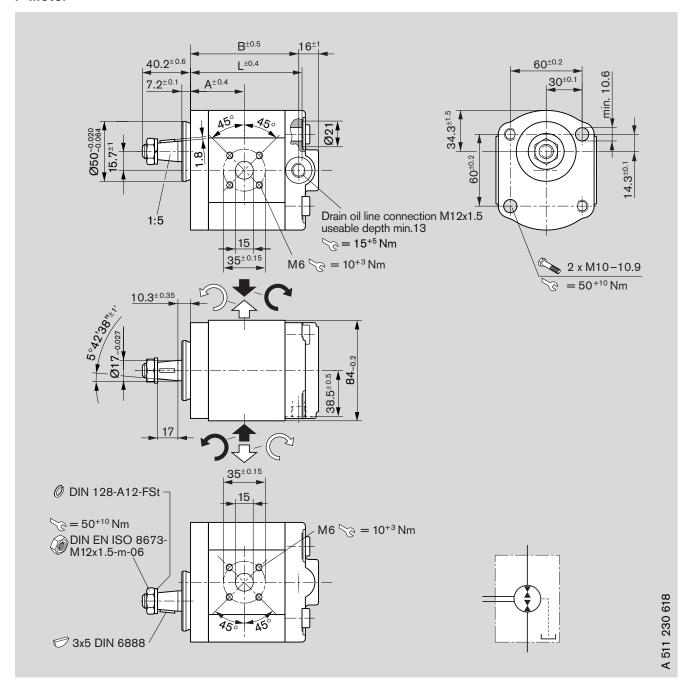

AZMF - 10 - [] [U N T 20 M L - S0164

A=IIII 10		0.10-1							
Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimension	Dimension		
ment		operating	rotation	rotation					
		pressure	speed	speed		[mm]			
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B	L	
8	0 511 415 605	250	500	4,000	2.5	40.7	80.3	82.8	
11	0 511 515 602	250	500	3,500	2.6	44.5	85.3	87.8	
16	0 511 615 607	230	500	3,000	3.0	45.0	93.7	96.2	
19	0 511 615 608	190	500	3,000	3.2	45.0	98.7	101.2	
22.5	0 511 715 601	160	500	3,000	3.4	52.6	104.1	106.6	

29/40

Dimensions in mm

F-Motor

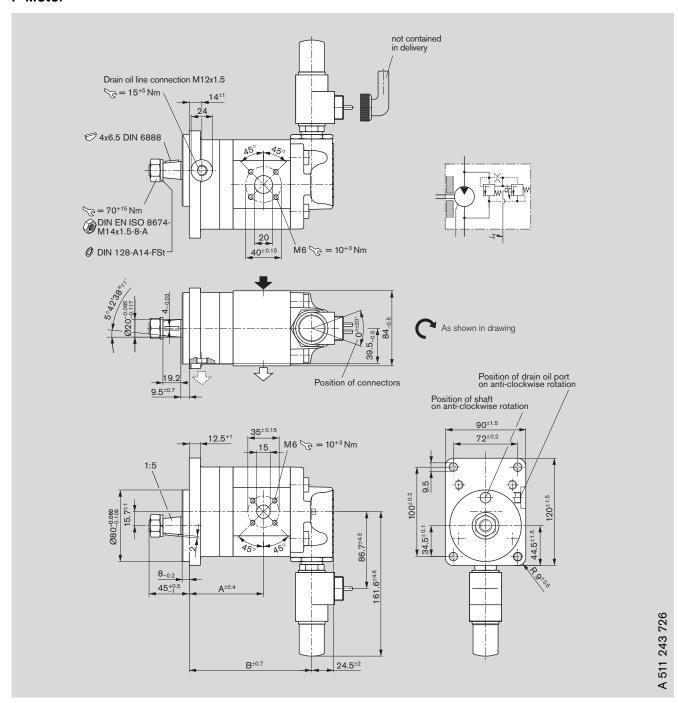


Ordering code_

AZMF - 1X - 🔲 🔲 U C P 20 M L

Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimensio	Dimension			
ment		operating	rotation	rotation						
		pressure	speed	speed		[mm]	[mm]			
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	B	L		
8	0 511 415 606	210	500	4,000	2.8	40.7	80.3	83.3		
11	0 511 515 601	210	500	3,500	2.8	44.5	85.3	88.3		
14	0 511 515 605	210	500	3,000	3.1	45.0	90.3	93.3		
16	0 511 615 609	210	500	3,000	3.1	45.0	93.7	96.7		

F-Motor

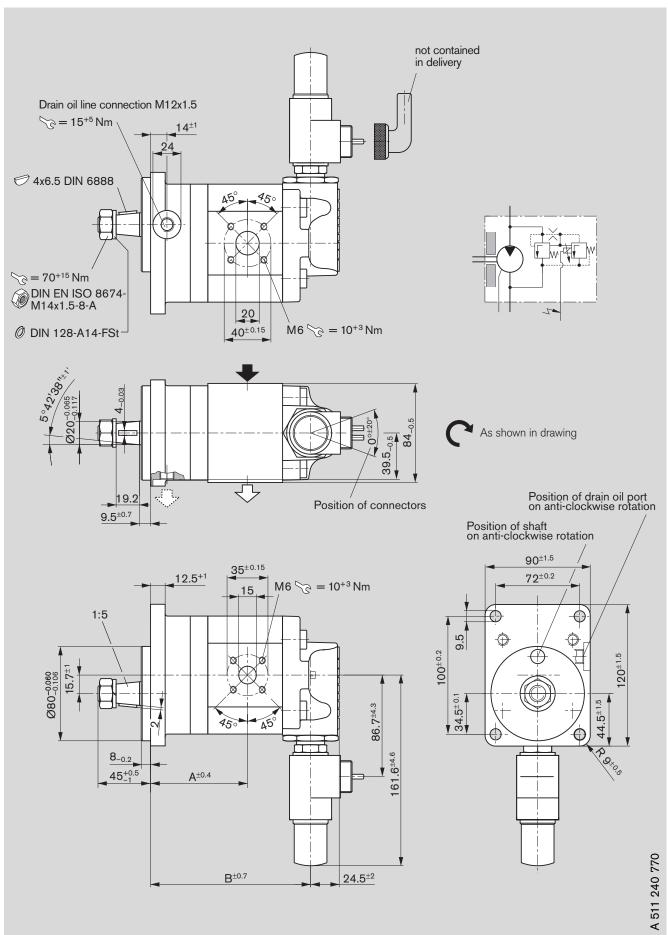


Ordering code

AZMF - 11 - \ \ \ \ \ \ \ U C N 20 M B - S0077

Displace-	Ordering-No.	Мах.	Min.	Мах.	kg	Dimension		
ment		operating	rotation	rotation				
		pressure	speed	speed		[mm]		
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В	L
8	0 511 415 607	210	500	4,000	2.9	40.7	80.3	80.3

F-Motor



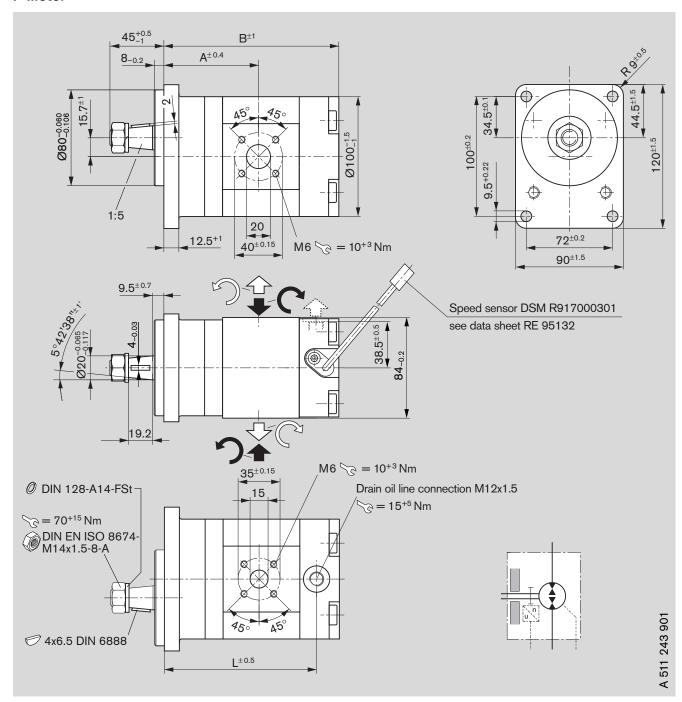
Ordering code

AZMF - 11 - _ _ _ _ _ _ S A 20 P GXXXX AZMF - 12 - _ _ _ _ _ S A 20 P GXXXX*

Displace-	Orderin	ng-No.	Min.	Max.	PVR	Coil	kg	Dimensi	on
ment			rotation	rotation		nominal			
			speed	speed		current		[mm]	
[cm ³ /rev]	L	R	[min ⁻¹]	[min ⁻¹]	[bar]	[/]		Α	В
16	_	0 511 645 007	500	3,000	130	1.5	5.0	79.0	137.7
16	-	0 511 645 005 *	500	3,000	170	1.5	5.0	79.0	137.7
16	0 511 645 306	-	500	3,000	170	1.5	5.1	79.0	137.7
16	0 511 645 307	-	500	3,000	210	1.5	5.1	79.0	137.7
16	-	0 511 645 011 *	500	3,000	210	1.5	5.1	79.0	137.7

F-Motor

33/40

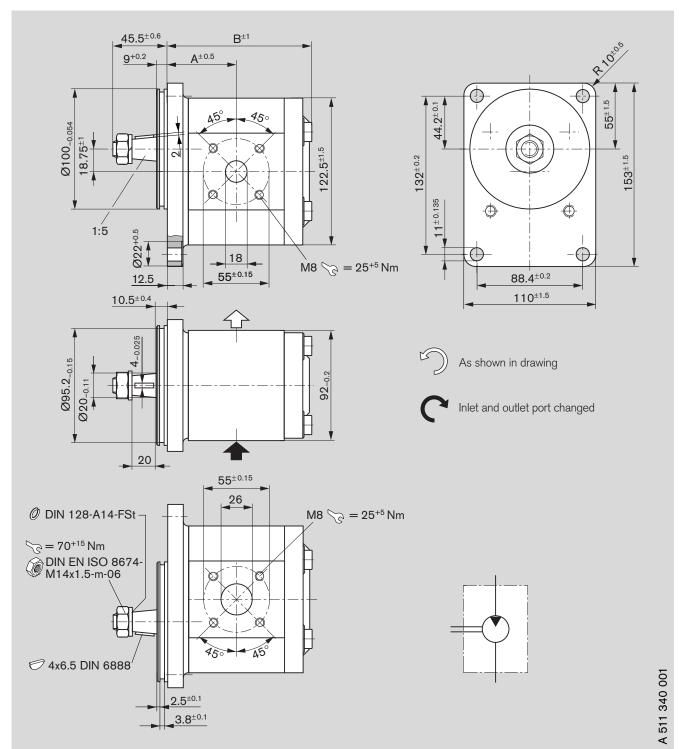

Dimensions in mm

F-Motor

Ordering code AZMF - 11 - _ _ _ _ _ _ C B 20 P GXXXX

Displace-	Orderir	na-No.	Min.	Max.	PRV	Coil	kg	Dimens	ion
ment			rotation	rotation		nominal	9		
			speed	speed		current		[mm]	
[cm ³ /rev]	L	R	[min ⁻¹]	[min ⁻¹]	[bar]	[/]		Α	B
8	0 511 425 302	_	500	4,000	210	0.75	4.7	48.7	98.3
8	_	0 511 425 015	500	4,000	90	1.5	4.6	48.7	98.3
8	_	0 511 425 013	500	4,000	130	1.5	4.7	48.7	98.3
8	_	0 511 425 012	500	4,000	170	1.5	4.7	48.7	98.3
8	_	0 511 425 014	500	4,000	150	1.5	4.7	48.7	98.3
11	_	0 511 525 013	500	3,500	170	1.5	4.7	47.5	103.5
11	_	0 511 525 011	500	3,500	180	0.75	4.8	47.5	103.5
11	0 511 525 309	_	500	3,500	90	1.5	4.8	47.5	103.5
11	0 511 525 308	_	500	3,500	180	0.75	4.8	47.5	103.5
14	_	0 511 525 014	500	3,000	210	1.5	4.9	43.2	108.5
16	-	0 511 625 019	500	3,000	210	1.5	5.0	47.5	111.7
16	0 511 625 309	_	500	3,000	210	1.5	5.0	47.5	111.7
16	_	0 511 625 020	500	3,000	210	0.75	5.0	47.5	111.7
19	_	0 511 625 018	500	3,000	210	1.5	5.1	47.5	116.7
19	_	0 511 625 022	500	3,000	210	0.75	4.0	47.5	116.7
19	-	0 511 625 021	500	3,000	180	0.75	5.1	47.5	116.7
22.5	0 511 725 311	-	500	3,000	210	1.5	5.3	55.1	122.1
22.5	-	0 511 725 021	500	3,000	210	1.5	5.3	55.1	122.1
22.5	-	0 510 725 023	500	3,000	210	0.75	5.3	55.1	122.1
22.5	-	0 511 725 027	500	3,000	170	1.5	5.2	55.1	122.1

F-Motor

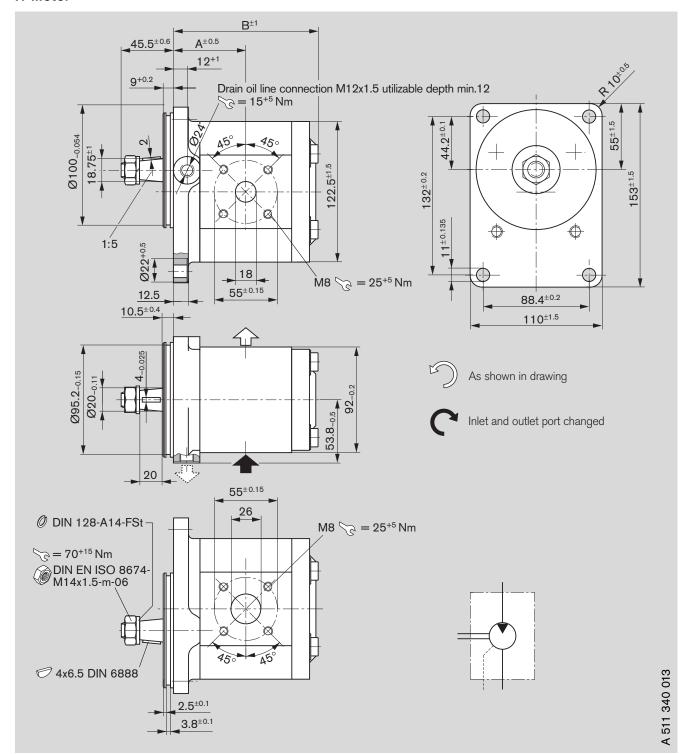


Ordering code

AZMF - 12 - T T U S A 20 P L - S0079

Displace-	Ordering-No.	Мах.	Min.	Мах.	kg	Dimension		
ment	_	operating	rotation	rotation				
		pressure	speed	speed		[mm]		
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В	L
16	0 511 645 607	230	500	3,000	3.6	79	146.7	127.7

N-Motor

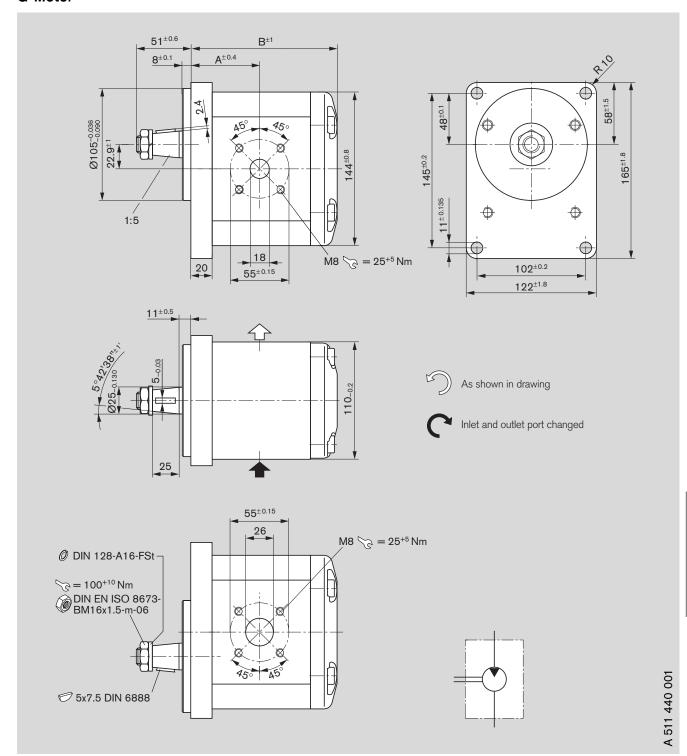


Ordering code

AZMN - 11 -	П		П		C B 20 M B
-------------	---	--	---	--	------------

Displace-	Orderir	ng-No.	Max.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В
25	0 511 725 307	-	210	500	3,000	6.3	55.0	116.1
28	0 511 725 309	0 511 725 019	200	500	3,000	6.3	56.6	119.1

N-Motor

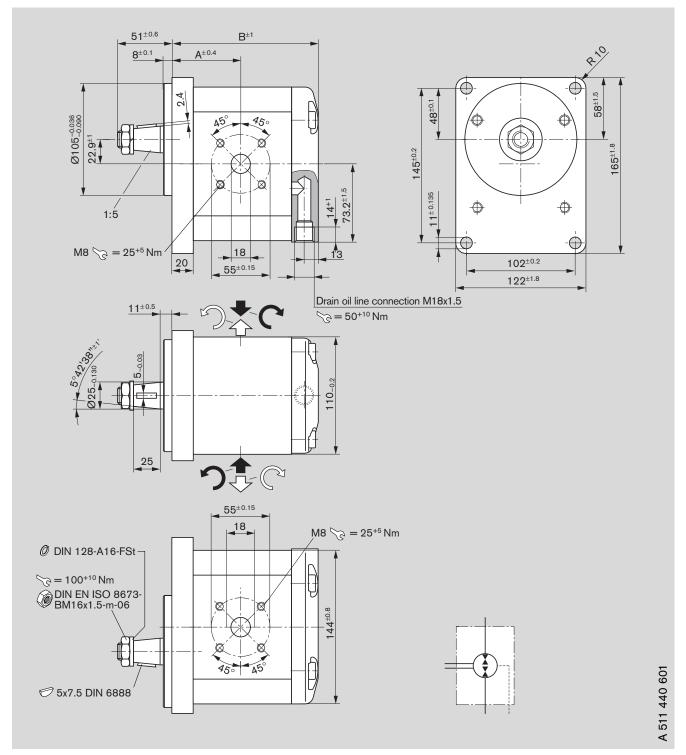


Ordering code

AZMN - 11 - 🔲 🔲 🔲 C B 20 P B - S0097

Displace-	Orderir	ng-No.	Max.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В
25	-	0 511 725 024	210		3,000	10.3	60.5	120.8
28	0 511 725 312	-	210		2,800	6.1	62.0	123.8

G-Motor

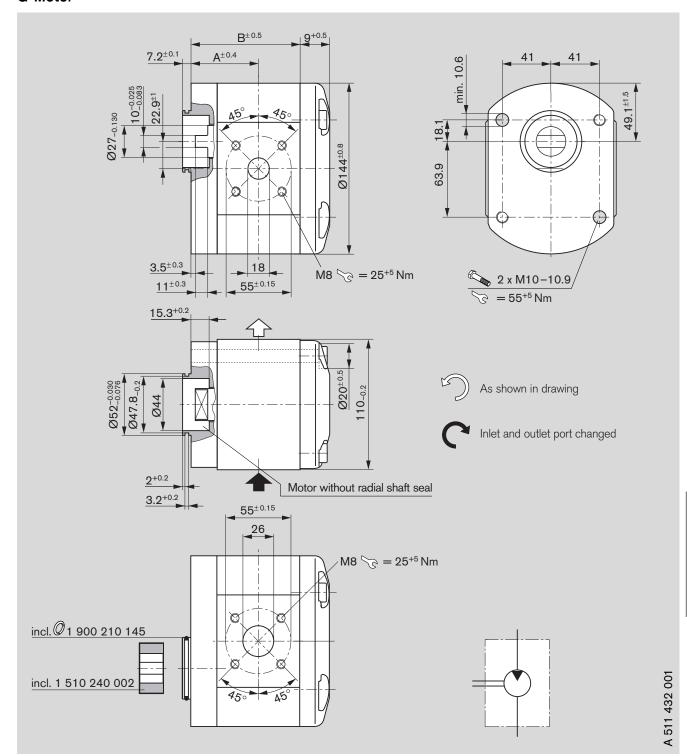


Ordering code

AZMG - 11	- 🗆 🗀	СВ	20 M	В

Displace-	Orderir	Max.	Min.	Max.	kg	Dimension		
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В
22.5	0 511 725 300	0 511 725 001	180	500	3,000	9.1	61.0	128.7
32	0 511 725 301	0 511 725 002	180	500	2,800	9.6	64.5	137.2
45	0 511 725 302	0 511 725 003	180	500	2,600	10.1	69.5	149.2

G-Motor



O		
Ora	ering	coae

☐ U C B 20 K X* - S0077 AZMG - 11 - [UCB20MX-S0077

Displace-	Ordering-No.	Max.	Min.	Max.	kg	Dimension		
ment		operating	rotation	rotation				
		pressure	speed	speed		[mm]		
[cm ³ /rev]	Universal	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В	
22.5	0 511 725 600	210	500	3,000	9.0	61.0	128.7	
28	0 511 726 603	210	500	3,000	9.2	63.0	133.7	
32	0 511 726 604*	210	500	2,800	9.4	64.5	137.2	

G-Motor

Ordering code

AZMG - 11 - _ _ _ N M 20 M B

Displace-	Orderin	ng-No.	Мах.	Min.	Max.	kg	Dimension	
ment			operating	rotation	rotation			
			pressure	speed	speed		[mm]	
[cm ³ /rev]	L	R	[bar]	[min ⁻¹]	[min ⁻¹]		Α	В
45		0 511 715 002	210	500	2,600	8.4	70.5	151.2

Notes

Filter recommendation

The major share of premature failures in external gear motors is caused by contaminated pressure fluid.

As a warranty cannot be issued for dirt-specific wear, we recommended filtration compliant with cleanliness level 20/18/15 ISO 4406, which reduces the degree of contamination to a permissible dimension in terms of the size and concentration of dirt particles:

Operating pressure [bar]	>160	<160
Contamination class NAS 1638	9	10
Contamination class ISO 4406	18/15	19/16
To be reached with $\beta_X = 75$	20	25

We recommend that a full-flow filter always be used. Basic contamination of the pressure fluid used may not exceed class 20/18/15 according to ISO 4406. Experience has shown that new fluid quite often lies above this value. In such instances a filling device with special filter should be used.

General

- The motors supplied by us have been checked for function and performance. No modifications of any kind may be made to the pumps; any such changes will render the warranty null and void!
- Motor may only be operated in compliance with permitted data (see pages 14 – 18).

Project planning notes

Comprehensive notes and suggestions are available in Hydraulics Trainer, Volume 3 RE 00 281, "Project planning notes and design of hydraulic systems". Where external gear motors are used we recommend that the following note be adhered to.

Technical data

All stated technical data is dependent on production tolerances and is valid for specific marginal conditions.

Note that, as a consequence, scattering is possible, and at certain marginal conditions (e.g. viscosity) the technical data may change.

Characteristics

When designing the external gear motor, note the maximum possible service data based on the characteristics displayed on pages 10 to 14.

Additional information on the proper handling of hydraulic products from Bosch Rexroth is available in our document: "General product information for hydraulic products" RE 07 008.

Leakage oil line

A leakage oil line must be connected directly to the tank in reversible motors or motors stressed by run-back. Observe sufficient dimensions.

Contained in delivery

The components with characteristics as described under device measurements and ordering code, pages 19 – 39, are contained in delivery.

You can find further information in our publication: "General Operating Instructions for External Gear Units" RF 07 012-B1.

Bosch Rexroth AG
Hydraulics
Produktbereich Außenzahnradmaschinen
Robert-Bosch-Straße 2
D-71701 Schwieberdingen
Tel. +49 (0) 711-811 10 63
Fax +49 (0) 711-811 26 18 83
brm-az.info@boschrexroth.de
www.boschrexroth.com/brm

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Radial piston motors

Designation	Туре	Frame size	Series	Data sheet	Page
Radial piston motor for frame integrated drives	MCR-A	315	3x	15195	739
Radial piston motor for compact drives	MCR-C	20	33	15197	753
Radial piston motor for wheel drives	MCR-F	315	3x	15198	767
Radial piston motor for integrated drives	MCR-H	320	33	15199	787
Radial piston motor for hydraulic drive assist	MCR-R	10	41	15223	803
Radial piston motor for track drives	MCR-T	510	33	15221	811
Radial piston motor for heavy duty wheel drives	MCR-W	310	33	15200	823
Radial piston motor for slew drives	MCR-X	35	3x	15214	841
Radial piston motors for industrial applications	MCR-D/MCR-E	310	33	15196	851

Product Catalog Mobile Hydraulics | Part 2: Motors, Gears

Rexroth Bosch Group

Radial piston motor for frame integrated drives MCR-A

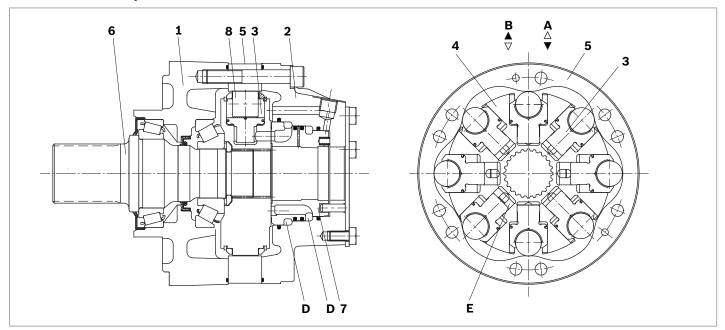
RE 15195

Edition: 07.2015 Replaces 12.2013

▶	Frame	size	MCR3	MCR5	MCR10.	MCR15

- ► Displacement 160 cc to 2150 cc
- ▶ Differential pressure up to 450 bar
- ► Torque output up to 13687 Nm
- ► Speed up to 875 rpm
- ▶ Open and closed circuits

Features


	Compact	robust	constri	iction
▶	Compact	robust	constru	ICHOU

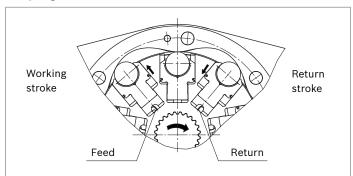
- ▶ High volumetric and mechanical efficiencies
- ▶ Front case mount
- ► Splined drive shaft
- ► High reliability
- ► Low maintenance
- ► Smooth running at very low speeds
- ▶ Low noise
- ► Bi-directional
- Sealed tapered roller bearings
- ▶ Freewheeling possible
- ► Available with:
 - Holding brake (multi-disc)
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

Contents	
Functional description	2
Ordering code	5
Technical data	7
Efficiencies	8
Permitted loading on drive shaft	9
Dimensions	10
Selection guide	14

2

Functional description

Hydraulic motors of the type MCR-A are radial piston motors with front case mounting and splined drive shaft. The MCR-A motors are intended for open or closed circuit operations as drive motors for the chain drive function primarily on skid steer loaders. A-type motors can be used for a variety of applications depending on the attachment that can be mounted on the spline shaft of the motor (e. g. gear drive, sprocket, chain drive).


Construction

Two part housing (1, 2), rotary group (3, 4, 8), cam (5), drive shaft (6) and flow distributor (7)

Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

Torque generation

The number of working and return strokes corresponds to the number of lobes on the cam multiplied by number of pistons in the cylinder block.

Flow paths

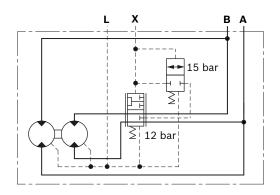
The ports **A** and **B**, which are located in the rear case, carry oil through the distributor to the cylinder chambers (**E**).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard.

Freewheeling

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports **A** and **B** to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port **L**. In this condition, the pistons are forced into the cylinder block which forces the rollers to lose contact with the cam thus allowing free rotation of the shaft.

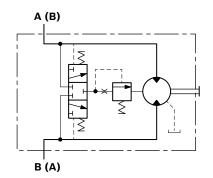

Bosch Rexroth AG, RE 15195/07.2015

Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

Bosch Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

▼ Schematic


Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or anti-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request).

Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost / charge pressure of 25 bar.

▼ Schematic

Flushing flow rates

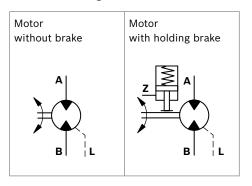
Flushing code	Orifice size	Flow (I/n	nin) at 25 bar ¹⁾
	(mm)	min	max
F1	Ø1	2.2	2.7
F2	Ø1.5	5.0	6.1
F7	Ø1.7	6.4	7.8
F4	Ø2	8.2	10.7
F6	Ø2.3	8.8	11.4

1) 0.6 mm Shim (Standard), Cracking pressure = 11±3 bar

Holding brake (multi-disc brake)

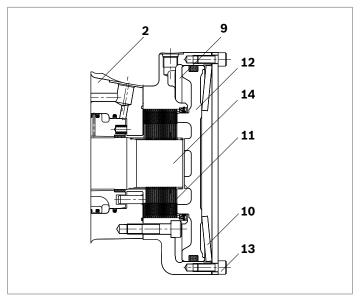
Mounting

By way of rear housing (2) and brake shaft (14).


Brake application

As a safety requirement in mobile applications a parking brake may be provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs (11) that are compressed by a disc spring (10). The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area (9) compresses the disc spring using brake piston (12) thus allowing the brake discs (11) to turn independently.

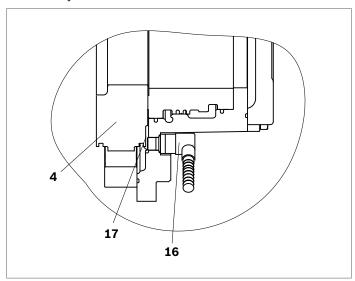
Note


This brake is provided solely for static use - not to be used dynamically.

▼ Schematic diagrams

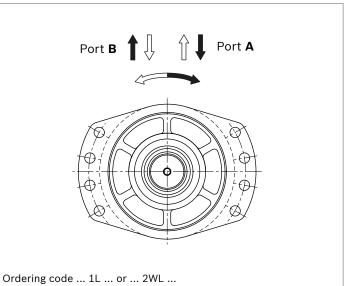
Manual release of holding brake

The brake may also be released manually by loosening screws (13).


Bosch Rexroth AG, RE 15195/07.2015

Speed sensor

A Hall-effect speed sensor (16) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (17) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.


Versions are available for use with regulated supplies 10 V (Code P1) and for direct connection to a 12 V or 24 V unregulated supply (Code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code P0). These "sensor-ready" motors may be fitted with a sensor at a later date.

Direction of shaft rotation with flow

(viewed from drive shaft)

Ordering code

01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16
MCR		Α			Z	/										

Radial piston motor

01	Radial-piston type, low-speed, high-torque motor	MCR	
----	--	-----	--

Frame size

02	Frame size	3	3
		5	5
		10	10
		15	15

Housing type

03	Front case flanged	Α
----	--------------------	---

Nominal size, displacement $V_{\rm g}$ in \mbox{cm}^3/\mbox{rev}

4 Frame size 3	160	225	255	280	325	365	400		
Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-	
High displacement: motors use stepped pistons	-	-	-	-	•	•	•	1	
Frame size 5		380	470	520	565	620	680	750	820
Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-	_
High displacement: motors use stepped pistons	HD	-	-	-	-	•	•	•	•
Frame size 10		780	860	940	1120	1250	1340		
Low displacement: motors use standard cylindrical pistons	LD	•	•	•	-	-	-		
High displacement: motors use stepped pistons	HD	-	-	-	•	•	•		
Frame size 15		1130	1250	1500	1780	2150		•	
Low displacement: motors use standard cylindrical pistons	LD	•	•	•	-	-	1		
High displacement: motors use stepped pistons	HD	_	-	-	•	•	1		

Drive shaft

05	Spline shaft ANSI B92.1	MCR3	A45
		MCR5	A60
		MCR10	A75
		MCR15	W80

Rear shaft

	·· ··········		
06	Without rear shaft	Z	l

Series

0	77 Series 32	32
	Series 33	33

Bra	ke		MCR3	MCR5	MCR10	MCR15	
08	Without brake		•	•	•	•	A0
	Hydraulic release spring applied multi-disc holding brake	2200 Nm	•	•	_	_	B2
		4400 Nm	=	•	-	-	В4
		4400 Nm	-	_	•	-	B5
		7000 Nm	-	_	•	_	B7
		11000 Nm	-	-	_	•	B11

Seals

	···	
09	NBR (nitrile rubber)	М
	FKM (fluoroelastomer / Viton)	V

• = Available - = Not available

01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16
MCR		Α			Z	/										

Sin	gle/two-speed operation	MCR3	MCR5	MCR10	MCR15	
10	Single speed, standard direction of rotation	•	•	•	•	1L
	Bi-directional two speed, standard direction of rotation ¹⁾	•	•	-	_	2WL
	Switchable two speed, anti-clockwise direction of rotation	-	•	-	•	2L
	Switchable two speed, clockwise direction of rotation	-	•	-	•	2R

Ports

1	11	Tapped with UNF thread (SAE J514)	12
		Tapped with UNF thread (SAE J514) (A and B ports SAE split flange metric bolt holes)	42

Studs

		$\overline{}$
		1
112	Without stude (no code)	1
112	Without studs (no code)	1 1
1	· · · · · · · · · · · · · · · · · · ·	1 1

Speed sensor

1	3 Without sensor (no code)	
	Sensor ready	P0
	Sensor without regulator	P1
	Sensor with regulator	P2

Flushing

ſ	14	Without flushing (no code)]
		With flushing (see table on page 3)	F1-F7	1

Special order

opecial order	
15 Special feature	soxxx

Other

16 Mark in text here *

1) Not available for MCR10A

Footer from page 7

- 1) Ensure motor case is filled with oil prior to start-up.
- For installation and maintenance details, please see instruction manual 15215-B.
- 3) For use with environmentally acceptable fluids HEES, HEPG, HETG, fluoroelastomer / Viton seals must be specified.
- 4) Extension of the allowable temperature range may be possible depending on specification. Please consult Bosch Rexroth Engineering Department in Glenrothes for further details.
- 5) Maximum values should only be applied for a small portion of the duty cycle. Please consult Bosch Rexroth Engineering. Department in Glenrothes for motor life calculations based on particular operating cases.
- 6) When operating motors in series, please consult Bosch Rexroth Engineering Department in Glenrothes.
- 7) For continuous operation at speeds <5 rpm please consult Bosch Rexroth Engineering Department in Glenrothes.
- 8) Based on nominal no-load Δp of 20 bar in full-displacement mode.
- 9) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.

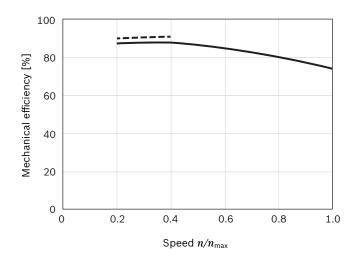
Note

- Motor performance values are based on theoretical calculations.
- ► Efficiencies are not taken into consideration for theoretical calculations.
- ► Brake torque accounts for tolerances. Values are based when used with standard mineral oil (HLP)

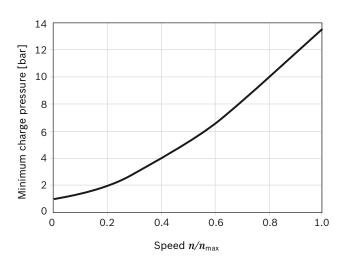
Please refer the related foot notes for more details.

Bosch Rexroth AG, RE 15195/07.2015

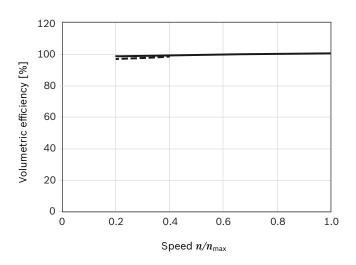
Technical data


Frame size			MCR3	MCR5	MCR10	MCR15				
Type of mounting			Front c	ase flange	e mountin	g				
Pipe connections ¹⁾²⁾			Thread	ed per SA	E J514; F	langed pe	er SAE J5	18		
Shaft loading			see pag	ge 9						
Weight										
Single speed (1L)	m	kg	23	43	70	102				
Two speed (2WL)	m	kg	28	50	_	-				
Two speed (2L/2R)	m	kg		43		102				
Hydraulic fluid ³⁾										
Fluid cleaniness			ISO 440	06, Class	20/18/15					
Fluid viscosity range	$\nu_{min/max}$	mm²/s	10 to 2	000						
Fluid temperature range ⁴⁾	$ heta_{ extsf{min/max}}$	°C	-20 to +	·85						
Pressure			Low dis	placeme	nt		High dis	splaceme	nt	
Operating pressure	p_{nom}	bar	250				250			
Maximum differential pressure ⁵⁾⁶⁾	Δp_{max}	bar	450				400			
Maximum pressure at port A or B ⁵⁾⁶⁾	p_{max}	bar	470				420			
Maximum case drain pressure	$p_{case\ max}$	bar	10				10			
Motor performance MCR3										
Displacement	V_{g}	cm ³ /rev	160	225	255	280	325	365	400	
Specific torque		Nm/bar	3	4	4	4	5	6	6	
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	1146	1611	1826	2005	2069	2324	2546	
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Maximum speed (1L) ⁸⁾⁹⁾	$n_{\sf max}$	rpm	670	475	420	385	330	295	270	
Maximum speed (2WL) ⁸⁾⁹⁾	n_{max}	rpm	875	620	550	500	430	385	350	
Motor performance MCR5										
Displacement	V_{g}	cm ³ /rev	380	470	520	565	620	680	750	820
Specific torque		Nm/bar	6	7	8	9	10	11	12	13
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	2722	3366	3724	4047	3947	4329	4775	5220
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Maximum speed (1L) ⁸⁾⁹⁾	$n_{\sf max}$	rpm	475	385	350	320	290	265	240	220
Maximum speed (2WL) ⁸⁾⁹⁾	n_{max}	rpm	570	465	420	385	350	320	290	265
Motor performance MCR10										
Displacement	V_{g}	cm ³ /rev	780	860	940		1120	1250	1340	
Specific torque		Nm/bar	12	14	15		18	20	21	
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	5586	6159	6732		7130	7958	8531	
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5		0.5	0.5	0.5	
Maximum speed (1L and 2WL) ⁸⁾⁹⁾	n_{max}	rpm	215	195	178		150	134	125	
Motor performance MCR15										
Displacement	V_{g}	cm ³ /rev	1130	1250	1500		1780	2150		
Specific torque		Nm/bar	18	20	24		28	34		
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	8093	8952	10743		11332	13687		
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5		0.5	0.5		
Maximum speed (1L and 2L/2R) ⁸⁾⁹⁾	n_{max}	rpm	145	130	110		90	75		
Brake			MCR3		MCR5		MCR10		MCR15	
Holding brake (disc brake)			B2		B2	B4	B5	В7	B11	
Minimum holding torque	$t_{min/max}$	Nm	2200		2200	4400	4400	7000	11000	
Release pressure (min)	$p_{rel\;min}$	bar	11		11	11	11	11	12	
Release pressure (max)	$p_{rel\ max}$	bar	15		15	15	15	15	15	
Maximum pressure at brake port "Z"	p_{max}	bar	40		40	40	40	40	40	
Oil volume to operate brake	V_{rel}	cm ³	23		23	46	17	36	77	

Footer on page 6


8

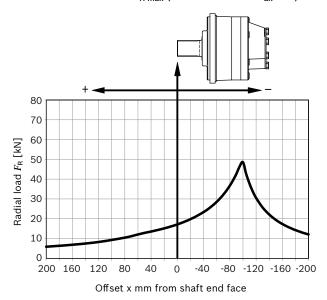
Efficiencies


▼ Mechanical efficiency

▼ Charge pressure

▼ Volumetric efficiency

---- 100 bar / 1450 psi ---- 300 bar / 4350 psi

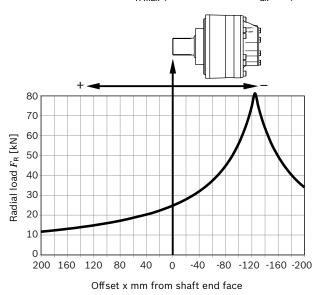

Note:

For specific performance information or operating conditions contact the Engineering Department at Bosch Rexroth, Glenrothes.

Permitted loading on drive shaft

Drive shaft ...3A A45...

Maximum radial load $F_{R max}$ (with axial load $F_{ax} = 0$)


Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):

 $F_{\text{ax max}} = 30700 \text{ N} \leftarrow +$

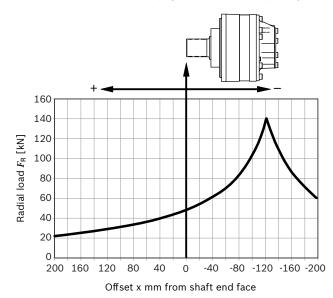
 $F_{\text{ax max}} = 25200 \text{ N} \rightarrow -$

Drive shaft ...5A A60...

Maximum radial load $F_{R \text{ max}}$ (with axial load $F_{ax} = 0$)

Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):

 $F_{\text{ax max}} = 49000 \text{ N} \leftarrow +$

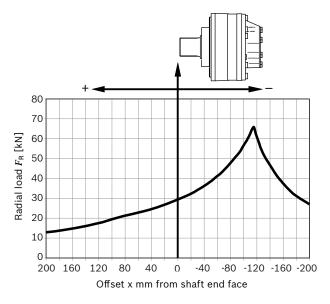

 $F_{\rm ax\; max}$ = 35400 N \rightarrow -

Note:

- ► These values and graphs are for initial guidance only
- ► For actual motor life calculations under typical or specified duty cycles, contact Bosch Rexroth Engineering Department in Glenrothes

Drive shaft ...10A A75...

Maximum radial load $F_{R \text{ max}}$ (with axial load $F_{ax} = 0$)


Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):

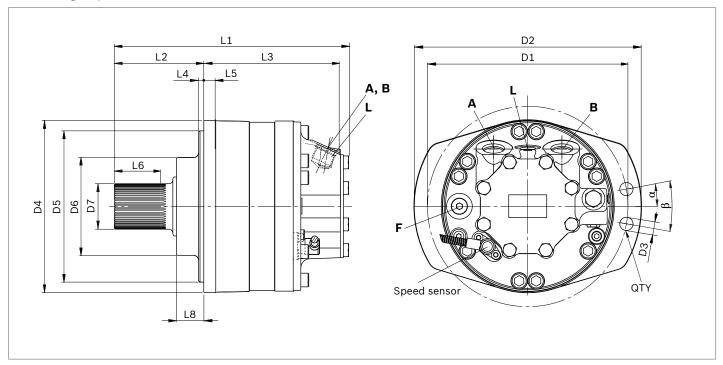
 $F_{\text{ax max}} = 68000 \text{ N} \leftarrow +$

 $F_{\text{ax max}}$ = 63400 N \rightarrow -

Drive shaft ...15A W80...

Maximum radial load $F_{R \text{ max}}$ (with axial load $F_{ax} = 0$)

Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):


 $F_{\text{ax max}} = 95400 \text{ N} \leftarrow +$

 $F_{\text{ax max}}$ = 82600 N \rightarrow -

RE 15195/07.2015, Bosch Rexroth AG

Dimensions

MCR-A single speed (1L)

Motor	D1	D2	D3	D4	D5	D6	D7
MCR3	ø210	ø237	ø14	ø198	ø180	ø100	ø45
MCR5	ø265	ø300	ø17.5	ø228	ø200	ø131	ø60
MCR10	ø300	ø335	ø17.5	ø262	ø224	ø160	ø75
MCR15	ø335	ø375	ø22.5	ø310	ø280	ø176	ø80

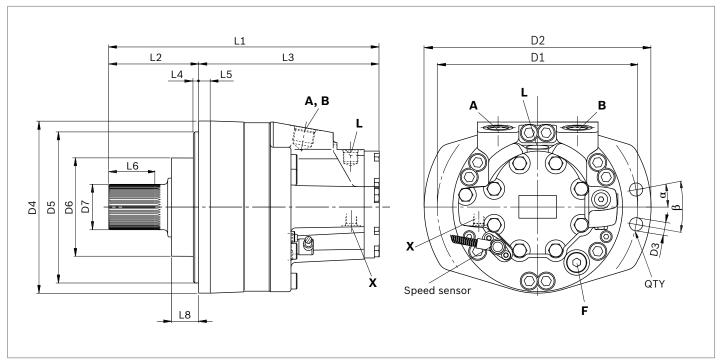
Motor	L1	L2	L3	L4	L5	L6	L8	α	β	QTY
MCR3	260	93	224	6	15	54	22	0°	15°	10
MCR5	308.5	118.5	190	5	15	61	36	10°	20°	8
MCR10	352	110	242	12	25	47	32	0°	15°	10
MCR15	383.5	133	250.5	17	26	57	46	10°	20°	8

Ports

Motor	Designation	Port function	Standard	Size	$p_{\sf max}$ [bar]	State ²⁾
MCR3	A, B	Inlet, outlet	SAE J514	7/8-14 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	9/16-18 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
MCR5	A, B	Inlet, outlet	SAE J514	1 1/16-12 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
MCR10	A, B	Inlet, outlet	SAE J518 ³⁾	3/4 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
MCR15	A, B	Inlet, outlet	SAE J518 ³⁾	3/4 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х

¹⁾ Depends on nominal size

Before finalizing your design, request a binding installation drawing.


²⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

³⁾ Only dimensions according to SAE J518 (Code 62 - high pressure series)

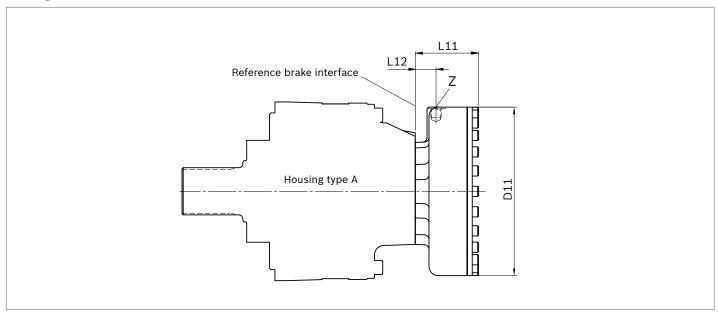
12

MCR-A two speed (2WL)

Motor	D1	D2	D3	D4	D5	D6	D7			
MCR3	ø210	ø237	ø14	ø198	ø180	ø100	ø45.52			
MCR5	ø265	ø300	ø17.5	ø228	ø200	ø131	ø60.2			
Motor	L1	L2	L3	L4	L5	L6	L8	α	β	QTY
MCR3	219.5	93.1	226.5	6	15	53.5	22.75	0°	15°	10
MCR5	357.5	118.5	239	5	15	61	36	10°	20°	8

Ports

Motor	Designation	Port function	Code	Size	$oldsymbol{p}_{\sf max}$ [bar]	State ²⁾
MCR3	A, B	Inlet, outlet	SAE J514	7/8-14 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	9/16-18 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	x	2 speed port	SAE J514	9/16-18 UNF	35	0
MCR5	A, B	Inlet, outlet	SAE J514	1 1/16-12 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	X	2 speed port	SAE J514	9/16-18 UNF	35	0


¹⁾ Depends on nominal size

Before finalizing your design, request a binding installation drawing.

 $_{2)}$ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Holding brake (multi-disc brake)

Motor	Brake	L11	L12	D11
MCR3	B2	67.3	22	ø174
MCR5	B2	67.3	22	ø174
	В4	80.7	26.5	ø215
MCR10	B5	84.7	26.5	ø215
	В7	97.8	29	ø251
MCR15	B11	102.3	33	ø282

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ¹⁾
MCR3	Z	Brake port	SAE J515	9/16-18 SAE	30	0
MCR5	Z	Brake port	SAE J515	9/16-18 SAE	30	0
MCR10	Z	Brake port	SAE J515	9/16-18 SAE	30	0
MCR15	z	Brake port	SAE J515	9/16-18 SAE	30	0

¹⁾ O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing.

14

Selection guide

Data sheet	Motor type		Frame size					
	Application		3 160400 cc	5 380820 cc	6 820920 cc	10 7801340 cc	15 11302150 cc	20 17503000 cc
15198	MCR-F Wheel drives	181	•	•	-	•	•	-
15200	MCR-W Heavy duty wheel drives		•	•	-	•	-	-
15195	MCR-A Frame integrated drives		•	•	-	•	•	-
15199	MCR-H Integrated drives		•	•	-	•	•	•
15221	MCR-T Track drives		-	•	•	•	-	-
15223	MCR-R Series 41 Hydraulic drive assist	6	-	-	-	•	-	-
15214	MCR-X Slew drives	100	•	•	-	-	-	-
15197	MCR-C Compact drives		-	-	-	-	-	•
15196	MCR-D Industrial applications		•	•	-	•	-	-
	MCR-E Industrial applications		_	•	-	-	-	-

Bosch Rexroth Limited

Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 15 92 631 777 Telefax +44 15 92 631 936 www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.


Bosch Rexroth AG, RE 15195/07.2015

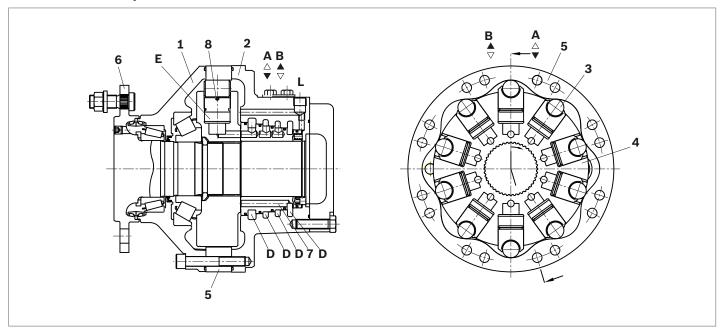
Rexroth Bosch Group

Radial piston motor for compact drives MCR-C

RE 15197

Edition: 12.2013

Frame size MC	,K20
---------------	------


- ▶ Displacement 1750 cc to 3000 cc
- ▶ Differential pressure up to 450 bar
- ► Torque output up to 19099 Nm
- ► Speed up to 125 rpm
- ▶ Open and closed circuits

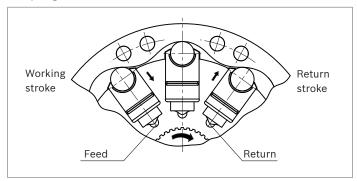
Features

- Compact robust construction
- ▶ High volumetric and mechanical efficiencies
- ► Rear case mount
- ► Wheel flange with wheel studs
- ► High reliability
- ► Low maintenance
- ► Smooth running at very low speeds
- ▶ Low noise
- ▶ Bi-directional
- ► Sealed tapered roller bearings
- ► Freewheeling possible
- ► Available with:
 - Holding brake (multi-disc)
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

Contents	
Functional description	2
Ordering code	5
Technical data	7
Efficiencies	8
Permitted loading on drive shaft	9
Dimensions	10
Selection guide	14

Functional description

Hydraulic motors of the type MCR-C are radial piston motors with rear case mounting and flanged drive shaft. These motors have a compact front housing and are intended for drives in open or closed circuits. These motors are used in a wide range of applications where there is lower external loading. The integrated flange with wheel studs allows easy installation of standard wheel rims.


Construction

Two part housing (1, 2), rotary group (3, 4, 8), cam (5), drive shaft (6) and flow distributor (7).

Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (8) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (3).

Torque generation

The number of working and return strokes corresponds to the number of lobes on the cam multiplied by number of pistons in the cylinder block.

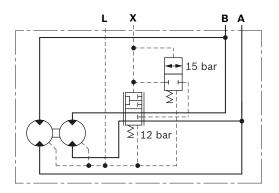
Flow paths

The ports **A** and **B**, which are located in the rear case, carry oil through the distributor to the cylinder chambers (**E**).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard.

Freewheeling

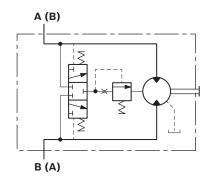

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports **A** and **B** to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port **L**. In this condition, the pistons are forced into the cylinder block which forces the rollers to lose contact with the cam thus allowing free rotation of the shaft.

Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

Bosch Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

▼ Schematic


Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or counter-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request).

Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost / charge pressure of 25 bar.

▼ Schematic

Flushing flow rates

Flushing code	Orifice size	Flow (I/n	Flow (I/min) at 25 bar ¹⁾	
	(mm)	min	max	
F1	Ø1	2.2	2.7	
F2	Ø1.5	5.0	6.1	
F7	Ø1.7	6.4	7.8	
F4	Ø2	8.2	10.7	
F6	Ø2.3	8.8	11.4	

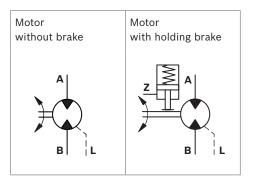
1) 0.6 mm Shim (Standard), Cracking pressure = 11±3 bar

4 MCR-C | Radial piston motor for compact drives Functional description

Holding brake (multi-disc brake)

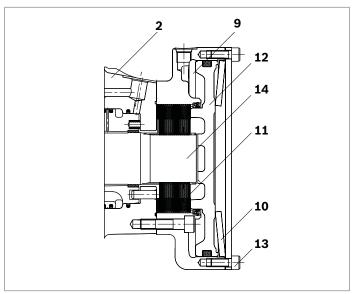
Mounting

By way of rear housing (2) and brake shaft (14).


Brake application

As a safety requirement in mobile applications a parking brake may be provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs (11) that are compressed by a disc spring (10). The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area (9) compresses the disc spring using brake piston (12) thus allowing the brake discs (11) to turn independently.

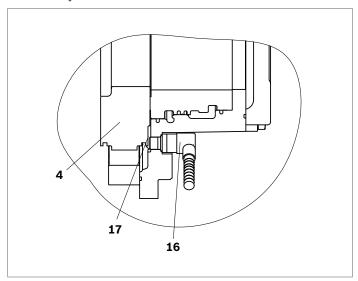
Note


This brake is provided solely for static use - not to be used dynamically.

▼ Schematic diagrams

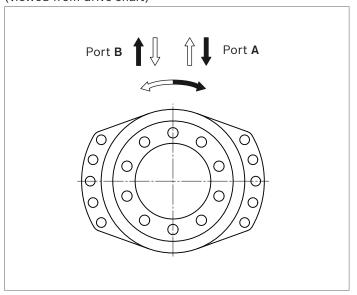
Manual release of holding brake

The brake may also be released manually by loosening screws (13).



Speed sensor

A Hall-effect speed sensor (16) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (17) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.


Versions are available for use with regulated supplies 10 V (Code P1) and for direct connection to a 12 V or 24 V unregulated supply (Code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code P0). These "sensor-ready" motors may be fitted with a sensor at a later date.

Direction of shaft rotation with flow

(viewed from drive shaft)

Bosch Rexroth AG, RE 15197/12.2013

Ordering code

01	02	03	04	05	06		07	08	09	10	11	12	2	13	14	15	16
MCR	20	С		F280	Z	/	33				42						
												,					
Radial pist	on motor	•															
01 Radial	piston ty	pe, low-	speed, l	nigh-torqu	e motor												MCR
Frame size																	
02 Frame	size 20																20
Housing ty	pe																
03 Short	front cas	e – rear	case mo	unting fla	nge												С
Nominal si	ze, displa	acement	V _g in cr	n³/rev													
04 Frame													1750	2100	2500	3000	
Lov	v displac	ement: n	notors u	se standa	ırd cylin	drical p	istons					LD	•	•	-	-	
Hig	h displac	ement: r	motors ι	ıse steppe	ed pisto	ns						HD	-	_	•	•	
Drive shaft																	
05 With fl	ange ø28	80 mm															F280
Rear shaft																	
06 Withou	ıt rear sh	aft															Z
Series																	
07 Series	33																33 ¹⁾
Brake																	
08 Withou	ıt brake																Α0
Hydraı	ılic releas	se spring	g applied	d multi-dis	sc holdii	ng brake	19000	Vm									B19
Seals																	
09 NBR (r	nitrile rub	ber)															М
FKM (f	luoroelas	stomer /	Viton)														٧
Single/two	-speed o	peration	1														
10 Single				n of rotat	ion												1L
Bi-dire	ctional t	wo speed	d, stand	ard direct	ion of r	otation											2WL
Ports																	
	d with UN																42
(A and	B ports	SAE spli	t flange	metric bo	It holes)											42
Studs																	
12 Withou	ut studs (no code)														
	heel stu																S
With to	wice norr	nal num	ber of w	heel stud	s and n	ıts											SS
Speed sen																	
13 Withou		(no cod	e)														
	r ready																P0
	r without		or														P1
Senso	r with reg	gulator															P2

• = Available - = Not available

 $^{^{1)}}$ This data sheet also applies to series 32.

	01	02	03	04	05	06		07	80	09	10	11	12	13	14	15	16
	MCR	20	С		F280	Z	/	33				42					
_																	
_																	

Flushing

1	4	Without flushing (no code)	
		With flushing (see table on page 3)	F1-F7

Special order

	15	Special feature	soxxx	1
- 1		openia realare	JOOKKA	

Other

16 Mark in text here

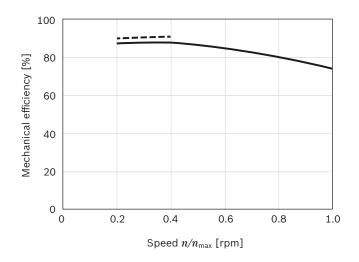
Footer from page 7

- 1) Ensure motor case is filled with oil prior to start-up.
- For installation and maintenance details, please see instruction manual 15215-B.
- 3) For use with environmentally acceptable fluids HEES, HEPG, HETG, fluoroelastomer / Viton seals must be specified.
- 4) Extension of the allowable temperature range may be possible depending on specification. Please consult Bosch Rexroth Engineering Department in Glenrothes for further details.
- 5) Maximum values should only be applied for a small portion of the duty cycle. Please consult Bosch Rexroth Engineering Department in Glenrothes for motor life calculations based on particular operating cases.
- 6) When operating motors in series, please consult Bosch Rexroth Engineering Department in Glenrothes.
- 7) For continuous operation at speeds <5 rpm please consult Bosch Rexroth Engineering Department in Glenrothes.
- 8) Based on nominal no-load Δp of 20 bar in full-displacement mode.
- 9) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.
- $_{10)}$ Guide values for up to 5000 hours of motor operation (ISO VG46 at 50 $^{\circ}\text{C}$).

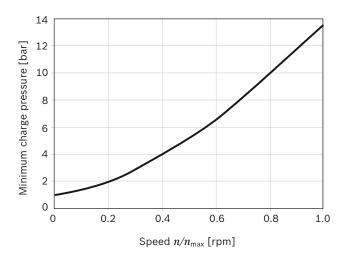
Note

- ► Motor performance values are based on theoretical calculations.
- ► Efficiencies are not taken into consideration for theoretical calculations.
- ► Brake torque accounts for tolerances. Values are based when used with standard mineral oil (HLP)

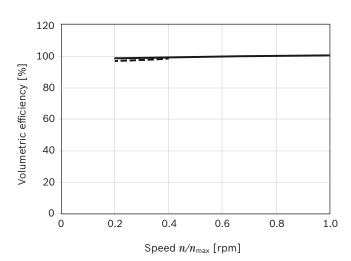
Please refer the related foot notes for more details.


Bosch Rexroth AG, RE 15197/12.2013

Technical data


Frame size			MCR20	
Type of mounting			Flange mounting	
Pipe connections ¹⁾²⁾			Threaded per SAE J514; Flanged p	er SAE J518
Shaft loading			see page 9	
Weight				
Single speed (1L)	m	kg	121	
Two speed (2WL)	m	kg	121	
Hydraulic fluid ³⁾				
Fluid cleaniness			ISO 4406, Class 20/18/15	
Fluid viscosity range	$v_{min/max}$	mm²/s	10 to 2000	
Fluid temperature range ⁴⁾	$ heta_{ ext{min/max}}$	°C	-20 to +85	
Pressure			Low displacement	High displacement
Operating pressure	p_{nom}	bar	250	250
Maximum differential pressure ⁵⁾⁶⁾	Δp_{max}	bar	450	400
Maximum pressure at port A or B ⁵⁾⁶⁾	p_{max}	bar	470	420
Maximum case drain pressure	$p_{case\ max}$	bar	10	10
Motor performance				
Displacement	V_{g}	cm ³ /rev	1750 2100	2500 3000
Specific torque		Nm/bar	28 33	40 44
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	12533 15040	15915 19099
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5 0.5	0.5 0.5
Maximum speed (1L and 2WL) ⁸⁾⁹⁾	n_{max}	rpm	125 125	115 115
Continuous operating power ¹⁰⁾	P	kW	117.29 103.12	94.18 93.01
			MCR20	
Holding brake (disc brake)			B19	
Minimum holding torque	$t_{min/max}$	Nm	19000	
Release pressure (min)	$p_{rel\;min}$	bar	15	
Release pressure (max)	$p_{rel\ max}$	bar	30	
Maximum pressure at brake port "Z"	p_{max}	bar	40	
Oil volume to operate brake	V_{rel}	cm ³	99	

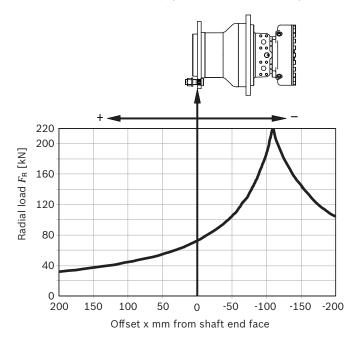
Efficiencies


▼ Mechanical efficiency

▼ Charge pressure

▼ Volumetric efficiency

100 bar / 1450 psi --- 300 bar / 4350 psi


Note:

For specific performance information or operating conditions contact the Engineering Department at Bosch Rexroth, Glenrothes.

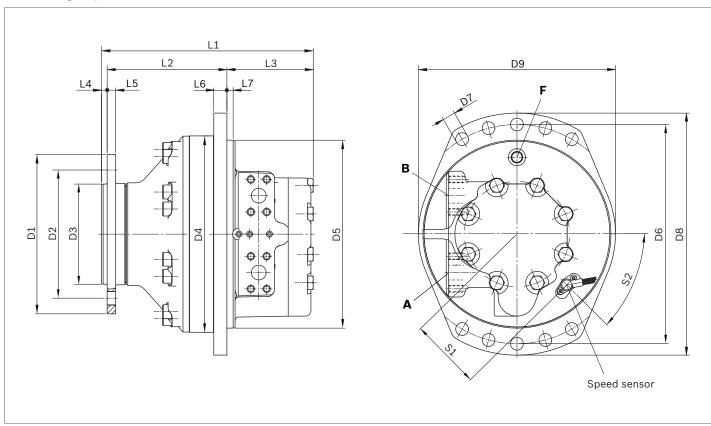
Permitted loading on drive shaft

Drive shaft ...20C F280...

Maximum radial load $F_{R max}$ (with axial load $F_{ax} = 0$)

Maximum axial load $F_{\rm ax\; max}$ (with radial load $F_{\rm R}$ = 0):

$$F_{\text{ax max}}$$
 = 113000 N \leftarrow +


$$F_{\text{ax max}} = 49500 \text{ N} \rightarrow -$$

Note:

- ▶ These values and graphs are for initial guidance only
- ► For actual motor life calculations under typical or specified duty cycles, contact Bosch Rexroth Engineering Department in Glenrothes

Dimensions

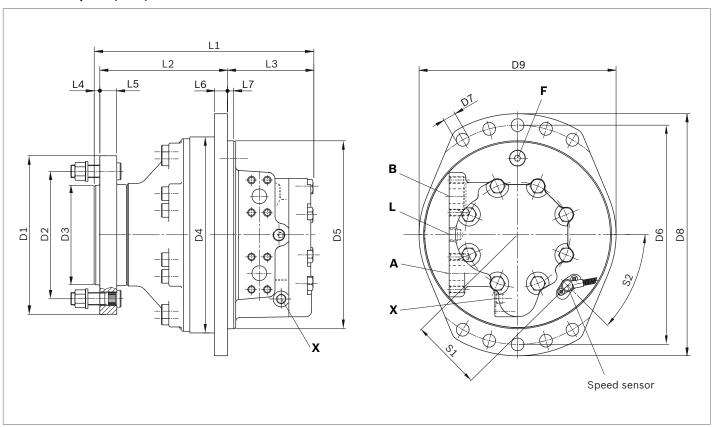
MCR-C single speed (1L)

Motor	D1	D2	D3	D4	D5	D6	D7	D8	D9	
MCR20	ø280	ø225	ø175.8	ø345	ø330	ø385	ø22.5	ø425	ø345	
	_									
Motor	L1	L2	L3	L4	L5	L6	L7	S1	S2	
MCR20	371.75	210	151.65	10	15	23	11	125	45°	

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ²⁾
MCR20	A, B	Inlet, outlet	SAE J518 ³⁾	1 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х


¹⁾ Depends on nominal size

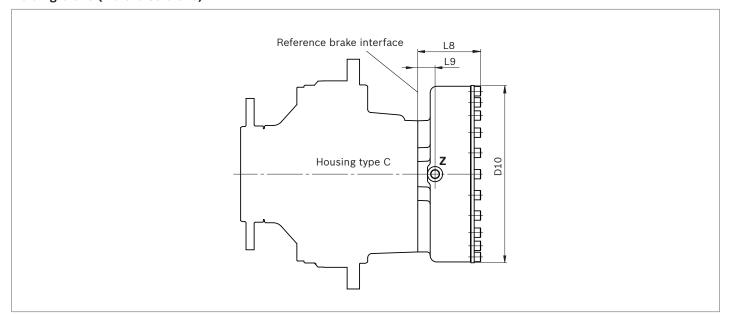
²⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

 $_{
m 3)}$ Dimensions according to SAE J518 (Code 62 - high pressure series)

MCR-C two speed (2WL)

Motor	D1	D2	D3	D4	D5	D6	D7	D8	D9
MCR20	ø280	ø225	ø175.8	ø345	ø330	ø385	ø22.5	ø425	ø345
Motor	L1	L2	L3	L4	L5	L6	L7	S1	S2
MCR20	386.65	225	151.65	10	30	23	11	125	45°


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ²⁾
MCR20	A, B	Inlet, outlet	SAE J518 ³⁾	1 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	Х	2 speed port	SAE J514	9/16-18 UNF	35	0

- 1) Depends on nominal size
- 2) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)
- $_{\rm 3)}$ Dimensions according to SAE J518 (Code 62 high pressure series)

Holding brake (multi-disc brake)

Motor	Brake	L8	L9	D10	
MCR20	B19	116.3	32	ø328	

Ports

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State
MCR20	Z	Brake Port	SAE J515	9/16-18 SAE	40	0

 $_{1)}$ O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Selection guide

14

Data sheet	Motor type				Fram	e size		
	Application		3 160400 cc	5 380820 cc	6 820920 cc	10 7801340 cc	15 11302150 cc	20 17503000 cc
15198	MCR-F Wheel drives	101	•	•	-	•	•	-
15200	MCR-W Heavy duty wheel drives		•	•	-	•	-	-
15195	MCR-A Frame integrated drives		•	•	-	•	-	-
15199	MCR-H Integrated drives		•	•	-	•	•	•
15221	MCR-T Track drives		-	•	•	•	-	-
15223	MCR-R Series 40 Hydraulic drive assist		_	-	_	•	-	_
15214	MCR-X Slew drives		•	•	-	-	-	-
15197	MCR-C Compact drives		-	-	-	-	-	•
15196	MCR-D Industrial applications		•	•	-	•	-	-
	MCR-E Industrial applications		-	•	-	-	-	-

Bosch Rexroth Limited

Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 15 92 631 777 Telefax +44 15 92 631 936 www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 15197/12.2013

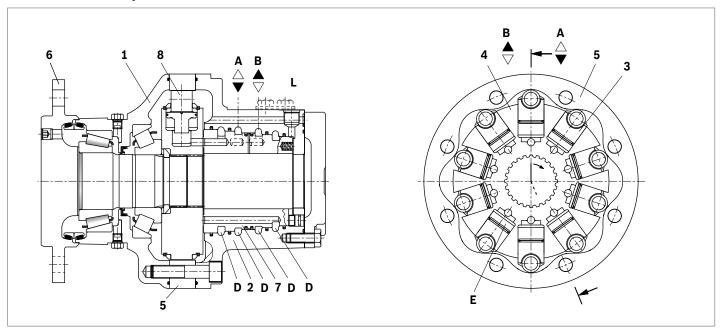
Rexroth Bosch Group

Radial piston motor for wheel drives MCR-F

RE 15198

Edition: 07.2015 Replaces 12.2013

▶	Frame size MCR3, MCR5, MCR10, MCR15
	(for frame size 20 see MCR20-C)


- ▶ Displacement 160 cc to 2150 cc
- ▶ Differential pressure up to 450 bar
- ► Torque output up to 13687 Nm
- ► Speed up to 875 rpm
- ▶ Open and closed circuits

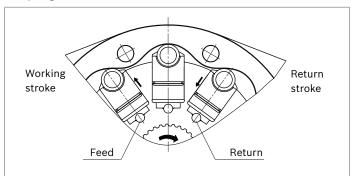
Features

- Compact robust construction
- ▶ High volumetric and mechanical efficiencies
- ► Rear case mount
- Wheel flange with wheel studs
- ► High reliability
- ► Low maintenance
- ► Smooth running at very low speeds
- ▶ Low noise
- ▶ Bi-directional
- Sealed tapered roller bearings
- ► High radial forces permitted on drive shaft
- Freewheeling possible
- Available with:
 - Holding brake (multi-disc) or dynamic (drum) brake
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

Contents	
Functional description	2
Ordering code	6
Technical data	8
Efficiencies	10
Permitted loading on drive shaft	11
Dimensions	13
Selection guide	20

Functional description

Hydraulic motors of the type MCR-F are radial piston motors with rear case mounting and flange shaft. The MCR-F motors are intended for wheel drives in open or closed circuits. These motors are used in a wide range of applications such as municipal vehicles, fork lift trucks, agricultural and forestry machines. The integrated flange with wheel studs allows easy installation of standard wheel rims.


Construction

Two part housing (1, 2), rotary group (3, 4, 8), cam (5), drive shaft (6) and flow distributor (7)

Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

Torque generation

The number of working and return strokes corresponds to the number of lobes on the cam multiplied by number of pistons in the cylinder block.

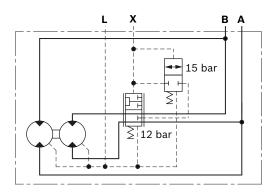
Flow paths

The ports **A** and **B**, which are located in the rear case, carry oil through the distributor to the cylinder chambers (**E**).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard.

Freewheeling

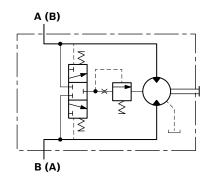

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports **A** and **B** to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port **L**. In this condition, the pistons are forced into the cylinder block which forces the rollers to lose contact with the cam thus allowing free rotation of the shaft.

Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

Bosch Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

▼ Schematic


Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or anti-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request).

Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost/charge pressure of 25 bar.

▼ Schematic

Flushing flow rates

Orifice size	Flow (I/n	nin) at 25 bar ¹⁾
(mm)	min	max
Ø1	2.2	2.7
Ø1.5	5.0	6.1
Ø1.7	6.4	7.8
Ø2	8.2	10.7
Ø2.3	8.8	11.4
	(mm) Ø1 Ø1.5 Ø1.7 Ø2	(mm) min Ø1 2.2 Ø1.5 5.0 Ø1.7 6.4 Ø2 8.2

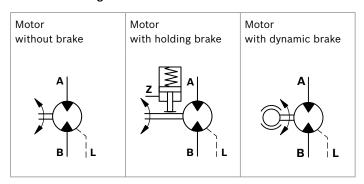
1) 0.6 mm Shim (Standard), Cracking pressure = 11±3 bar

4 MCR-F | Radial piston motor for wheel drives Functional description

Holding brake (multi-disc brake)

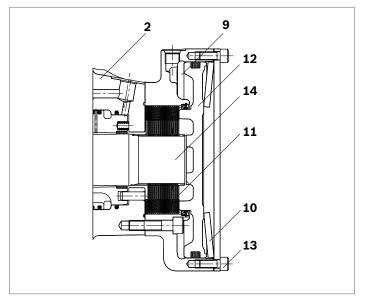
Mounting

By way of rear housing (2) and brake shaft (14).


Brake application

As a safety requirement in mobile applications a parking brake may be provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs (11) that are compressed by a disc spring (10). The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area (9) compresses the disc spring using brake piston (12) thus allowing the brake discs (11) to turn independently.

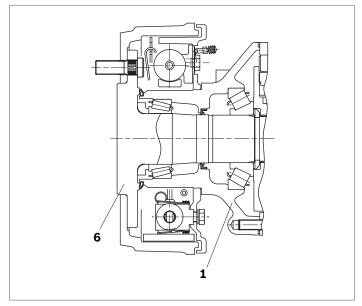
Note


This brake is provided solely for static use - not to be used dynamically.

▼ Schematic diagrams

Manual release of holding brake

The brake may also be released manually by loosening screws (13).

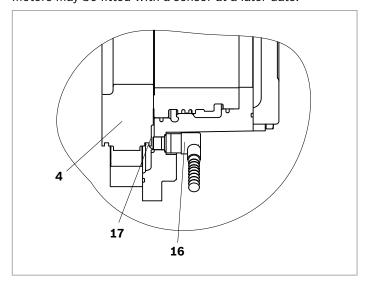


Bosch Rexroth AG, RE 15198/07.2015

Dynamic brake

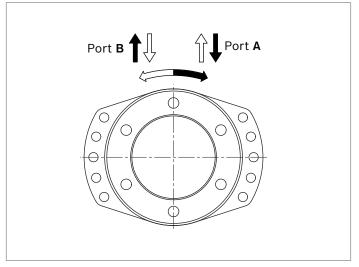
Where mechanical dynamic braking is required, a drum brake may be specified. The drum brake is mounted directly onto the drive shaft (6) and front housing (1). Braking torque is provided by brake shoes acting on the inside of the drum.

The drum brake can also provide mechanical park brake function by use of bowden cable.



Speed sensor

A Hall-effect speed sensor (16) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (17) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.


Versions are available for use with regulated supplies 10 V (Code P1) and for direct connection to a 12 V or 24 V unregulated supply (Code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code P0). These "sensor-ready" motors may be fitted with a sensor at a later date.

Direction of shaft rotation with flow

(viewed from drive shaft)

Ordering code

0	L	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16
М	R		F			Z	1										

Radial piston motor

01	Radial-piston type, low-speed, high-torque motor	MCR	
----	--	-----	--

Frame size

				_
0:	2 Frame size	3	3	
		5	5]
		10	10	1
		15	15	Ì

Housing type

Γ	0.3	Rear case mounting flange	F	
	U3	Rear case mounting nange	-	

Nominal size, displacement $V_{\rm g}$ in ${\rm cm^3/rev}$

04	Frame size 3		160	225	255	280	325	365	400	İ
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-	
	High displacement: motors use stepped pistons	HD	ı	-	-	-	•	•	•	
	Frame size 5		380	470	520	565	620	680	750	820
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-	-
	High displacement: motors use stepped pistons	HD	-	-	-	-	•	•	•	•
	Frame size 10		780	860	940	1120	1250	1340		
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	-	-	-		
	High displacement: motors use stepped pistons	HD	-	-	-	•	•	•		
	Frame size 15		1130	1250	1500	1780	2150			
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	-	-			
	High displacement: motors use stepped pistons	HD	-	-	-	•	•			

Drive shaft			MCR5	MCR10	MCR15	
05	With flange ø180 mm	•	•	-	_	F180
	With flange ø250 mm	-	•	•	-	F250
	With flange ø280 mm	-	-	-	•	F280

Rear shaft

06 Without rear shaft	
	_
06 Without rear shaft	ZI

Series

07	7 Series 32	32
	Series 33	33

Bra	ke		MCR3	MCR5	MCR10	MCR15	
08	Without brake		•	•	•	•	A0
	Hydraulic release spring applied multi-disc holding brake	2200 Nm	•	•	-	-	B2
		4400 Nm	-	•	-	_	B4
		4400 Nm	-	-	•	-	В5
		7000 Nm	-	-	•	-	В7
		11000 Nm	-	-	-	•	B11
	Dynamic brake (drum-brake) with maximum torque	2900 Nm	•	-	-	-	C2L/R
		4000 Nm	-	•	-	-	C4L/R
		6400 Nm	-	-	•	-	C7L/R
		12000 Nm	-	-	-	•	C12L/R

Bosch Rexroth AG, RE 15198/07.2015

	01	02	03	04	05	06		07	80	09	10	11	12	13	14	15	16
	MCR		F			Z	/										
Sea	ıls																
09	NBR (n	itrile rub	ber)														М
	FKM (f	luoroelas	stomer /	Viton)													V
Sin	gle/two	speed o	peration	1						MC	R3	MCR5		MCR10	МС	R15	•
		•	tandard		of rotat	ion				•		•		•		•	1L
	Bi-dire	ctional t	wo speed	d, standa	ırd direc	tion of i	otation			•		•		•	-	-	2WL
	Switch	Switchable two speed, anti-clockwise direction of rotation										_		_		•	2L
	Switch	Switchable two speed, clockwise directon of rotation										-		-		•	2R
Por	rs ·									MC	R3	MCR5		MCR10	МС	R15	
11	Tapped with UNF thread (SAE J514)								•		•		-	-	_	12	
	1 '''		NF threac	•	•					_		_		•			42
	(A and	B ports	SAE split	t flange r	netric b	olt holes	s)										
Stu	ds																
12	Withou	ıt studs (no code)													
	With w	heel stu	ds and n	uts													S
	With tv	vice the	normal n	umber c	f wheel	studs a	nd nuts										SS
Spe	ed sens	or															
13	Withou	ıt sensor	(no cod	e)													
	Sensor	ready															P0
	Sensor	without	regulato	r													P1
	Sensor	with reg	gulator														P2
Flu	shing																
14	Withou	ıt flushin	g (no co	de)													
	With flu	ushing (s	ee table	on page	3)												F1-F7
Spe	ecial ord	ler															
15	Specia	l feature															soxxx

Other

16 Mark in text here

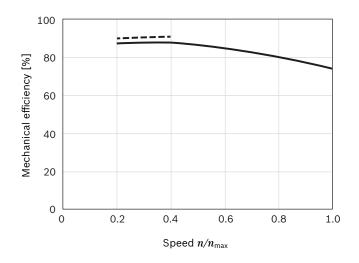
Technical data

Frame size			MCR3	MCR5	MCR10	MCR15				
Type of mounting			Flange	mounting						
Pipe connections ¹⁾²⁾			Threade	ed per SA	E J514; Fl	langed pe	r SAE J5	18		
Shaft loading			see pag	ge 11						
Weight										
Single speed (1L)	m	kg	21	38	65	95				
Two speed (2WL, 2L and 2R)	m	kg	26	46	70	95				
Hydraulic fluid ³⁾										
Fluid cleaniness			ISO 440	06, Class	20/18/15					
Fluid viscosity range	$v_{min/max}$	mm²/s	10 to 20	000						
Fluid temperature range ⁴⁾	$ heta_{ extsf{min/max}}$	°C	-20 to +	·85					-	
Pressure			Low dis	placemer	nt		High dis	placeme	nt	
Operating pressure	p_{nom}	bar	250				250			
Maximum differential pressure ⁵⁾⁶⁾	Δp_{max}	bar	450				400			
Maximum pressure at port A or B ⁵⁾⁶⁾	p_{max}	bar	470				420			
Maximum case drain pressure	p _{case max}	bar	10				10			
Motor performance MCR3										
Displacement	V_{g}	cm ³ /rev	160	225	255	280	325	365	400	
Specific torque		Nm/bar	3	4	4	4	5	6	6	
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	1146	1611	1826	2005	2069	2324	2546	
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Maximum speed (1L) ⁸⁾⁹⁾	n_{max}	rpm	670	475	420	385	330	295	270	
Maximum speed (2WL) ⁸⁾⁹⁾	$n_{\sf max}$	rpm	875	620	550	500	430	385	350	
Motor performance MCR5										
Displacement	V_{g}	cm ³ /rev	380	470	520	565	620	680	750	820
Specific torque	-	Nm/bar	6	7	8	9	10	11	12	13
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	2722	3366	3724	4047	3947	4329	4775	5220
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Maximum speed (1L) ⁸⁾⁹⁾	$n_{\sf max}$	rpm	475	385	350	320	290	265	240	220
Maximum speed (2WL) ⁸⁾⁹⁾	$n_{\sf max}$	rpm	570	465	420	385	350	320	290	265
Motor performance MCR10										
Displacement	V_{g}	cm ³ /rev	780	860	940		1120	1250	1340	
Specific torque		Nm/bar	12	14	15		18	20	21	
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	5586	6159	6732		7130	7958	8531	
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5		0.5	0.5	0.5	
Maximum speed (1L and 2WL) ⁸⁾⁹⁾	$n_{\sf max}$	rpm	215	195	178		150	135	125	
Motor performance MCR15										
Displacement	V_{g}	cm ³ /rev	1130	1250	1500		1780	2150		
Specific torque	<u>_</u>	Nm/bar	18	20	24		28	34		
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	8093	8952	10743		11332	13687		
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5		0.5	0.5		
Maximum speed (1L, 2L and 2R) ⁸⁾⁹⁾	$n_{\sf max}$	rpm	145	130	110		90	75		

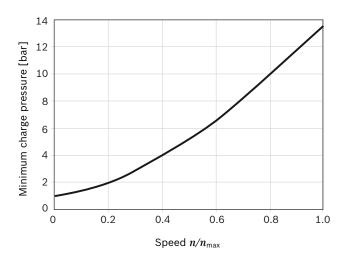
			MCR3		MCR5		MCR10		MCR15	
Holding brake (disc brake)			B2		B2	B4	B5	B7	B11	
Minimum holding torque	$t_{min/max}$	Nm	2200		2200	4400	4400	7000	11000	
Release pressure (min)	$p_{rel\;min}$	bar	11		11	11	11	11	12	
Release pressure (max)	$p_{rel\ max}$	bar	15		15	15	15	15	15	
Maximum pressure at brake port "Z"	p_{max}	bar	40		40	40	40	40	40	
Oil volume to operate brake	V_{rel}	cm ³	23		23	46	17	36	77	
			MCR3		MCR5		MCR10	1	MCR15	
Dynamic brake			C2L/R		C4L/R		C7L/R		C12L/R	1
Braking torque	$t_{min/max}$	Nm	2000	2900	3000	4000	4700	6400	9000	12000
Brake cable tension		N	1000	1440	1270	1661	1755	2400	2580	3460
Brake port pressure	p_{max}	bar	82	117	73	97	89	120	84	112
Brake cylinder operating volume	V	cm ³	7	7	9	9	13	13	24.91	24.91

Note

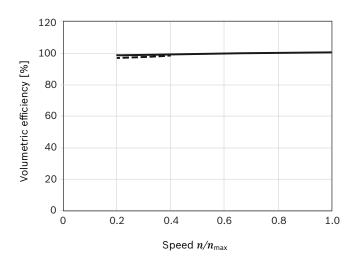
- ► Motor performance values are based on theoretical calculations.
- ► Efficiencies are not taken into consideration for theoretical calculations.
- ▶ Brake torque accounts for tolerances. Values are based when used with standard mineral oil (HLP).
- ► For MCR20 frame size, please refer MCR-C data sheet (15197).


Please refer the related foot notes for more details.

Footer from page 8 and 9


- Ensure motor case is filled with oil prior to start-up. See instruction manual 15215-B.
- 2) For installation and maintenance details, please see instruction manual 15215-B.
- 3) For use with environmentally acceptable fluids HEES, HEPG, HETG, fluoroelastomer / Viton seals must be specified.
- 4) Extension of the allowable temperature range may be possible depending on specification. Please consult Bosch Rexroth Engineering Department in Glenrothes for further details.
- 5) Maximum values should only be applied for a small portion of the duty cycle. Please consult Bosch Rexroth Engineering. Department in Glenrothes for motor life calculations based on particular operating cases.
- 6) When operating motors in series, please consult Bosch Rexroth Engineering Department in Glenrothes.
- 7) For continuous operation at speeds <5 rpm please consult Bosch Rexroth Engineering Department in Glenrothes.
- 8) Based on nominal no-load Δp of 20 bar in full-displacement mode.
- 9) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.

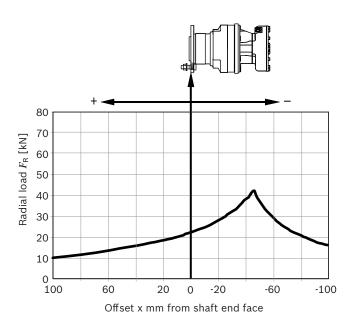
Efficiencies


▼ Mechanical efficiency

▼ Charge pressure

▼ Volumetric efficiency

100 bar / 1450 psi --- 300 bar / 4350 psi

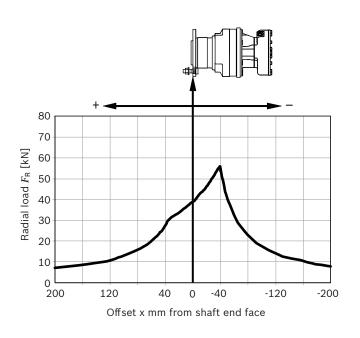

Note:

For specific performance information or operating conditions contact the Engineering Department at Bosch Rexroth, Glenrothes.

Permitted loading on drive shaft

Drive shaft ...3F F180...

Maximum radial load $F_{R max}$ (with axial load $F_{ax} = 0$)

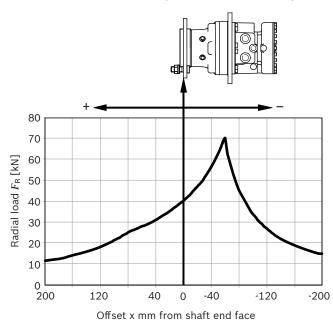

Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):

 $F_{\text{ax max}}$ = 18300 N \leftarrow +

 $F_{\text{ax max}} = 28000 \text{ N} \rightarrow -$

Drive shaft ...5F F180...

Maximum radial load $F_{R \text{ max}}$ (with axial load $F_{ax} = 0$)

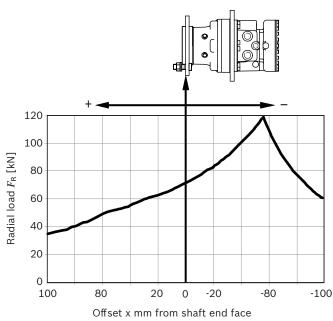

Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):

 $F_{\text{ax max}} = 37500 \text{ N} \leftarrow +$

 $F_{\text{ax max}} = 36800 \text{ N} \rightarrow -$

Drive shaft ...5F F250...

Maximum radial load $F_{R max}$ (with axial load $F_{ax} = 0$)


Maximum axial load $F_{ax max}$ (with radial load F_{R} = 0):

 $F_{\text{ax max}} = 37500 \text{ N} \leftarrow +$

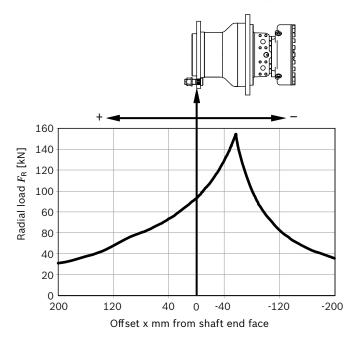
 $F_{\text{ax max}} = 36800 \text{ N} \rightarrow -$

Drive shaft ...10F F250...

Maximum radial load $F_{R \text{ max}}$ (with axial load $F_{ax} = 0$)

Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):

 $F_{\text{ax max}} = 76100 \text{ N} \leftarrow +$


 $F_{\text{ax max}} = 67400 \text{ N} \rightarrow -$

RE 15198/07.2015, Bosch Rexroth AG

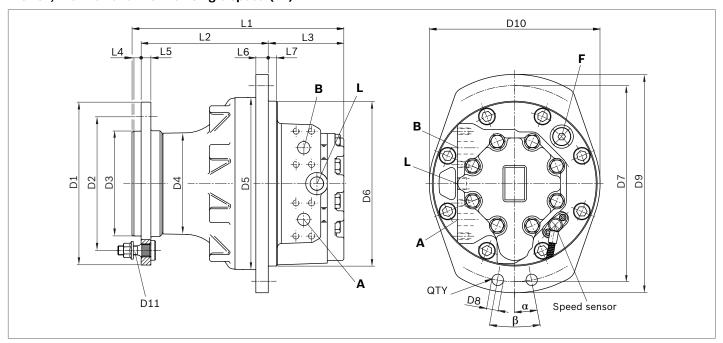
12

Drive shaft ...15F F280...

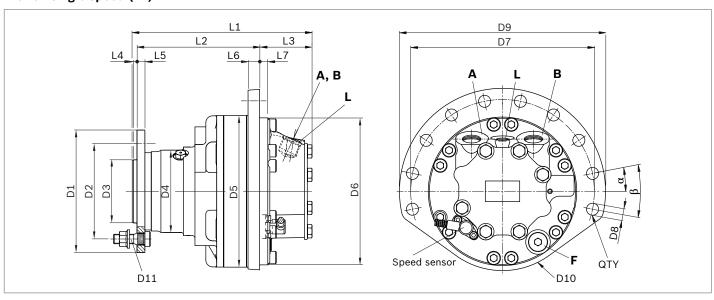
Maximum radial load $F_{R \text{ max}}$ (with axial load $F_{ax} = 0$)

Maximum axial load $F_{\text{ax max}}$ (with radial load F_{R} = 0):

$$F_{\text{ax max}} = 95400 \text{ N} \leftarrow +$$


 $F_{\text{ax max}}$ = 88700 N \rightarrow -

Note:


- ► These values and graphs are for initial guidance only
- For actual motor life calculations under typical or specified duty cycles, contact Bosch Rexroth Engineering Department in Glenrothes
- ► For drum braked motors, the permitted loading varies depending on the offset.

Dimensions

MCR3F, MCR10F and MCR15F single speed (1L)

MCR5F single speed (1L)

Motor	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11
MCR3	ø172.5	ø140	ø92.8	-	ø180	ø180	ø210	ø14	ø237	ø190	5xM14x1.5
MCR5	ø180	ø140	ø92.7	ø116.5	ø223	ø215.95	ø267	ø17.4	ø298	ø228	8xM20x1.5
MCR10	ø250	ø205	ø160	ø162	ø264	ø253	ø300	ø17.5	ø335	ø264	10xM22x1.5
MCR15	ø280	ø225	ø175.8	ø190	ø304	ø285	ø335	ø17.4	ø375	-	10x18Mx1.5

Motor	L1	L2	L3	L4	L5	L6	L7	α	β	QTY
MCR3	217.5	143.5	67	6	12	13	6	0°	15°	10
MCR5	264.1	180	77	5	11.5	17	12	11.25°	22.5°	10
MCR10	325	195	116	14	15	19	12.5	0°	15°	10
MCR15	334.4	219.4	98.9	15	16	36.5	9	10°	20°	8

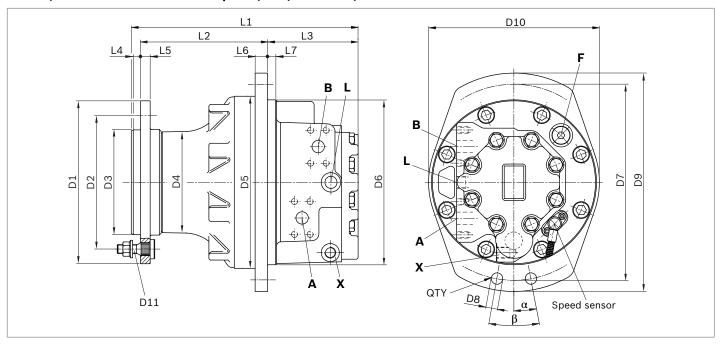
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

RE 15198/07.2015, **Bosch Rexroth AG**

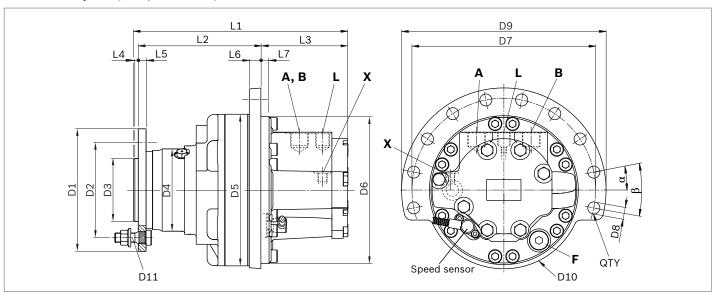
14 MCR-F | Radial piston motor for wheel drives Dimensions

Ports

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ²⁾
MCR3	A, B	Inlet, outlet	SAE J514	7/8-14 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	9/16-18 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
MCR5	A, B	Inlet, outlet	SAE J514	1 1/16-12 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
MCR10	A, B	Inlet, outlet	SAE J518 ³⁾	3/4 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
MCR15	A, B	Inlet, outlet	SAE J518 ³⁾	3/4 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х


¹⁾ Depends on nominal size

²⁾ O = Must be connected (plugged on delivery)


X = Plugged (in normal operation)

³⁾ Dimensions according to SAE J518 (Code 62 - high pressure series)

MCR3F, MCR10F and MCR15F two speed (2WL, 2L and 2R)

MCR5F two speed (2WL, 2L and 2R)

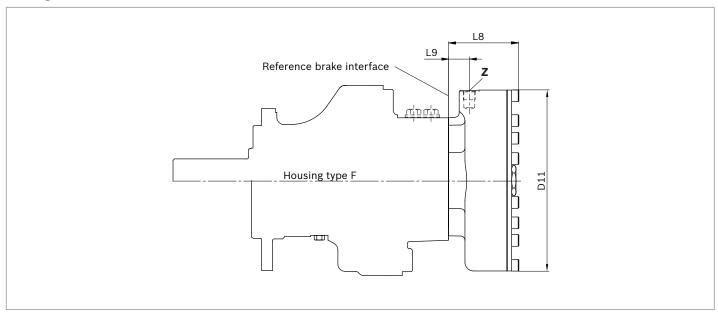
Motor	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11
MCR3	ø172	ø140	ø92.7	_	ø180	ø180	ø210	ø14	ø237	ø190	5xM14x1.5
MCR5	ø180	ø140	ø92.7	ø116.5	ø223	ø215.96	ø267	ø17.4	ø298	ø228	10xM18x1.5
MCR10	ø250	ø205	ø160	ø162	ø264	ø253	ø300	ø17.5	ø330	ø262	8xM20x1.5
MCR15	ø280	ø225	ø175.8	ø190	ø304	ø285	ø335	ø22.4	ø375	-	10xM22x1.5
	_										
Motor	L1	L2	L3	L4	L5	L6	L7	α	β	QTY	

Motor	L1	L2	L3	L4	L5	L6	L7	α	β	QTY
MCR3	274.1	143.6	123.5	6	12	13	6	0°	15°	10
MCR5	313.8	180	126.7	7	11.5	17	12	11.25°	22.5°	10
MCR10	350	195	141	14	15	19	12.5	0°	15°	10
MCR15	334.4	219.5	98.9	14	16	36.5	9	10°	20°	8

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Motor	Designation	Port function	Code	Size	$p_{\sf max}$ [bar]	State ²⁾
MCR3	A, B	Inlet, outlet	SAE J514	7/8-14 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	9/16-18 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	X	2 speed port	SAE J514	9/16-18 UNF	35	0
MCR5	A, B	Inlet, outlet	SAE J514	1 1/16-12 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	x	2 speed port	SAE J514	9/16-18 UNF	35	0
MCR10	A, B	Inlet, outlet	SAE J518 ³⁾	3/4 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	x	2 speed port	SAE J514	9/16-18 UNF	35	0
MCR15	A, B	Inlet, outlet	SAE J518 ³⁾	3/4 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	Х	2 speed port	SAE J514	9/16-18 UNF	35	0


¹⁾ Depends on nominal size

²⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

 $_{\rm 3)}$ Dimensions according to SAE J518 (Code 62 - high pressure series)

Holding brake (multi-disc brake)

Motor	Brake	L8	L9	D11
MCR3	B2	67.3	22	ø174
MCR5	B2	67.3	22	ø174
	В4	80.7	26.5	ø215
MCR10	B5	84.7	26.5	ø215
	В7	97.8	29	ø251
MCR15	B11	102.3	33	ø282

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ¹⁾
MCR3	z	Brake port	SAE J515	9/16-18 SAE	30	0
MCR5	z	Brake port	SAE J515	9/16-18 SAE	30	0
MCR10	z	Brake port	SAE J515	9/16-18 SAE	30	0
MCR15	z	Brake Port	SAE J515	9/16-18 SAE	30	0

¹⁾ O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in $\ensuremath{\mathsf{mm}}.$

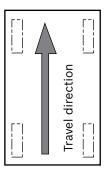
Dynamic brake (drum brake)

Motor	Brake	L10	L11	L12	L13	L14	L15	L16	L17	D12	D13	A1	A2
MCR3	C2	193	94.75	34.5	45	82	68.5	55	19	ø222	ø140	90°	30°
MCR5	C4	192	95	32.5	65	86	89	83	19	ø272	ø140	30°	30°
MCR10	C7	234.1	117.5	45	82	_	113	54	17	ø348	ø205	90°	30°
MCR15	C12	294.6	132	36	80	-	120	40	17	ø365	ø225	90°	30°

1	C2	5 Studs M14x1.5 with spherical wheel nuts
	C4	10 Studs M18x1.5 with spherical wheel nuts
	C7	8 Studs M20x1.5 with spherical wheel nuts
	C12	10 Studs M22x1.5 with hexagonal wheel nuts

- 2 Dynamic drum brake for use with brake fluid DOT 3+5 or SAE JI 703. If brake is to be used with mineral oil a special order is to be made. Please state if seals for mineral oil are required when placing order.
- For use as a mechanical park brake a brake cable (Bowden cable) can be connected from right side for C*R and left side for C*L (left is s mirror image of the right type) (* = 2, 4, 7, 12). Mechanical brake cable is not supplied with the motor.
- 4 Brake cable length.
- **5** Angular position of brake cable.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dynamic drum brake run-in procedure

- ▶ Brake the machine hard in forward and reverse directions until the brake drum temperature reaches 200 °C.
- ► Allow the brake to cool.
- ► To remove residue, brake gently 2 times each in the forward and reverse directions.

Note:

The drum brake cylinder port must be oriented as instructed in the installation drawing. The drum brake also has an influence on permitted radial loading due to its offset.

Left side of vehicle Ordering code C4L

Right side of vehicle Ordering code C4R

Bosch Rexroth AG, RE 15198/07.2015

Selection guide

Data sheet	Motor type				Fram	e size		
	Application		3 160400 cc	5 380820 cc	6 820920 cc	10 7801340 cc	15 11302150 cc	20 17503000 cc
15198	MCR-F Wheel drives	101	•	•	-	•	•	-
15200	MCR-W Heavy duty wheel drives		•	•	-	•	-	-
15195	MCR-A Frame integrated drives		•	•	-	•	-	-
15199	MCR-H Integrated drives		•	•	-	•	•	•
15221	MCR-T Track drives		-	•	•	•	-	-
15223	MCR-R Series 41 Hydraulic drive assist	6	-	-	-	•	-	-
15214	MCR-X Slew drives		•	•	-	-	-	-
15197	MCR-C Compact drives		-	-	-	-	-	•
15196	MCR-D Industrial applications		•	•	-	•	-	-
	MCR-E Industrial applications		-	•	-	-	-	-

Bosch Rexroth Limited

Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 15 92 631 777 Telefax +44 15 92 631 936 www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 15198/07.2015

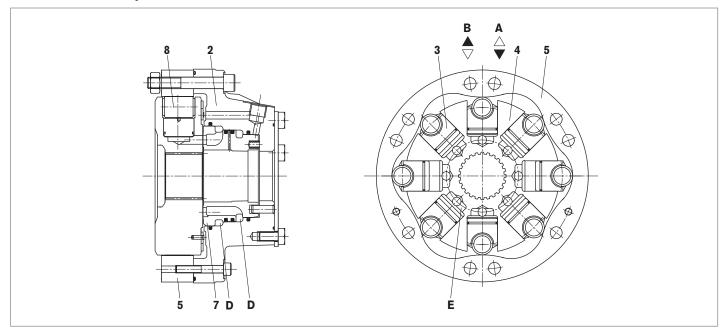
Rexroth Bosch Group

Radial piston motor for integrated drives MCR-H

RE 15199

Edition: 12.2013

▶ F	rame size	MCR3,	MCR5,	MCR10,	MCR15,	MCR20
-----	-----------	-------	-------	--------	--------	-------


- ▶ Displacement 160 cc to 3000 cc
- ▶ Differential pressure up to 450 bar
- ► Torque output up to 19099 Nm
- ► Speed up to 875 rpm
- ► Open and closed circuits

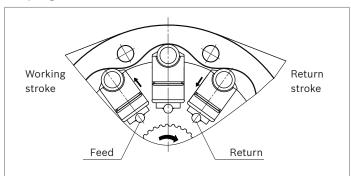
Features

- Hydrobase motor
- Optimised design for integration
- ► Compact installation in customer structure
- High volumetric and mechanical efficiencies
- ► High reliability
- ► Low maintenance
- ► Smooth running at very low speeds
- ▶ Low noise
- ▶ Bi-directional
- ► Freewheeling possible
- ► Available with:
 - Holding brake (multi-disc)
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

Contents	
Functional description	2
Ordering code	5
Technical data	7
Efficiencies	9
Dimensions	10
Selection guide	16

Functional description

Hydraulic motors of the type MCR-H are radial piston motors with a hydraulic rotary group as the base (Hydrobase) and a rear case sub assembly. These motors are intended for various integrated drive applications in open or closed circuits where the front case, shaft and bearing arrangement of the motor are provided by the customer structure. Some of the applications in which these motors are used are construction machinery, fork lift trucks, forestry machines and industrial applications. The compact design allows installation to very confined spaces and contributes in weight savings.


Construction

Rear case (2), rotary group (3, 4, 8), cam (5) and flow distributor (7)

Transmission

The cylinder block (4) is connected to the shaft located in the customer structure to which the motor is mounted by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

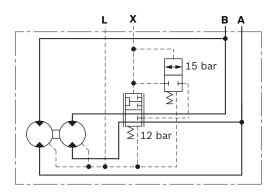
Torque generation

The number of working and return strokes corresponds to the number of lobes on the cam multiplied by number of pistons in the cylinder block.

Flow paths

The ports **A** and **B**, which are located in the rear case, carry oil through the distributor to the cylinder chambers (**E**).

Freewheeling

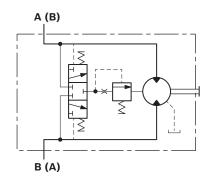

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports **A** and **B** to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port **L**. In this condition, the pistons are forced into the cylinder block which forces the rollers to lose contact with the cam thus allowing free rotation of the shaft.

Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

Bosch Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

▼ Schematic


Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or anti-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request).

Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost/charge pressure of 25 bar.

▼ Schematic

Flushing flow rates

Orifice size	Flow (I/min) at 25 bar1)				
(mm)	min	max			
Ø1	2.2	2.7			
Ø1.5	5.0	6.1			
Ø1.7	6.4	7.8			
Ø2	8.2	10.7			
Ø2.3	8.8	11.4			
	(mm) Ø1 Ø1.5 Ø1.7 Ø2	(mm) min Ø1 2.2 Ø1.5 5.0 Ø1.7 6.4 Ø2 8.2			

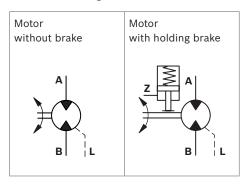
1) 0.6 mm Shim (Standard), Cracking pressure = 11±3 bar

4 **MCR-H** | Radial piston motor for integrated drives Functional description

Holding brake (multi-disc brake)

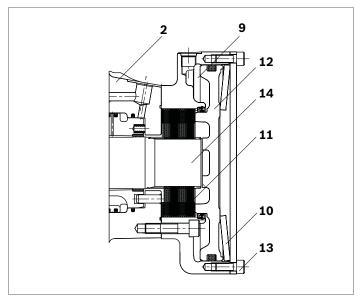
Mounting

By way of rear housing (2) and brake shaft (14).


Brake application

As a safety requirement in mobile applications a parking brake may be provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs (11) that are compressed by a disc spring (10). The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area (9) compresses the disc spring using brake piston (12) thus allowing the brake discs (11) to turn independently.

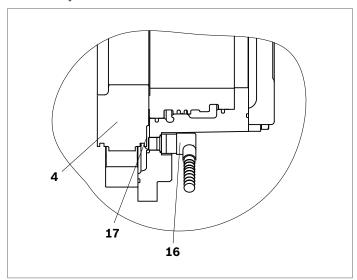
Note


This brake is provided solely for static use - not to be used dynamically.

▼ Schematic diagrams

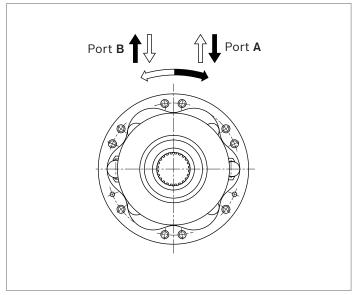
Manual release of holding brake

The brake may also be released manually by loosening screws (13).



Speed sensor

A Hall-effect speed sensor (16) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (17) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.


Versions are available for use with regulated supplies 10 V (Code P1) and for direct connection to a 12 V or 24 V unregulated supply (Code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code P0). These "sensor-ready" motors may be fitted with a sensor at a later date.

Direction of rotation with flow

(viewed from cylinder block)

Bosch Rexroth AG, RE 15199/12.2013

MCR

20

Ordering code

		07 08 09	10 11 12	13 14 15	16
MCR H	Z /	33			

Radial piston motor

Fra	me size		
02	Frame size	3	3
		5	5
		10	10
		15	15

Housing type

0.3	Hydrobase motor	н
100	Thydrobase motor	

Nominal size, displacement $V_{\rm g}$ in ${\rm cm}^3/{\rm rev}$

20

01 Radial-piston type, low-speed, high-torque motor

Frame size 3		160	225	255	280	325	365	400	
Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-	
High displacement: motors use stepped pistons	HD	-	-	-	-	•	•	•	
Frame size 5	-	380	470	520	565	620	680	750	82
Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-	-
High displacement: motors use stepped pistons	HD	-	-	-	-	•	•	•	•
Frame size 10	,	780	860	940	1120	1250	1340		
Low displacement: motors use standard cylindrical pistons	LD	•	•	•	-	-	-		
High displacement: motors use stepped pistons	HD	-	-	-	•	•	•		
Frame size 15	-	1130	1250	1500	1780	2150			
Low displacement: motors use standard cylindrical pistons	LD	•	•	•	-	-			
High displacement: motors use stepped pistons	HD	-	-	-	•	•			
Frame size 20		1750	2100	2500	3000		•		
Low displacement: motors use standard cylindrical pistons	LD	•	•	_	-	Ī			
High displacement: motors use stepped pistons	HD	-	-	•	•	1			

Drive shaft

0	5 Without drive shaft	Z	ı
---	-------------------------	---	---

Rear shaft

			$\overline{}$
0.0	IMPH 1 1 C	_	- /
1 ()h	Without rear shaft		

Series

07	Series 33	33 ¹⁾	l

Ві	ake		MCR3	MCR5	MCR10	MCR15	MCR20	
0	8 Without brake		•	•	•	•	•	A0
	Hydraulic release spring applied	2200 Nm	•	•	-	_	-	B2
	multi-disc holding brake	4400 Nm	-	•	-	_	-	B4
		4400 Nm	-	_	•	_	-	B5
		7000 Nm	-	_	•	_	-	B7
		11000 Nm	-	-	-	•	-	B11
		19000 Nm	-	_	_	_	•	B19

^{• =} Available - = Not available

¹⁾ This data sheet also applies series 32.

							-	03	02	- 01
MCR H Z / 33				33	/	Z		Н		MCR

Seals

0		М
	FKM (fluoroelastomer / Viton)	V

Sir	ngle/two-speed operation	MCR3	MCR5	MCR10	MCR15	MCR20	
10	Single speed, standard direction of rotation	•	•	•	•	•	1L
	Bi-directional two speed, standard direction of rotation	•	•	•	•	•	2WL

Po	rts	MCR3	MCR5	MCR10	MCR15	MCR20	
11	Tapped with UNF thread (SAE J514)	•	•	-	-	-	12
	Tapped with UNF thread (SAE J514) (A and B ports SAE split flange metric bolt holes)	-	-	•	•	-	42
	BSP threaded ports (A and B ports SAE split flange metric bolt holes)	-	_	-	-	•	11

Studs

11	2 Without studs (no code)	

Speed sensor

1	3 Without sensor (no code)	
	Sensor ready	P0
	Sensor without regulator	P1
	Sensor with regulator	P2

Flushing

	······6		
14	Without flushing (no code)		
	With flushing (see table on page 3)	F1-F7	

Special order

	L5	Special feature	soxxx	
_				

Other

16 Mark in text here	*
----------------------	---

Technical data

Frame size			MCR3	MCR5	MCR10	MCR15	MCR20			
Type of mounting			Face me	ounting						
Pipe connections ¹⁾²⁾			Threade	ed per SA	E J514; F	langed pe	r SAE J5	18		
Weight										
Single speed (1L)	m	kg	12	23	36	54	76			
Two speed (2WL)	m	kg	18	30	40	54	76			
Hydraulic fluid ³⁾										
Fluid cleaniness			ISO 440	06, Class	20/18/15					
Fluid viscosity range	$v_{min/max}$	mm²/s	10 to 20	000						
Fluid temperature range ⁴⁾	$ heta_{ ext{min/max}}$	°C	-20 to +	85						
Pressure			Low dis	placemer	nt		High dis	splaceme	nt	
Operating pressure	p_{nom}	bar	250				250			
Maximum differential pressure ⁵⁾⁶⁾	Δp_{max}	bar	450				400			
Maximum pressure at port A or $\mathbf{B}^{5)6)}$	p_{max}	bar	470				420			
Maximum case drain pressure	$p_{case\ max}$	bar	10				10			
Motor performance MCR3										
Displacement	V_{g}	cm ³ /rev	160	225	255	280	325	365	400	
Specific torque	-	Nm/bar	3	4	4	4	5	6	6	
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	1146	1611	1826	2005	2069	2324	2546	
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Maximum speed (1L) ⁸⁾⁹⁾	n_{max}	rpm	670	475	420	385	330	295	270	
Maximum speed (2WL) ⁸⁾⁹⁾	n_{max}	rpm	875	620	550	500	430	385	350	
Continuous operating power ¹⁰⁾	P	kW	11.64	15.34	15.17	17.48	11.61	11.38	14.99	
Motor performance MCR5										
Displacement	V_{g}	cm ³ /rev	380	470	520	565	620	680	750	820
Specific torque	-	Nm/bar	6	7	8	9	10	11	12	13
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	2722	3366	3724	4047	3947	4329	4775	5220
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Maximum speed (1L) ⁸⁾⁹⁾	n_{max}	rpm	475	385	350	320	290	265	240	220
Maximum speed (2WL) ⁸⁾⁹⁾	n_{max}	rpm	570	465	420	385	350	320	290	265
Continuous operating power ¹⁰⁾	P	kW	38.01	38.14	37.86	42.42	26.52	25.85	24.42	31.98
Motor performance MCR10										
Displacement	V_{g}	cm ³ /rev	780	860	940		1120	1250	1340	
Specific torque		Nm/bar	12	14	15		18	20	21	
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	5586	6159	6732		7130	7958	8531	
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5		0.5	0.5	0.5	
Maximum speed (1L and 2WL) ⁸⁾⁹⁾	n_{max}	rpm	215	195	180		150	135	125	
Continuous operating power ¹⁰⁾	P	kW	50.21	55.67	52.82		38	42.34	38.81	
Motor performance MCR15										
Displacement	V_{g}	cm ³ /rev	1130	1250	1500		1780	2150		
Specific torque		Nm/bar	18	20	24		28	34		
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	8093	8952	10743		11332	13687		
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5		0.5	0.5		
Maximum speed (1L and 2WL) ⁸⁾⁹⁾	n_{max}	rpm	150	150	150		125	125		
Continuous operating power ¹⁰⁾	P	kW	81.82	86.37	98.33		67.99	76.66		
. 31			1							

MCR-H | Radial piston motor for integrated drives Technical data

Motor performance MCR20			Low dis	placement	High dis	High displacement		
Displacement	V_{g}	cm ³ /rev	1750	2100	2500	3000		
Specific torque		Nm/bar	28	33	40	44		
Maximum torque ⁵⁾	$T_{\sf max}$	Nm	12533	15040	15915	19099		
Minimum speed for smooth running ⁷⁾	n_{min}	rpm	0.5	0.5	0.5	0.5		
Maximum speed (1L and 2WL) ⁸⁾⁹⁾	n_{max}	rpm	125	125	115	115		
Continuous operating power ¹⁰⁾	P	kW	117.29	103.12	94.18	93.01		

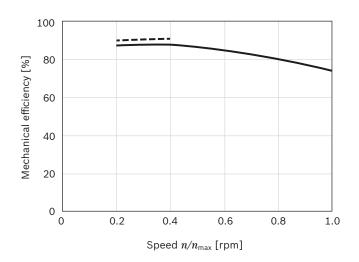
			MCR3	MCR5		MCR10		MCR15	MCR20
Holding brake (disc brake)	B2	B2	B4	B5	B7	B11	B19		
Minimum holding torque	$t_{min/max}$	Nm	2200	2200	4400	4400	7000	11000	19000
Release pressure (min)	$p_{rel\;min}$	bar	11	11	11	11	11	12	15
Release pressure (max)	$p_{rel\ max}$	bar	15	15	15	15	15	15	30
Maximum pressure at brake port "Z"	p_{max}	bar	40	40	40	40	40	40	40
Oil volume to operate brake	V_{rel}	cm ³	23	23	46	17	36	77	99

Note

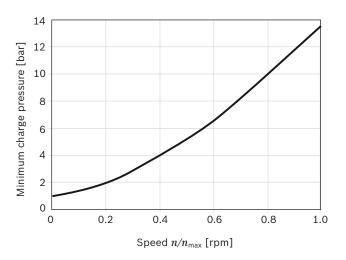
8

- ► Motor performance values are based on theoretical calculations.
- ► Efficiencies are not taken into consideration for theoretical calculations.
- ▶ Brake torque accounts for tolerances. Values are based when used with standard mineral oil (HLP).

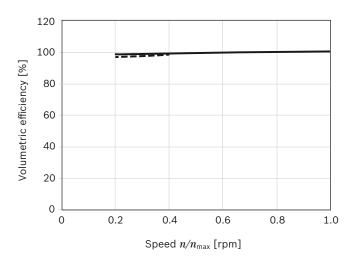
Please refer the related foot notes for more details.


Footer from page 7 and 8

- 1) Ensure motor case is filled with oil prior to start-up.
- For installation and maintenance details, please see instruction manual 15215-B.
- 3) For use with environmentally acceptable fluids HEES, HEPG, HETG, fluoroelastomer / Viton seals must be specified.
- 4) Extension of the allowable temperature range may be possible depending on specification. Please consult Bosch Rexroth Engineering Department in Glenrothes for further details.
- 5) Maximum values should only be applied for a small portion of the duty cycle. Please consult Bosch Rexroth Engineering Department in Glenrothes for motor life calculations based on particular operating cases.
- 6) When operating motors in series, please consult Bosch Rexroth Engineering Department in Glenrothes.
- 7) For continuous operation at speeds <5 rpm please consult Bosch Rexroth Engineering Department in Glenrothes.
- 8) Based on nominal no-load Δp of 20 bar in full-displacement mode.
- 9) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.
- 10) Guide values for up to 5000 hours of motor operation (ISO VG46 at 50 °C).

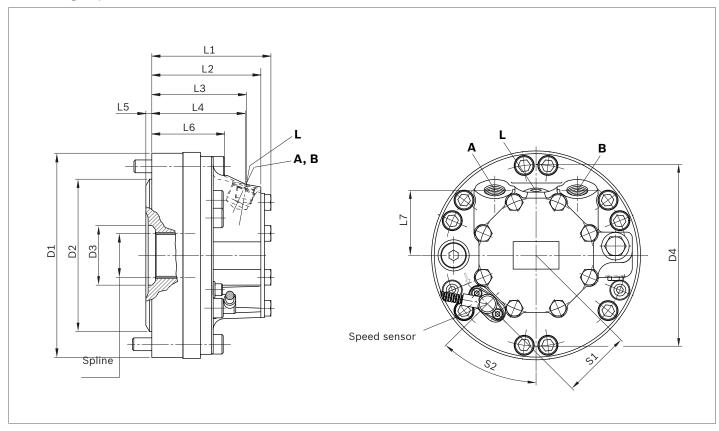

Bosch Rexroth AG, RE 15199/12.2013

Efficiencies


▼ Mechanical efficiency

▼ Charge pressure

▼ Volumetric efficiency


100 bar / 1450 psi --- 300 bar / 4350 psi

Note:

For specific performance information or operating conditions contact the Engineering Department at Bosch Rexroth, Glenrothes.

Dimensions

MCR-H single speed (1L)

Motor	D1	D2	D3	D4	L1	L2	L3	L4	L5	L6	L7
MCR3	ø180	ø131	ø50	ø156	105	95	83	71	9	48	66.5
MCR5	ø223	ø166.3	ø65.25	ø196	130	119	103	103	6.5	68	76
MCR10	ø264	ø192	ø81.13	ø223	167	141.5	125	105.5	9.4	63.5	102
MCR15	ø304	ø229	ø96.5	ø304	173.4	156.7	141	116	10	84.5	115
MCR20	ø345	ø260	ø108.25	ø310	217.7	173.8	129	129	15.5	81	120

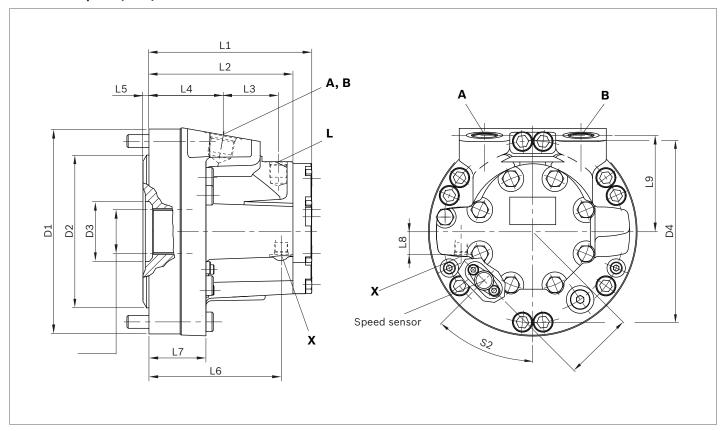
Motor	S1	S2	Spline
MCR3	63.5	90°	BS3550 class 1 fillet root side fit, pitch 24/48, PCD 38.1 mm, No of spaces 36
MCR5	75	45°	N50 x 2 x 24 x 9H DIN 5480
MCR10	89	45°	N65 x 2 x 31 x 9H DIN 5480
MCR15	103	45°	N75 x 2 x 36 x 9H DIN 5480
MCR20	125	45°	N90 x 2 x 44 x 9H DIN 5480

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ²⁾
MCR3	A, B	Inlet, outlet	SAE J514	7/8-14 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	9/16-18 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	X
MCR5	A, B	Inlet, outlet	SAE J514	1 1/16-12 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	Ο
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
MCR10	A, B	Inlet, outlet	SAE J518 ³⁾	3/4 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
MCR15	A, B	Inlet, outlet	SAE J518 ³⁾	3/4 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
MCR20	A, B	Inlet, outlet	SAE J518 ³⁾	1 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х

¹⁾ Depends on nominal size


²⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

³⁾ Dimensions according to SAE J518 (Code 62 - high pressure series)

12

MCR-H two speed (2WL)

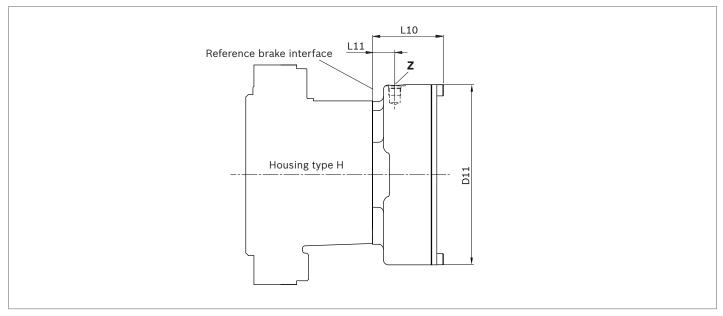
Motor	D1	D2	D3	D4	L1	L2	L3	L4	L5	L6	L7
MCR3	ø180	ø131	ø50	ø156	129	114	101	83	9	48	97
MCR5	ø223	ø166.3	ø65.25	ø196	179.1	159.1	144	81	6.5	62	144
MCR10	ø264	ø192	ø81.13	ø223	192	166.5	150	105.5	10.15	63.5	151
MCR15	ø304	ø229	ø96.5	ø304	173.4	156.7	141	116	10	84.5	140.5
MCR20	ø345	ø260	ø108.25	ø310	217.7	173.8	129	129	15.5	81	118.5

Motor	L8	L9	S1	S2	Spline
MCR3	26	67.5	63.5	300°	BS3550 class 1 fillet root side fit, pitch 24/48, PCD 38.1 mm, No of spaces 36
MCR5	25	105	75	45°	N50 x 2 x 24 x 9H DIN 5480
MCR10	25	88	89	45°	N65 x 2 x 31 x 9H DIN 5480
MCR15	28.5	105	103	45°	N75 x 2 x 36 x 9H DIN 5480
MCR20	38	120	125	45°	N90 x 2 x 44 x 9H DIN 5480

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ²⁾
MCR3	A, B	Inlet, outlet	SAE J514	7/8-4 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	9/16-18 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	X	2 speed port	SAE J514	9/16-18 UNF	35	0
MCR5	A, B	Inlet, outlet	SAE J514	1 1/16-12 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Χ
	X	2 speed port	SAE J514	9/16-18 UNF	35	0
MCR10	A, B	Inlet, outlet	SAE J518 ³⁾	3/4 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	X	2 speed port	SAE J514	9/16-18 UNF	35	0
MCR15	A, B	Inlet, outlet	SAE J518 ³⁾	3/4 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	X	2 speed port	SAE J514	9/16-18 UNF	35	0
MCR20	A, B	Inlet, outlet	SAE J518 ³⁾	1 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Χ
	Х	2 speed port	SAE J514	9/16-18 UNF	35	0


¹⁾ Depends on nominal size

 $_{2)}$ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

³⁾ Dimensions according to SAE J518 (Code 62 - high pressure series)

Holding brake (multi-disc brake)

Motor	Brake	L10	L11	D11
MCR3	B2	67.3	22	ø174
MCR5	B2	67.3	22	ø174
	B4	80.7	26.5	ø215
MCR10	B5	84.7	26.5	ø215
	В7	97.8	29	ø251
MCR15	B11	102.3	33	ø282
MCR20	B19	116.3	32	ø328

Ports

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State
MCR3	Z	Brake Port	SAE J515	9/16-18 SAE	30	0
MCR5	z	Brake Port	SAE J515	9/16-18 SAE	30	0
MCR10	z	Brake Port	SAE J515	9/16-18 SAE	30	0
MCR15	z	Brake Port	SAE J515	9/16-18 SAE	30	0
MCR20	z	Brake Port	SAE J515	9/16-18 SAE	30	0

¹⁾ O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Selection guide

Data sheet	Motor type				Fram	ne size		
	Application		3 160400 cc	5 380820 cc	6 820920 cc	10 7801340 cc	15 11302150 cc	20 17503000 cc
15198	MCR-F Wheel drives		•	•	-	•	•	-
15200	MCR-W Heavy duty wheel drives		•	•	-	•	-	-
15195	MCR-A Frame integrated drives	1	•	•	-	•	-	-
15199	MCR-H Integrated drives		•	•	-	•	•	•
15221	MCR-T Track drives		-	•	•	•	-	-
15223	MCR-R Series 40 Hydraulic drive assist		-	-	-	•	-	-
15214	MCR-X Slew drives		•	•	-	-	-	-
15197	MCR-C Compact drives		-	-	_	-	-	•
15196	MCR-D Industrial applications		•	•	-	•	-	-
	MCR-E Industrial applications		-	•	-	-	-	-

Bosch Rexroth Limited

Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 15 92 631 777 Telefax +44 15 92 631 936 www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 15199/12.2013

2

4

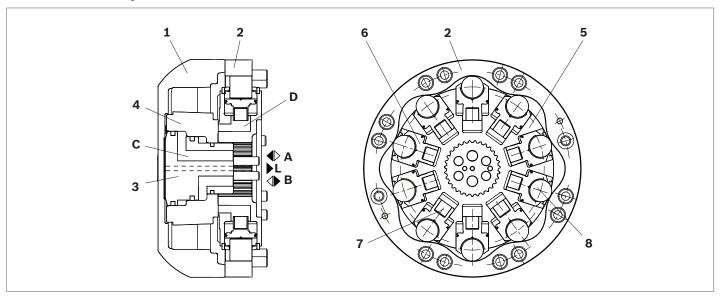
Radial piston motor for hydraulic drive assist MCR-R Series 41

RE 15223

Edition: 07.2015 Replace 12.2013

ГΙ	anne	SIZE	MCR	T

- ▶ Displacement 780cc and 1120cc
- ▶ Differential pressure up to 450 bar
- ► Torque output up to 6420 Nm
- ▶ Drive speed up to 215 rpm
- ► Freewheel speed up to 600 rpm
- ▶ Open and closed circuits


Features

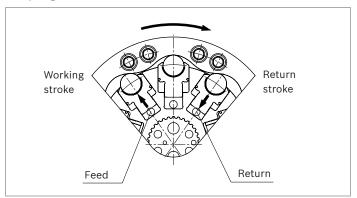
- Compact robust construction
- ► Rotating case design
- ► High volumetric and mechanical efficiencies
- High pressure rating
- ► High reliability
- ► Low maintenance
- ► Smooth running at very low speeds
- ▶ Low noise
- Integrated flushing in drive and freewheel

Contents	
Functional description	
Ordering code	
Technical data	

Dimensions 7
Selection guide 8

Functional description

Hydraulic motor type MCR-R is a radial piston motor with a rotating case designed for installation on a vehicle axle to provide hydraulic drive to its wheel.


Construction

Rotating assembly consisting of case (1), cam (2) and distributor (4). Cylinder block (5) containing pistons (6) fitted with magnets (7). Fixed stub axle extension (3).

Transmission

The cylinder block (5) is splined onto the vehicle's axle. The pistons (6) are arranged radially in the cylinder block (5) and make contact with the cam (2) via rollers (8). The extension of the pistons (6) acting upon the cam (2) drives the rotating assembly which is bolted to the vehicle's wheel hub.

Torque generation

The number of working and return strokes corresponds to the number of lobes on the cam multiplied by number of pistons in the cylinder block.

Bosch Rexroth AG, RE 15223/07.2015

Flow paths

Ports **A**, **B** and **L** are connected to galleries drilled through the vehicle axle. The galleries in the stub axle extension (**C**) direct the oil via the distributor (**4**) into the cylinder chambers (**D**). The **L** port returns leakage oil from the motor case.

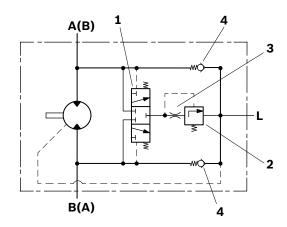
Freewheeling

When not in drive mode the motor is selected to freewheel by relieving ports **A** and **B** to tank and pressurising the case via port **L**. This pushes the pistons back into the cylinder block and holds the rollers clear of the cam. In the event of loss of hydraulic pressure the magnets in the base of each piston (7) will hold them in the retracted position.

Motor flushing

In a closed circuit hydraulic system, the same fluid circulates between the pump and the motor. If the system was run under these conditions for any length of time the fluid would soon overheat. To address this the MCR-R has an integral flushing system which allows a controlled flow of fluid to be diverted from the system and back to tank via the system cooling arrangement.

The MCR-R includes features to enable integral flushing in both drive and freewheel modes, flushing during freewheel is of particular importance due to the higher operating speeds.


Flushing during drive

Pressure differential between **A** and **B** will cause the flushing spool (**1**) to shift and connect the low pressure return flow to the flushing poppet (**2**). If the return pressure is above a predetermined level the flushing poppet will open and allow fluid flow to tank via the motor case drain (**L**). The standard setting for the poppet cut off is 14 bar. This is to protect other system functions by closing off flushing flow if system return (charge) pressure drops below this value. The flushing flow rate is determined by the flushing poppet orifice (**3**). Different sizes of orifice are available to vary the flow depending upon system requirements.

Flushing during freewheel

During freewheel, **A** and **B** ports are connected to tank and a fluid flow is applied to the **L** port to pressurise the motor's case and push the pistons back into the cylinder block. Poppets (**4**) will open and permit fluid flow from the case back to tank via the **A** and **B** ports.

▼ Motor with flushing valve

Flushing flow rates

Flushing code	Orifice size	Flow (I/n	nin) at 25 bar¹)
	(mm)	min	max
F1	Ø1	2.2	2.7
F2	Ø1.5	5.0	6.1
F7	Ø1.7	6.4	7.8
F4	Ø2	8.2	10.7
F6	Ø2.3	8.8	11.4

1) 0.6 mm Shim (Standard), Cracking pressure = 11±3 bar

4 MCR-R Series 41 | Radial piston motor Ordering code

Ordering code

01	02	03	04	05	06		07	08	09	10	11		12	13
MCR	10	R		Z	Z	/	41	A0		1L				
Radial piston m	otor on type, low-	spood his	gh-torquo	motor										MCR
	on type, low-	speed, m	gii-torque	motor										IVICK
Frame size	10													
02 Frame size	10													10
Housing type														
03 Rotating ca	se hydrobas	e												R
Nominal size, d	isplacement	V _g in cm	³/rev								_			
04 Frame size	10											780	1120]
	placement: n				al pistons					LI	D	•	-	_
High dis	placement: r	motors us	e stepped	pistons						Н	D	-	•	
Drive shaft														
05 Without dri	ve shaft													Z
Through shaft														
06 Without thr	ough shaft													Z
Series														
07 Series 41														41
Brake														•
08 Without bra	ake													A0
Seals														
09 NBR (nitrile	rubber)													М
FKM (fluoro														V
Direction of rot														
	n inboard er	nd of stub	axle exter	nsion, clo	ckwise wi	th flow in	ito port A							1L
Flushing				,										
	shing (no co	de)												
	ng (see table		3)											F1-F7
	<u> </u>	1,80	,											
Special order 12 Special fea	turo													soxxx
	tui C													JOAAA
Other	. l													*
13 Mark in tex	ı nere													l [^]

• = Available - = Not available

Technical data

Frame size			MCR10F	· · · · · · · · · · · · · · · · · · ·
Type of mounting	-		Hydroba	se - rotating case
Pipe connections ¹⁾²⁾			Integral	to stub axle
Displacement	V_{g}	cm ³ /rev	780	1120
Output torque				
Specific torque (at Δp = 250 bar)		Nm	3100	4520
Maximum torque ³⁾	$T_{\sf max}$	Nm	5580	6420
Output speed				
Minimum speed for smooth running ⁴⁾	n_{min}	rpm	0.5	0.5
Maximum speed ⁵⁾⁶⁾	$n_{\sf max}$	rpm	215	150
Maximum freewheel speed ¹¹⁾		rpm	600	600
Pressure				
Operating pressure	p_{nom}	bar	250	250
Maximum differential pressure ³⁾⁷⁾	Δp_{max}	bar	450	400
Maximum pressure at port "A" or "B"3)7)	p_{max}	bar	470	420
Maximum case drain pressure	$p_{case\ max}$	bar	10	10
Operating case pressure	$p_{\sf case\ nom}$	bar	5	5
Weight	m	kg	30	30
Hydraulic fluid				
Fluid type ⁸⁾⁹⁾			Mineral	oils (HVLP) to DIN 51524-3
Fluid cleanliness			ISO 440	6, Class 20/18/15
Fluid viscosity range	$v_{min/max}$	mm²/s	10 to 20	00
Fluid temperature range ¹⁰⁾	$ heta_{ extsf{min/max}}$	°C	-20 to +8	35

Note

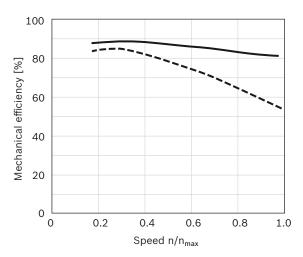
- Motor performance values are based on theoretical calculations.
- Efficiencies are not taken into consideration for theoretical calculations.

Please refer the related foot notes for more details.

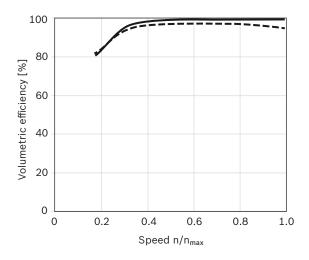
- 1) Ensure motor case is filled with oil prior to start-up.
- 2) For installation and maintenance details, please see operating manual 15215-01-B
- 3) Maximum values should only be applied for a small portion of the duty cycle. Please consult Rexroth Engineering. Department in Glenrothes for motor life calculations based on particular operating cases.
- 4) For continuous operation at speeds <5 rpm please consult Rexroth Engineering Department in Glenrothes.
- 5) Based on nominal no-load DP of 20 bar
- 6) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.

- 7) If planning to operate motors in series, please consult Rexroth Engineering Department in Glenrothes.
- 8) For use with environmentally acceptable fluids HEES, HEPG, HETG, fluoroelastomer / Viton seals must be specified. For further information, please refer to 90221.
- $_{9)}$ For use with HF hydraulic fluids please refer to 90229.
- 10) Extension of the allowable temperature range may be possible depending on specification.
 - Please consult Rexroth Engineering Department in Glenrothes for further details.
- 11) For limited time speeds up to 720 rpm may be acceptable. Please consult Rexroth Engineering at Glenrothes.

RE 15223/07.2015, Bosch Rexroth AG


MCR-R Series 41 | Radial piston motor Technical data

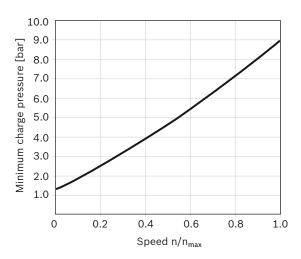
Efficiencies


6

Data applies after a 20 hour run in time and has been established using a typical axle bearing arrangement.

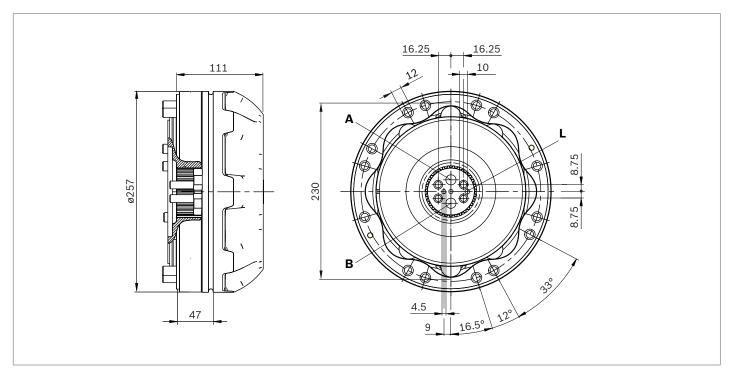
▼ Mechanical efficiency

▼ Volumetric efficiency



100 bar / 1450 psi ---- 350 bar / 5100 psi

Minimum charge pressure


Value is based on the requirement at the motor stub axle port.

▼ Minimum charge pressure in pump mode

For specific performance information or operating conditions contact the Engineering Department at Bosch Rexroth Glenrothes.

Dimensions

Ports

Designation	Port function	Size	$p_{\sf max}$ [bar]	State ²⁾	
A, B	Inlet, outlet	ø12	470/420 ¹⁾	0	
L	Case drain	ø5	10	0	

¹⁾ Depending upon displacement

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

²⁾ O = Must be connected (plugged on delivery)

Selection guide

Data sheet	Motor type		Frame size										
	Application		3 160400 cc	5 380820 cc	6 820920 cc	10 7801340 cc	15 11302150 cc	20 17503000 cc					
15198	MCR-F Wheel drives	101	•	•	-	•	•	-					
15200	MCR-W Heavy duty wheel drives		•	•	-	•	-	-					
15195	MCR-A Frame integrated drives		•	•	-	•	-	-					
15199	MCR-H Integrated drives		•	•	-	•	•	•					
15221	MCR-T Track drives		-	•	•	•	-	-					
15223	MCR-R Series 41 Hydraulic drive assist	6	-	-	-	•	-	-					
15214	MCR-X Slew drives	100	•	•	-	-	-	-					
15197	MCR-C Compact drives		-	-	-	-	-	•					
15196	MCR-D Industrial applications		•	•	-	•	-	-					
	MCR-E Industrial applications		-	•	-	-	-	-					

Bosch Rexroth Limited

Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 15 92 631 777 Telefax +44 15 92 631 936 info.ma@boschrexroth.de www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 15223/07.2015

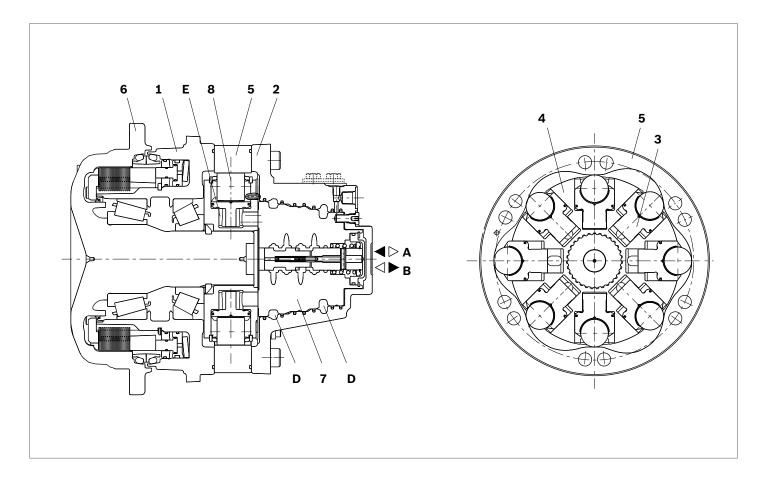
Rexroth Bosch Group

Radial piston motor for track drives MCR-T

RE 15221

Edition: 07.2015 Replaces 06.2012

Features


- ► Compact robust construction
- ► High brake capacity
- ► High volumetric and mechanical efficiencies
- ► High pressure rating
- ► High reliability
- ► High bearing life
- ► Low maintenance
- ► Smooth running at very low speeds
- ▶ Low noise
- Freewheeling possible
- ► Available with
 - Integrated parking brake
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

•	Frame	size	MCR5	MCR6.	MCR10
	I I allic	3120	1010110.	IVICITO.	INICIATO

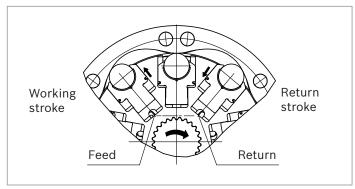
- ▶ Displacement 620cc to 1340cc
- ▶ Differential pressure up to 400 bar
- ► Torque output up to 8530 Nm
- ► Speed up to 305 rpm
- ▶ Open and closed circuits

Contents	
Functional description	2
Ordering code	6
Technical data	8
Dimensions	10
Selection guide	11

Functional description

Hydraulic motors of the type MCR-T are radial piston motors with front case mounting and flanged shaft. They are specially designed for track drive applications and are primarily used as drive motors on skid-steer loaders and compact track loaders.

The MCR-T type motor can be used in open as well as closed hydraulic circuits.


Construction

Two part housing (1, 2), rotary group (3, 4, 8), cam (5), drive shaft (6) and flow distributor (7)

Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

Torque generation

The number of working and return strokes corresponds to the number of lobes on the cam multiplied by number of pistons in the cylinder block.

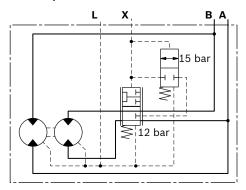
Flow paths

The ports **A** and **B**, which are located in the rear case, carry oil through the distributor to the cylinder chambers (**E**).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard.

Freewheeling


In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports **A** and **B** to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port **L**. In this condition, the pistons are forced into the cylinder block which forces the rollers to loose contact with the cam thus allowing free rotation of the shaft.

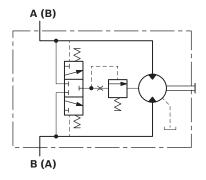
Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. Maximum rated speed of the motor remains unchanged.

Bosch Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode. Alternatively, enhanced soft-shifting via software control primarily for Compact Track Loader applications is now available from Bosch Rexroth.

▼ Two-speed motor

Note


2W can not be used in open circuit.

Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or counter-clockwise direction, the flushing valve opens and allows a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cold fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request). Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost / charge pressure of 25 bar.

▼ Motor with flushing valve

Flushing flow rates

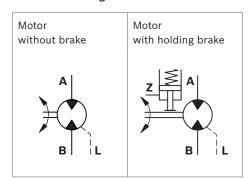
Flushing code	Orifice size	Flow (I/min) at 25 bar1)					
	(mm)	min	max				
F1	Ø1	2.2	2.7				
F2	Ø1.5	5.0	6.1				
F7	Ø1.7	6.4	7.8				
F4	Ø2	8.2	10.7				
F6	Ø2.3	8.8	11.4				

 $_{1)}$ 0.6 mm Shim (Standard), Cracking pressure = 11 \pm 3 bar

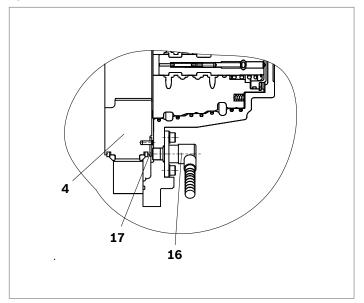
Holding brake (multi-disc brake)

Mounting

The MCR T-type motor has a spring applied pressure released holding brake integrated into the front of the motor.


Brake application

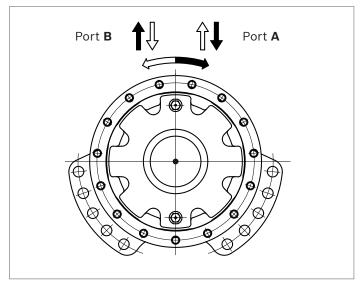
As a safety requirement in mobile applications a parking brake is provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs that are compressed by a disc spring. The brake is released when oil pressure is applied to brake port "**Z**" and the pressure in the annular area compresses the disc spring allowing the brake discs to turn independently.


Note

This brake is provided solely for static use - not to be used dynamically.

▼ Schematic diagrams

Speed sensor


A Hall-effect speed sensor (16) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (17) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.

Versions are available for use with regulated supplies 10 V (Code P1) and for direct connection to a 12 V or 24 V unregulated supply (Code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code P0). These "sensor-ready" motors may be fitted with a sensor at a later date.

Direction of shaft rotation with flow

(viewed from drive shaft)

Ordering code

	02	03	04	05	06	1	07	08 I	09	10	11	12	13	14	15
MCR		T			Z	/	33		V						
adial pist	on motor														
	piston type	e, low-sp	peed, hig	h-torque	motor										MCR
rame size															
02 Frame	size 5														5
	6														6
	10														10
lousing ty															
03 Front o	case flange	d													Т
1	ze, displac	ement V	g in cm ³	/rev											1
04 Frame	size 5												1	1	
							LID				620		750	820	1
Frame	h displacer	nent: mo	otors use	steppea	pistons		HD)			•	•	•	•	-
Frame	Size 6												820	920	1
Hig	h displacer	nent: mo	otors use	stepped	pistons		HD)					•	920	1
	size 10				10.000										-
											107	0 1120	1180	1340	İ
Hig	h displacer	nent: m	otors use	stepped	pistons		1L				•	•	-	-	1
Hig	h displacer	nent: mo	otors use	stepped	pistons		2W	1			•	•	•	•	
rive shaft	:														
05 With fl	ange ø284	mm (on	ly availak	ole with M	1CR5T a	nd MCR6	ST)								F284
VA (1.1. C)	ange ø315	mm (on	ly availak	ole with N	(CR10T)									F315
With fi	aft														_
	iait														Z
hrough sh	it through :	shaft													
Through sh		shaft													
hrough sh	ıt through :	shaft													33
Through should be should b	ıt through :	shaft													33
through shaped of the shaped o	ıt through :		applied n	nulti-disc	holding	brake 45	00 Nm								33 B5
hrough should be	ut through :	spring a						only avail	able with	MCR10T	-)				
Chrough shaped of the control of the	at through : 33 ulic release	spring a						only avail	able with	MCR10T	-)				B5
Chrough should be series D7 Series Brake D8 Hydrau Hydrau Geals	at through : 33 ulic release	spring a	applied n					only avail	able with	MCR10T	-)				B5
Chrough shaded without the series of Series of Series of Hydrau of Seels of FKM (f	33 ulic release	spring a spring a	applied n					only avail	able with	MCR10T	-)				B5 B7
Through should be should b	33 Ilic release Ilic release	spring a spring a omer / V	applied n	nulti-disc	holding			only avail	able with	MCR10T	-)				B5 B7

12

• = Available - = Not available

11 Tapped with UNF thread (SAE J514) (only available with MCR5T and MCR6T)

Tapped with UNF thread (SAE J514) (A & B ports SAE split flange metric bolt holes) (only available with MCR10T)

Bosch Rexroth AG, RE 15221/07.2015

	01	02	03	04	05	06		07	08	09	10	11	12	13	14	15
	MCR		Т			Z	1	33		V						
Stu	ds															
12	Without	t studs (r	no code)													
Spe	ed sense	or														
13	Without	sensor	(no code))												
	Sensor	ready										-				P0
	Sensor	without	regulator													P1
	Sensor	with reg	ulator													P2
Flu	shing															
14	Without	flushing	(no code	e)												
	With flu	shing (se	ee table o	n page 3	3)											F1-F7
Spe	cial orde	er														
15	Special	feature														soxxx

Technical data

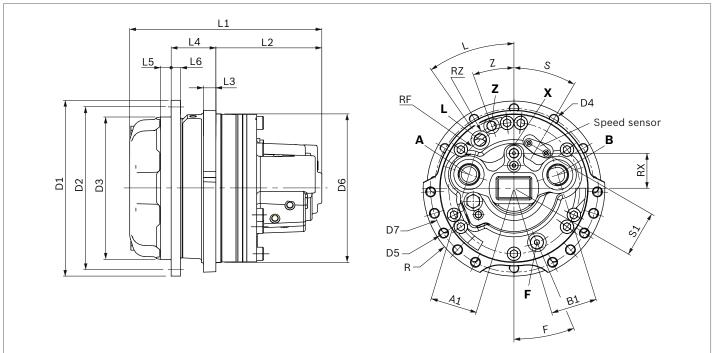
Frame size			MCR5T	MCR6T	MCR10T			
Description			Radial-piston typ	pe, low-speed, h	igh-torque motor			
Type of mounting			Flange mounting	g				
Pipe connections ¹⁾²⁾			Threaded per SA	d per SAE J518				
Weight								
Single speed (1L)	m	kg	58	60	84			
Two speed (2WL)	m	kg	63	66	93			
Two speed ratio ³⁾								
Full displacement			1:1	1:1	1:1			
Reduced displacement			1:2	2:3	1:2			
Hydraulic fluid ⁴⁾								
Fluid type			Mineral oils (HL	P) to DIN 51524				
Fluid cleanliness			ISO 4406, Class 20/18/15					
Fluid viscosity range	$v_{min/max}$	mm²/s	10 to 2000					
Fluid temperature range ⁵⁾	$ heta_{ ext{min/max}}$	°C	- 20 to +115					
Pressure			High displaceme	ent				
Operating pressure	p_{nom}	bar	250					
Maximum differential pressure ⁶⁾⁷⁾	Δp_{max}	bar	400					
Maximum pressure at port A or B ⁶⁾⁷⁾	p_{max}	bar	420					
Maximum case drain pressure	p _{case max}	bar	10					

Footer see page 9

Motor perfomance MCR5T	Size		620	680	750	820
Displacement	V_{g}	cm ³ /rev	620	680	750	820
Specific torque		Nm/bar	10	11	12	13
Maximum torque ⁶⁾¹²⁾	$T_{\sf max}$	Nm	3947	4329	4775	5220
Minimum speed for smooth running ⁸⁾	n_{min}	rpm	0.5	0.5	0.5	0.5
Maximum speed 1L ⁹⁾¹⁰⁾	n_{max}	rpm	250	250	230	210
Maximum speed 2WL ⁹⁾¹⁰⁾	n_{max}	rpm	250	250	250	230
Motor performance MCR6T	Size		820	920		
Displacement	V_{g}	cm ³ /rev	820	920		
Specific torque		Nm/bar	13	15		
Maximum torque ⁶⁾¹²⁾	$T_{\sf max}$	Nm	5220	5857		
Minimum speed for smooth running ⁸⁾	n_{min}	rpm	0.5	0.5		
Maximum speed 1L ⁹⁾¹⁰⁾	$n_{\sf max}$	rpm	230	205		
Maximum speed 2WL ⁹⁾¹⁰⁾	n_{max}	rpm	250	250		
Motor performance MCR10T	Size		1070	1120	1180	1340
Displacement	V_{g}	cm ³ /rev	1070	1120	1180	1340
Specific torque		Nm/bar	17	18	19	21
Maximum torque ⁶⁾¹²⁾	$T_{\sf max}$	Nm	6812	7130	7512	8531
Minimum speed for smooth running ⁸⁾	n_{min}	rpm	0.5	0.5	0.5	0.5
Maximum speed 1L ⁹⁾¹⁰⁾	n_{max}	rpm	185	180	170	150
Maximum speed 2WL ⁹⁾¹⁰⁾	n_{max}	rpm	240	240	235	205
Holding brake (disc brake)	Size		B5	B7	·	
Minimum holding torque	$T_{min/max}$	Nm	4500	7000	'	
Release pressure (min) ¹³⁾	$P_{rel\ min}$	bar	12	10	-	
Release pressure (max) ¹³⁾	$P_{rel\ max}$	bar	15	15		
Maximum pressure at brake port "Z"	P_{max}	bar	40	40		
Oil volume to operate brake	V_{rel}	cm ³	20	22		

Footer from page 8 and 9

- 1) Ensure motor case is filled with oil prior to start-up.
- For installation and maintenance details, please see operating manual 15215-B.
- 3) Other displacements and ratios contact Bosch Rexroth.
- 4) For use with environmentally acceptable fluids HEES, HEPG, HETG, fluoroelastomer / Viton seals must be specified.
- 5) Extension of the allowable temperature range may be possible depending on specification. Please consult Bosch Rexroth Engineering Department in Glenrothes for further Details.
- 6) Maximum values should only be applied for a small portion of the duty cycle. Please consult Bosch Rexroth Engineering Department in Glenrothes for motor life calculations based on particular operating cases.
- 7) When operating motors in series, please consult Bosch Rexroth Engineering Department in Glenrothes.
- 8) For continuous operation at speeds <5 rpm please consult Bosch Rexroth Engineering Department in Glenrothes.
- 9) Based on nominal no-load Δp of 20 bar in full-displacement mode.


- 10) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.
- 11) Guide values for up to 5000 hours of motor operation (ISO VG46 and 50°).
- 12) Low displacement = 450 bar, high displacement = 400 bar13) At 0 bar case pressure, the quoted brake release pressure is over and above any case pressure present.

Note

- Motor performance values all based on theoretical calculations.
- ► Efficiencies not taken into consideration for theoretical calculations.
- Brake torque accounts for tolerances.
 Please refer the related foot notes for more details.

Dimensions

MCR5, MCR6

Motor	D1	D2	D3	D4		D5	D6	D7	R		S	Z	F
MOTOL	DI	DZ	D3	D4		Do	ро	וט	<u> </u>	L .	<u> </u>		
MCR5T1L	ø284	ø260	ø230	M16		ø17.5	ø240	ø322.58	148	36.5°	25°	20.7°	23°
MCR5T2WL	ø284	ø260	ø230	1/2-13 \	JNC 2B	ø16.5	ø230	ø264	148	30°	30°	6.5°	23°
MCR6T1L	ø284	ø260	ø230	1/2-13 \	JNC 2B	ø17.5	ø240	ø322.58	176.5	35°	-	19.8°	23°
MCR6T2WL	ø284	ø260	ø230	M16		ø16.5	ø240	ø272	148	35°	30°	19.8°	23°
Motor	L1	L2	L3	L4	L5	L6	RX	RZ	RF	Δ.	\1	B1	S1
MCR5T1L	270	130.8	20	72.2	17	15	-	R101.5	R90	7	'6	74	75
MCR5T2WL	310.4	171.2	20	72.2	17	15	56.5	R101	R90	7	'6	74	75
MCR6T1L	270	130.8	20	72.2	17	15	_	R107	R95	7	'6	74	_

15

56.5

R107

Ports

MCR6T2WL

Designation	Port function	Ordering code 12	Size	Ordering code 48 ¹⁾	Size ¹⁾	Maximum pressure [bar]	State ²⁾
A, B	Inlet, outlet	SAE J514	1 5/16-12 UN	SAE J518	3/4 in	420	0
L	Case drain	SAE J514	3/4-16 UNF	SAE J514	3/4-16 UNF	10	0
X	2 speed port	SAE J514	9/16-18 UNF	SAE J514	9/16-18 UNF	30	0
Z	Brake port	SAE J514	9/16-18 UNF	SAE J514	9/16-18 UNF	40	0
F	Filler port	SAE J514	3/4-16 UNF	SAE J514	3/4-16 UNF	10	Χ

¹⁾ Applicable to MCR10T only

310.4

171.2

20

72.2

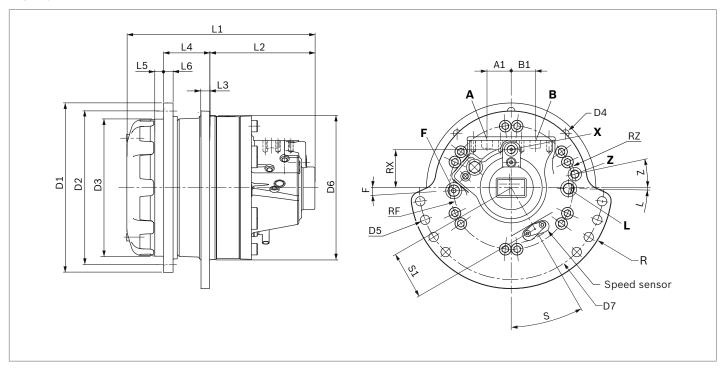
17

Before finalizing your design, request a binding installation drawing.

R95

76

74


75

 $^{^{2)}}$ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions

MCR10

Motor	lotor D1 D2 D3		D2 D3 D4 D5			D1 D2 D3 D4 D5 D6 D7				D5 D6 D7 R L		L	S	Z	F
MCR10T1L	ø315	ø285	ø255	5/8-11 UNC 2	ø17.5	ø268	ø342	187.5	3°	_	10°	3°			
MCR10T2WL	ø315	ø285	ø255	M16	ø17.5	ø268	ø342	187.5	1°	30°	12°	3°			
Madan	1.4	10	10	14 15	1.0	DV	D7	DE.		A.4	D4	C4			

Motor	L1	L2	L3	L4	L5	L6	RX	RZ	RF	A1	B1	S1
MCR10T1L	293.5	139.5	16	86	16	18	-	R121	R107	45	45	-
MCR10T2WL	349.8	195.8	16	86	16	18	71	R121	R107	45	45	89

Ports

Designation	Port function	Ordering code 12	Size	Ordering Size ¹⁾ code 48 ¹⁾		Maximum pressure [bar]	State ²⁾
A, B	Inlet, outlet	SAE J514	1 5/16-12 UN	SAE J518	3/4 in	420	0
L	Case drain	SAE J514	3/4-16 UNF	SAE J514	3/4-16 UNF	10	0
Х	2 speed port	SAE J514	9/16-18 UNF	SAE J514	9/16-18 UNF	30	0
z	Brake port	SAE J514	9/16-18 UNF	SAE J514	9/16-18 UNF	40	0
F	Filler port	SAE J514	3/4-16 UNF	SAE J514	3/4-16 UNF	10	Х

¹⁾ Applicable to MCR10T only

Before finalizing your design, request a binding installation drawing.

 $^{^{2)}}$ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Selection guide

Data sheet	Motor type				Fram	e size		
	Application		3 160400 cc	5 380820 cc	6 820920 cc	10 7801340 cc	15 11302150 cc	20 17503000 cc
15198	MCR-F Wheel drives	101	•	•	-	•	•	-
15200	MCR-W Heavy duty wheel drives		•	•	-	•	-	-
15195	MCR-A Frame integrated drives		•	•	-	•	-	-
15199	MCR-H Integrated drives		•	•	-	•	•	•
15221	MCR-T Track drives		-	•	•	•	-	-
15223	MCR-R Series 41 Hydraulic drive assist	9	-	-	-	•	-	-
15214	MCR-X Slew drives	100	•	•	-	-	-	-
15197	MCR-C Compact drives		-	-	-	-	-	•
15196	MCR-D Industrial applications		•	•	-	•	-	-
	MCR-E Industrial applications		_	•	-	-	-	-

Bosch Rexroth Limited

Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 15 92 631 777 Telefax +44 15 92 631 936 www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 15221/07.2015

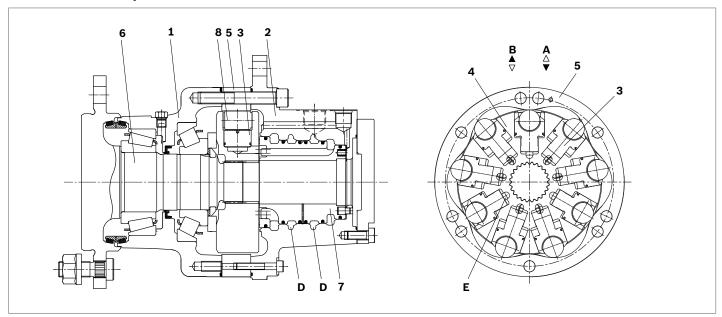
Radial piston motor for heavy duty wheel drives MCR-W

RE 15200

Edition: 09.2015

		MCR10

- ▶ Displacement 160 cc to 1340 cc
- ▶ Differential pressure up to 450 bar
- ► Torque output up to 8530 Nm
- ► Speed up to 875 rpm
- ▶ Open and closed circuits


Features

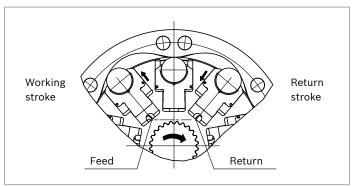
- Compact robust construction
- ▶ High volumetric and mechanical efficiencies
- ► Rear case mount
- ► Wheel flange with wheel studs
- ► High reliability
- ► Low maintenance
- ► Smooth running at very low speeds
- ▶ Low noise
- ► Bi-directional
- Sealed tapered roller bearings
- ► High radial forces permitted on drive shaft
- Freewheeling possible
- Available with:
 - Holding brake (multi-disc), dynamic (drum) brake or Dynamic (disc) brake
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

Contents	
Functional description	2
Ordering code	6
Technical data	8
Efficiencies	10
Permitted loading on drive shaft	11
Dimensions	12
Selection guide	16

2

Functional description

Hydraulic motors of the type MCR-W are radial piston motors with rear case mounting and wheel flange shaft. The MCR-W motors are intended for wheel drives in open or closed circuits. They are specially designed to withstand the most demanding conditions in different applications such as; Fork lift trucks, agricultural and forestry machines. Fitted with stronger shaft and bearings, the MCR-W provides 60 percent increase in radial load capacity compared to standard radial piston motors. The integrated wheel flange with studs allows easy installation of standard wheel rims.


Construction

Two part housing (1, 2), rotary group (3, 4, 8), cam (5), drive shaft (6) and flow distributor (7)

Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

Torque generation

The number of working and return strokes corresponds to the number of lobes on the cam multiplied by number of pistons in the cylinder block.

Flow paths

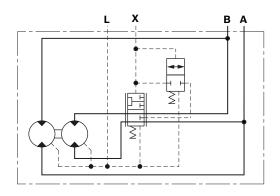
The ports **A** and **B**, which are located in the rear case, carry oil through the distributor to the cylinder chambers (**E**).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard.

Freewheeling

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports **A** and **B** to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port **L**. In this condition, the pistons are forced into the cylinder block which forces the rollers to lose contact with the cam thus allowing free rotation of the shaft.

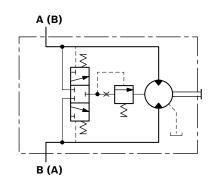

Bosch Rexroth AG, RE 15200/09.2015

Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor's rotary group. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

Bosch Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

▼ Schematic


Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or anti-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir and is fed to the pump inlet. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure (options available, see data sheet 15225-01).

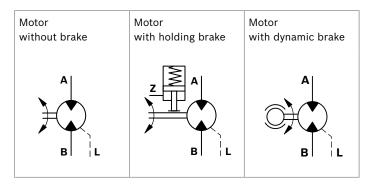
Different orifice sizes may be used to adjust the flushing flow to the application's requirements. See data sheet 15225-01 for more details and available options.

▼ Schematic

Holding brake (multi-disc brake)

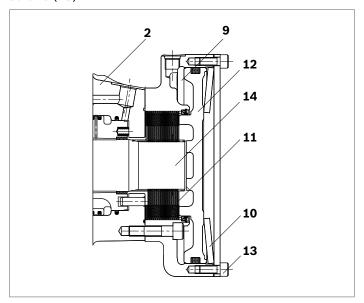
Mounting

By way of rear housing (2) and brake shaft (14).


Brake application

As a safety requirement in mobile applications a parking brake may be provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs (11) that are compressed by a disc spring (10). The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area (9) compresses the disc spring using brake piston (12) thus allowing the brake discs (11) to turn independently.

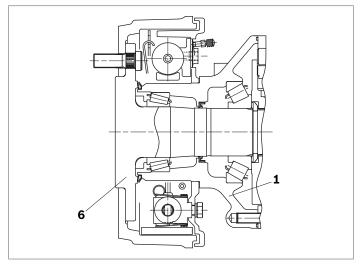
Note


This brake is provided solely for static use - not to be used dynamically.

▼ Schematic diagrams

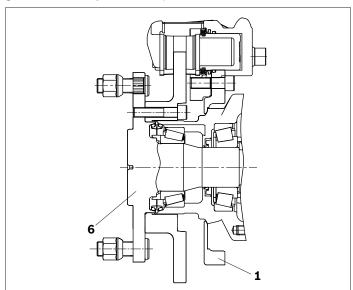
Manual release of holding brake

The brake may also be released manually by loosening screws (13).



Dynamic brake

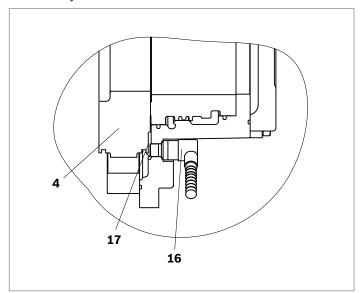
Where mechanical dynamic braking is required, a drum brake or disc brake may be specified.


Drum brake

The drum brake is mounted directly onto the drive shaft (6) and front housing (1). Braking torque is provided by brake shoes acting on the inside of the drum. For dynamic braking the shoes are operated by a hydraulic cylinder, the shoes can also be operated mechanically by a cable to provide a static parking brake function.

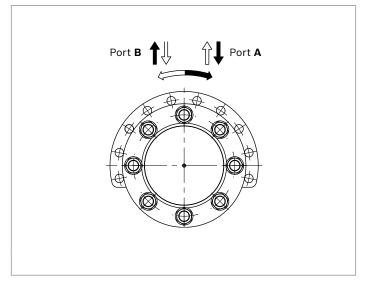
Caliper disc brake

In applications where a more responsive dynamic brake is required a Caliper Disc Brake may be specified. The disc is mounted directly onto the shaft flange (6), the caliper is mounted on the motor front case via a caliper mounting bracket (1). Braking torque is provided by caliper acting on the disc. Other advantages of the Caliper Disc brake include greater reliability, faster response and less maintenance.


Bosch Rexroth AG, RE 15200/09.2015

Speed sensor

A Hall-effect speed sensor (16) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (17) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.


Versions are available for use with regulated supplies 10 V (Code P1) and for direct connection to a 12 V unregulated supply (Code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code P0). These "sensor-ready" motors may be fitted with a sensor at a later date.

Direction of shaft rotation with flow

(viewed from drive shaft)

6

Ordering code

01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16
MCR		W			Z	1	33									

Radial piston motor

01	1 Radial-piston type, low-speed, high-torque motor	MCR	
----	--	-----	--

Frame size

02	Frame size	3	3
		5	5
		10	10

Housing type

- 1				1
	03	High radial load bearings fitted, rear case mounting flange	W	L

Nominal size, displacement $V_{\rm g}$ in \mbox{cm}^3/\mbox{rev}

04	Frame size 3		160	225	255	280	325	365	400	
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-]
	High displacement: motors use stepped pistons	HD	-	-	-	_	•	•	•	
	Frame size 5		380	470	520	565	620	680	750	820
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-	-
	High displacement: motors use stepped pistons	HD	-	-	-	_	•	•	•	•
	Frame size 10		780	860	940	1120	1250	1340		
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	-	-	-		
	High displacement: motors use stepped pistons	HD	-	-	-	•	•	•		

Drive shaft		MCR3	MCR5	MCR10	
05	With flange ø180 mm	•	-	-	F180
	With flange ø250 mm	_	•	-	F250
	With flange ø280 mm	_	_	•	F280

Rear shaft

06	Without rear shaft	Z	

Series

07	Serie 33	33 ¹⁾
107	1 26HE 22	JJ ⁻ /

Bra	Brake		MCR3	MCR5	MCR10	
08	Without brake		•	•	•	A0
	Hydraulic release spring applied multi-disc holding brake	2200 Nm	•	•	-	B2
		4400 Nm	_	•	-	В4
		4400 Nm	_	_	•	B5
		7000 Nm	-	-	•	В7
	Dynamic brake (drum-brake) with maximum torque	4000 Nm	•	-	-	C4L/R
		6400 Nm	-	-	•	C7L/R
		12000 Nm	-	-	•	C12L/R
	Dynamic brake (disc-brake) with maximum torque	3700 Nm	•	-	-	S4L/R

Seals

Jeans						
	09	NBR (nitrile rubber)	M]		
		FKM (fluoroelastomer / Viton)	V	1		

• = Available - = Not available

Bosch Rexroth AG, RE 15200/09.2015

	01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16
N	MCR		W			Z	/	33									
Sing	de/two-	speed o	peration	•			•	•	•			•	•		•		•
- ī			tandard		of rotat	ion											1L
	Bi-direc	tional tv	wo speed	d, standa	ırd direc	tion of r	otation ¹⁾	1									2WL
Port	ts																•
11	Tapped	with UN	IF threac	I (SAE J	514)												12
Ī	Tapped	with UN	IF threac	I (SAE J	514) (A a	ınd B po	rts SAE	split flar	nge metr	ic holes)							42
Stud	ds																•
12	Withou	t studs (no code)													
Ī	With w	neel stud	ds and n	uts													S
Spe	ed sens	or															•
			(no cod	e)													
Ī	Sensor	ready															P0
	Sensor	without	regulato	r													P1
	Sensor	with reg	gulator														P2
Flus	hing																
14	Withou	t flushin	g (no co	de)													
	With flu	shing (s	ee table	on page	3)												F1-F7
Spe	cial ord	er															
15	Special	feature															soxxx
Othe	er																-
16	Mark in	text her	re														*

¹⁾ This data sheet also applies to series 32.

Technical data

		Front c	ase flange	mountin	g				
		Thread	ed per SA	E J514; F	langed pe	r SAE J5	18		
		see pag	ge 9						
m	kg	28	53	65					
m	kg	30	58	_					
		ISO 440	06, Class	20/18/15					
$v_{min/max}$	mm²/s	10 to 2	000						
$ heta_{min/max}$	°C	-20 to +	·85						
		Low dis	placemer	nt		High di	splaceme	nt	
p_{nom}	bar	250				250			
Δp_{max}	bar	450				400			
p_{max}	bar	470				420			
p _{case max}	bar	10				10			
V_{g}	cm ³ /rev	160	225	255	280	325	365	400	
	Nm/bar	3	4	4	4	5	6	6	
$T_{\sf max}$	Nm	1146	1611	1826	2005	2069	2324	2546	
n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
n_{max}	rpm	670	475	420	385	330	295	270	
$n_{\sf max}$	rpm	875	620	550	500	430	385	350	
V_{g}	cm ³ /rev	380	470	520	565	620	680	750	820
	Nm/bar	6	7	8	9	10	11	12	13
$T_{\sf max}$	Nm	2722	3366	3724	4047	3947	4329	4775	5220
n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
n_{max}	rpm	475	385	350	320	290	265	240	220
n_{max}	rpm	570	465	420	385	350	320	290	265
V_{g}	cm ³ /rev	780	860	940		1120	1250	1340	
	Nm/bar	12	14	15		18	20	21	
$T_{\sf max}$	Nm	5586	6159	6732		7130	7958	8531	
n_{min}	rpm	0.5	0.5	0.5		0.5	0.5	0.5	
n_{max}	rpm	215	195	178		150	134	125	
	m ν _{min/max} θ _{min/max} p _{nom} Δp _{max} p _{case max} ν _g Τ _{max} η _{min} η _{max} ν _g Τ _{max} η _{min} η _{max} η _{min} η _{max} η _{min} η _{max} η _{min} η _{max} η _{min} η _{max} η _{min} η _{max} η _{min} η _{max} η _{min}	m kg v _{min/max} mm²/s θ _{min/max} °C p _{nom} bar Δp _{max} bar p _{case max} bar V _g cm³/rev Nm/bar T _{max} npm n _{max} rpm V _g cm³/rev Nm/bar T _{max} Nm rpm v _g cm³/rev Nm/bar T _{max} Nm n _{min} rpm v _g cm³/rev Nm/bar T _{max} Nm n _{min} rpm n _{max} rpm n _{max} rpm n _{max} rpm	m kg 28 m kg 30 ISO 440 ν _{min/max} mm²/s 10 to 20 θ _{min/max} o°C -20 to + Low distriction p _{nom} bar 250 Δp _{max} bar 450 p _{max} bar 470 p _{case max} bar 10 10 Vg cm³/rev 160 Nm/bar 3 T _{max} Nm 1146 n _{min} rpm 0.5 n _{max} rpm 670 n _{max} rpm 875 Vg cm³/rev 380 Nm/bar 6 T _{max} Nm 2722 n _{min} rpm 0.5 n _{max} rpm 570 Vg cm³/rev 780 Nm/bar 12 T _{max} Nm 5586 n _{min} rpm 0.5 10 10 Nm/min rpm 0.5	Threaded per SA see page 9 m kg 28 53 m kg 30 58 ISO 4406, Class 3 ISO 4406 ISO 406 ISO	Threaded per SAE J514; F see page 9 m kg 28 53 65 m kg 30 58 - ISO 4406, Class 20/18/15 ν _{min/max} mm²/s 10 to 2000 θ _{min/max} bar 250 Δρ _{max} bar 470 ρ _{case max} bar 10 V _g cm³/rev 160 225 255 Nm/bar 3 4 4 T _{max} Nm 1146 1611 1826 n _{min} rpm 0.5 0.5 0.5 n _{max} rpm 670 475 420 Nm/bar 6 7 8 T _{max} Nm 2722 3366 3724 n _{min} rpm 0.5 0.5 0.5 n _{max} rpm 475 385 350 n _{max} rpm 570 465 420 V _g cm³/rev 780 860 940 Nm/bar 12 14 15 T _{max} Nm 5586 6159 6732 n _{min} rpm 0.5 0.5 0.5 Nm/bar 12 14 15 T _{max} Nm 5586 6159 6732 n _{min} rpm 0.5 0.5 0.5 Nm/min rpm 0.5 0.5 0.5	Threaded per SAE J514; Flanged per See page 9 m	Threaded per SAE J514; Flanged per SAE J5 see page 9 m	Threaded per SAE J514; Flanged per SAE J518 see page 9 m	Threaded per SAE J514; Flanged per SAE J518 see page 9

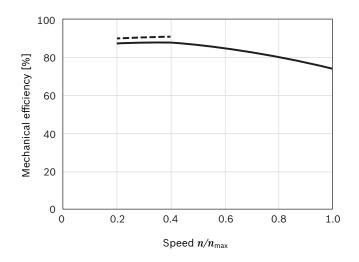
Footer on page 9

$t_{min/max}$		B2			MCR5		
$t_{min/max}$				B2	B4	В5	B7
	Nm	2200		2200	4400	4400	7000
p _{rel min}	bar	11		11	11	11	11
$p_{rel\ max}$	bar	15		15	15	15	15
p_{max}	bar	40		40	40	40	40
V_{rel}	cm ³	23		23	46	17	36
		MCR3		MCR5		MCR10)
		C4L/R		C7L/R		C12L/R	1
$t_{min/max}$	Nm	3000	4000	4700	6400	9000	12000
	N	1270	1661	1755	2400	2580	3460
p_{max}	bar	73	97	89	120	84	112
V	cm ³	9	9	13	13	24.91	24.91
		MCR3					
		S4					
			,		,		
	$p_{ m rel\ max}$ $p_{ m max}$ $V_{ m rel}$ $t_{ m min/max}$	$p_{ m rel\ max}$ bar $p_{ m max}$ bar $V_{ m rel}$ cm 3 $t_{ m min/max}$ Nm N bar bar	$p_{\text{rel max}}$ bar 15 p_{max} bar 40 V_{rel} cm³ 23 MCR3 C4L/R $t_{\text{min/max}}$ Nm 3000 N 1270 p_{max} bar 73 V cm³ 9 MCR3	$p_{\text{rel max}}$ bar 40 p_{max} bar 40 V_{rel} cm³ 23 MCR3 C4L/R $t_{\text{min/max}}$ Nm 3000 4000 N 1270 1661 p_{max} bar 73 97 V cm³ 9 9 MCR3	p _{rel max} bar 15 15 p _{max} bar 40 40 V _{rel} cm³ 23 23 MCR3 MCR5 C4L/R C7L/R t _{min/max} Nm 3000 4000 4700 N 1270 1661 1755 p _{max} bar 73 97 89 V cm³ 9 9 13 MCR3	$p_{\text{rel max}}$ bar 15 15 15 p_{max} bar 40 40 40 40 V_{rel} cm³ 23 23 46 MCR3 MCR5 C4L/R C7L/R $t_{\text{min/max}}$ Nm 3000 4000 4700 6400 N 1270 1661 1755 2400 p_{max} bar 73 97 89 120 V cm³ 9 9 13 13 MCR3	$p_{\text{rel max}}$ bar 15 15 15 15 p_{max} bar 40 40 40 40 40 V_{rel} cm³ 23 23 46 17 MCR3 MCR5 MCR10 C4L/R C7L/R C12L/R $t_{\text{min/max}}$ Nm 3000 4000 4700 6400 9000 N 1270 1661 1755 2400 2580 p_{max} bar 73 97 89 120 84 V cm³ 9 9 13 13 24.91 MCR3

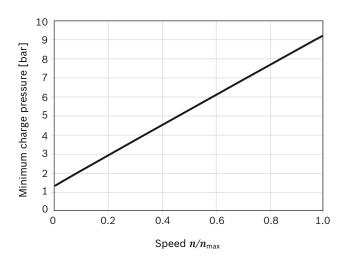
Footer from page 8

- Ensure motor case is filled with oil prior to start-up. See instruction manual 15215-B.
- 2) For installation and maintenance details, please see instruction manual 15215-B.
- $_{\rm 3)}$ For use with environmentally acceptable fluids HEES, HEPG, HETG, fluoroelastomer / Viton seals must be specified.
- 4) Extension of the allowable temperature range may be possible depending on specification. Please consult Bosch Rexroth Engineering Department in Glenrothes for further details.
- 5) Maximum values should only be applied for a small portion of the duty cycle. Please consult Bosch Rexroth Engineering. Department in Glenrothes for motor life calculations based on particular operating cases.
- 6) When operating motors in series, please consult Bosch Rexroth Engineering Department in Glenrothes.
- 7) For continuous operation at speeds <5 rpm please consult Bosch Rexroth Engineering Department in Glenrothes.
- 8) Based on nominal no-load Δp of 20 bar in full-displacement mode.
- 9) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.

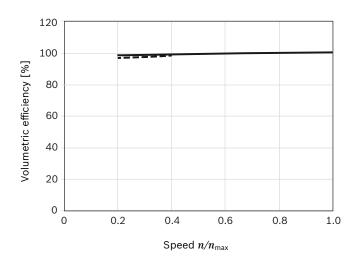
Note


- ► Motor performance values are based on theoretical calculations.
- ► Efficiencies are not taken into consideration for theoretical calculations.
- ► Brake torque accounts for tolerances. Values are based when used with standard mineral oil (HLP).

Please refer the related foot notes for more details.


RE 15200/09.2015, Bosch Rexroth AG

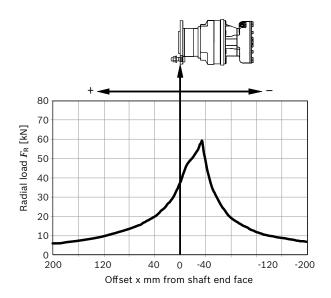
Efficiencies


▼ Mechanical efficiency

▼ Charge pressure

▼ Volumetric efficiency

100 bar / 1450 psi --- 300 bar / 4350 psi

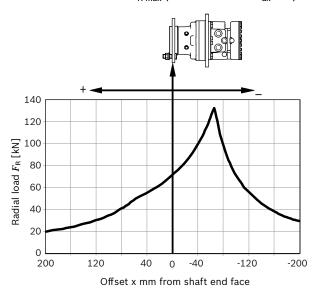

Note:

For specific performance information or operating conditions contact the Engineering Department at Bosch Rexroth, Glenrothes.

Permitted loading on drive shaft

Drive shaft ...3W F180...

Maximum radial load $F_{R max}$ (with axial load $F_{ax} = 0$)


Maximum axial load $F_{\rm ax\,max}$ (with radial load $F_{\rm R}$ = 0):

$$F_{\text{ax max}} = 43400 \text{ N} \leftarrow +$$

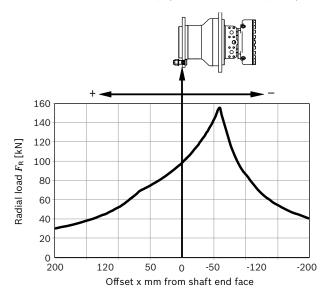
 $F_{\text{ax max}} = 36800 \text{ N} \rightarrow -$

Drive shaft ...5W F250...

Maximum radial load $F_{R \text{ max}}$ (with axial load $F_{ax} = 0$)

Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):

$$F_{\text{ax max}}$$
 = 85000 N \leftarrow +

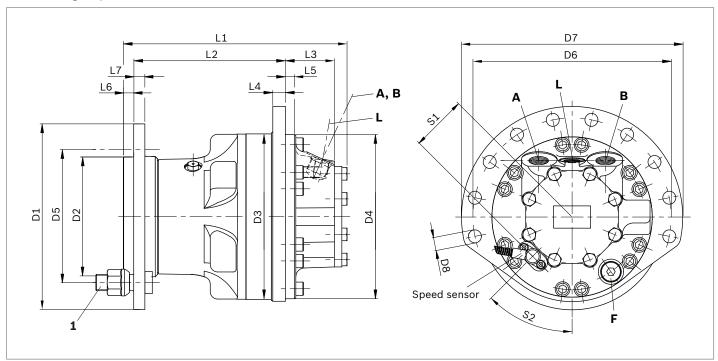

 $F_{\text{ax max}}$ = 67400 N \rightarrow -

Note:

- ► These values and graphs are for initial guidance only
- ► For actual motor life calculations under typical or specified duty cycles, contact Bosch Rexroth Engineering Department in Glenrothes

Drive shaft ...10W F280...

Maximum radial load $F_{R max}$ (with axial load $F_{ax} = 0$)


Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):

 $F_{\text{ax max}} = 108100 \text{ N} \leftarrow +$

 $F_{\rm ax\; max}$ = 88700 N \rightarrow -

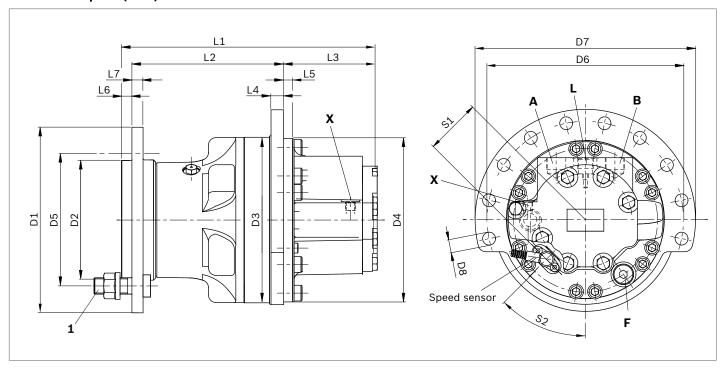
Dimensions

MCR-W single speed (1L)

Motor	D1	D2	D3	D4	D5 ¹⁾	D6	D7	D8 ²⁾	1
MCR3	ø180	ø92.7	ø180	ø180	ø140	ø210	ø237	ø14	5×M14×1.5
MCR5	ø250	ø160	ø223	ø222	ø205	ø267	ø297	ø17.4	8×M20×1.5
MCR10	ø280	ø175.8	ø264	ø253	ø225	ø300	ø335	ø17.5	10×M22×1.5
Motor	L1	L2	L3	L4	L5	L6	L7	S1	S2
IVIOLOI	L1	L2	LO	L4	LU	LU	L/	31	32
MCR3	251.8	181	64	13	6	7	11.5	63.5	90°
MCR3 MCR5	251.8 301.1	181 204	64 66	13 17	6 12	7 13.5	11.5 15		90° 45°

Ports

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ⁴⁾
MCR3	A, B	Inlet, outlet	SAE J514	7/8-14 UNF	470/420 ³⁾	0
	L	Case drain	SAE J514	9/16-18 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
MCR5	A, B	Inlet, outlet	SAE J514	1 1/16-12 UNF	470/420 ³⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
MCR10	A, B	Inlet, outlet	SAE J518 ⁵⁾	3/4 in	470/420 ³⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х


1) Wheel stud pitch circle diameter

Before finalizing your design, request a binding installation drawing.

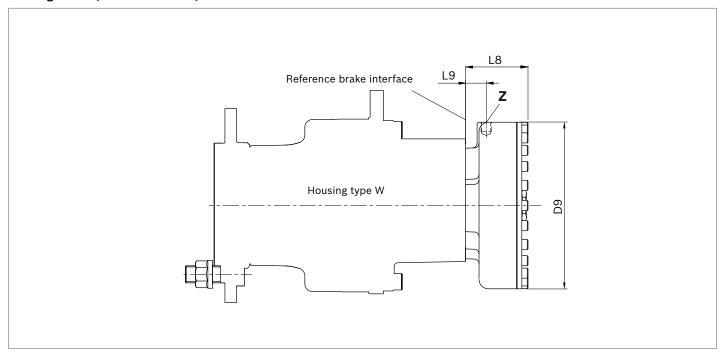
- 2) Flange shape may be different for different frame sizes
- 3) Depends on nominal size
- 4) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)
- 5) Only dimensions according to SAE J518 (Code 62 high pressure series)

Bosch Rexroth AG, RE 15200/09.2015

MCR-W two speed (2WL)

Motor	D1	D2	D3	D4	D5 ¹⁾	D6	D7	D8 ²⁾	1
MCR3	ø182	ø95.7	ø180	ø180	ø160	ø210	ø237	ø14	5×M14
MCR5	ø250	ø160.8	ø223	ø222	ø205	ø267	ø298	ø17.4	8×M20×1.5
Motor	L1	L2	L3	L4	L5	L6	L7	S1	S2
MCR3	311.5	181	123.5	13	6	7	11.5	63.5	300°
MCR5	344.1	204	126	17	12	13.5	15	75	45°

Ports

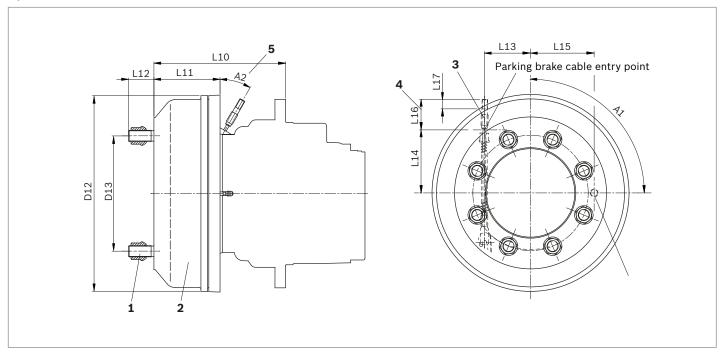

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ⁴⁾
MCR3	A, B	Inlet, outlet	SAE J514	7/8-14 UNF	470/420 ³⁾	0
	L	Case drain	SAE J514	9/16-18 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	Х	2 speed port	SAE J514	9/16-18 UNF	35	0
MCR5	A, B	Inlet, outlet	SAE J514	1 1/16-12 UNF	470/420 ³⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	X	2 speed port	SAE J514	9/16-18 UNF	35	0

- 1) Wheel stud pitch circle diameter
- 2) Flange shape may be different for different frame sizes
- 3) Depends on nominal size
- 4) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing.

Holding brake (multi-disc brake)

14


Motor	Brake	L8	L9	D9			
MCR3	B2	67.3	22	ø172			
MCR5	B2	67.3	22	ø172			
	В4	80.7	26.5	ø215			
MCR10	B5	84.7	26.5	ø215			
	B7	98	29	ø251			

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State
MCR3	z	Brake port	SAE J515	9/16-18 SAE	30	0
MCR5	z	Brake port	SAE J515	9/16-18 SAE	30	0
MCR10	Z	Brake port	SAE J515	9/16-18 SAE	30	0

¹⁾ O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing.

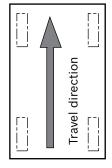
Dynamic brake (drum brake)

Motor	Brake	L10	L11	L12	L13	L14	L15	L16	L17	D12	D13	A1	A2
MCR3	C4	192	95	32.5	65	86	89	83	19	ø272	ø160	30°	30°
MCR5	C7	234.1	117.5	45	82	_	113	54	17	ø348	ø205	90°	30°
MCR10	C12	294.6	132	36	80	_	120	40	17	ø365	ø225	90°	30°

1	C4	10 Studs M18x1.5 with spherical wheel nuts
	C7	8 Studs M20x1.5 with spherical wheel nuts
	C12	10 Studs M22x1.5 with spherical wheel nuts

- 2 Dynamic drum brake for use with brake fluid DOT 3+5 or SAE JI 703. If brake is to be used with mineral oil a special order is to be made. Please state if seals for mineral oil are required when placing order.
- Brake cable (Bowden cable) can be connected from right side for C*R and left side for C*L (left is a mirror image of the right type) (* = 2, 4, 7, 12). Mechanical brake cable is not supplied with the motor.
- 4 Brake cable length.
- **5** Angular position of brake cable.

Before finalizing your design, request a binding installation drawing.

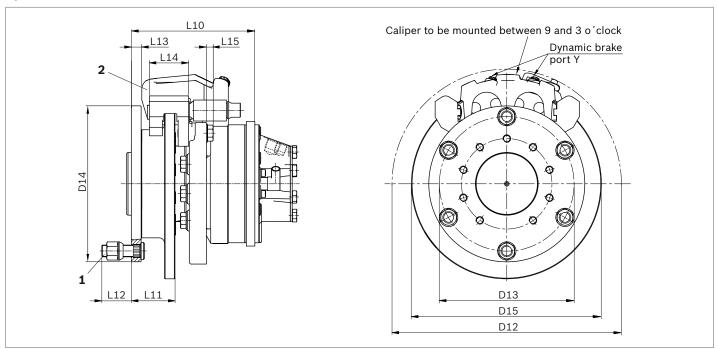

Dynamic drum brake run-in procedure

- Brake the machine hard in forward and reverse directions until the brake drum temperature reaches 200 °C.
- ▶ Allow the brake to cool.
 - To remove residue, brake gently 2 times each in the forward and reverse directions.

Note:

The drum brake cylinder port must be oriented as instructed in the installation drawing. The drum brake also has an influence on permitted radial loading due to its offset.

Left side of vehicle Ordering code C4L



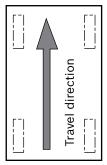
Right side of vehicle Ordering code C4R

RE 15200/09.2015, Bosch Rexroth AG

Dynamic brake (Disc brake)

16

Motor	Brake	L10	L11	L12	L13	L14	L15	D12	D13	D14	D15
MCR3	S4	188.6	66.6	45	16	60	10.5	ø350	ø205	ø238	ø290


- **1 S4** 6 Studs M18x1.5 with spherical wheel nuts
- Caliper disc brake for use with fluid DOT 3 or DOT 4 SAE JI 703 If brake is to used with mineral oil a special order is to be made. Please stete if seals for mineral oil are required when placing order

Before finalizing your design, request a binding installation drawing.

Dynamic disc brake run-in procedure

► Perform a few braking stops to create enough heat to release in the lining

Left side of vehicle Ordering code S4L

Right side of vehicle Ordering code S4R

Selection guide

Data sheet	Motor type		Frame size											
	Application		3 160400 cc	5 380820 cc	6 820920 cc	10 7801340 cc	15 11302150 cc	20 17503000 cc						
15198	MCR-F Wheel drives	101	•	•	-	•	•	-						
15200	MCR-W Heavy duty wheel drives		•	•	-	•	-	-						
15195	MCR-A Frame integrated drives		•	•	-	•	•	-						
15199	MCR-H Integrated drives		•	•	-	•	•	•						
15221	MCR-T Track drives		-	•	•	•	-	-						
15223	MCR-R Series 41 Hydraulic drive assist	· (6)	-	-	-	•	-	-						
15214	MCR-X Slew drives		•	•	-	-	-	-						
15197	MCR-C Compact drives		-	-	-	-	-	•						
15196	MCR-D Industrial applications		•	•	-	•	-	-						
	MCR-E Industrial applications		-	•	-	-	-	-						

Bosch Rexroth Limited

Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 15 92 631 777 Telefax +44 15 92 631 936 www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 15200/09.2015

Radial piston motor for slew drives MCR-X

RE 15214

Edition: 01.2014 Replaces 06.2012

_			1100
Frame	SIZE	MCR3.	MCR

- ▶ Displacement 160cc to 820cc
- ► Maximum pressure 350 bar
- ► Torque output up to 4000 Nm
- ▶ Open circuits

Features

- ► Low-speed radial-piston design
- ► Short installation length
- ► Industry-standard mounting
- ► Integrated pinion
- ► High volumetric and mechanical efficiency
- Smooth operation at very low speed
- ► Low noise and backlash
- ► Anti-shock cross-port relief valves
- ► Anti-cavitation valves
- ► Holding brake
- ► Optional brake release valve with delay function

Contents	
Application	2
Functional description	2
Ordering code	4
Technical data	6
Dimensions	8
Selection guide	10

Application

The MCR-X motors are intended for open-circuit operation as drive motors for the slewing function primarily of excavators in the 2 to 8 ton weight range (MCR3X for 2 to 4 ton and MCR5X for 4 to 8 ton). Other possible areas of application include slewing for forestry machines and aerial work platforms.

Functional description

The MCR-X is a low-speed high-torque motor of radial-piston design. For a description of the operating principle see Bosch Rexroth data sheet 15195.

Anti-shock relief valves

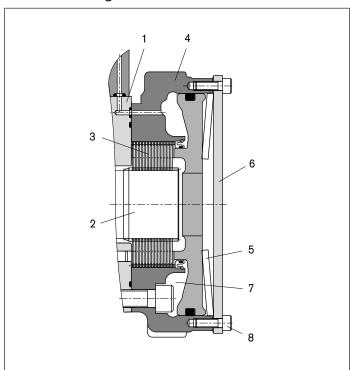
Pressure relief valves venting to return line are fitted to facilitate use in open circuits. These valves have an antishock function to limit the rate of rise of pressure and prevent overly rapid changes in acceleration, thus limiting the shock felt by the machine operator and extending gear life. Different valve varients are used depending on the pressure.

Anti-cavitation valves

During deceleration it is necessary to maintain sufficient pressure at the motor inlet to hold the pistons against the cam ring and prevent cavitation. For this reason the motor is equipped with a make-up port M, which feeds anti-cavitation check valves connected to ports A and B (see schematic diagram on page 5). See Technical Data on page 6 for details of the pressure that is required at port M.

Holding brake

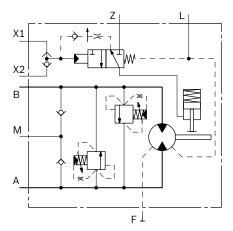
A holding brake is usually required to comply with relevant equipment standards such as EN474 and is, therefore, fitted as standard to the MCR-X motor.


A disc pack (3), with alternate discs splined to the brake shaft and brake housing (4), is compressed by the force of a disc spring (5) acting through a piston (6). The friction between the discs generates a holding torque.

When fluid is fed into the annular area (7), the pressure on the underside of the piston rises, opposing the spring force. If sufficient pressure is applied (see Technical data on page 6), the piston moves to the right, removing the compression on the disc pack and allowing the motor to turn freely.

When the pressure is removed the spring forces the piston back to the left and once again compresses the disc pack. Thus, the brake is fail-safe.

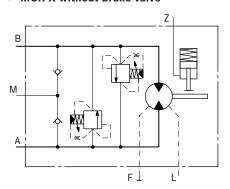
In case of hydraulic system failure, it may be manually released by loosening the end cover screws (8).


Section of holding brake

Brake valve option

The holding brake is designed to be engaged only once the motor has stopped rotating. Premature engagement can lead to noise, overheating and wear or seizure of the brake discs. Thus, there is a need to delay brake engagement after the control joystick pilot pressure falls to zero, for sufficient time to allow the machine upperstructure to come to rest in the worst case of maximum speed and maximum moment of inertia. For this reason, a brake control valve with a delay function is offered as an option on the MCR-X.

▼ MCR-X with brake valve

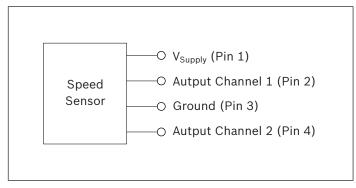


The valve functions as follows:

- ▶ The brake release pressure is fed to port Z.
- ▶ Pilot pressure from the joystick (one line for each direction) is fed to ports X1 and X2 and an internal shuttle valve feeds the higher of these to the brake control valve.
- ► If the pilot pressure is sufficient, the valve shifts and the brake is immediately released.
- ▶ When the joystick is returned to the centre position, pilot pressure falls, the valve shifts back and flow is drained from the brake at a metered rate determined by the diameter of an orifice within the valve. This metering of the flow out of the brake results in a delay in engagement.

Where the brake valve option is not supplied, the above functions must be implemented externally to the motor.

▼ MCR-X without brake valve

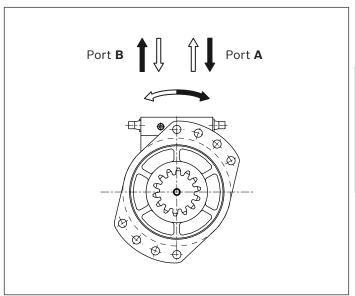


Speed sensor options

A hall-effect speed sensor may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc is fitted to the motor cylinder block, and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed. Versions are available for use with regulated supplies (Code P1) and for direct connection to a 12 V or 24 V unregulated supply (Code P2).

The MCR-X may also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code P0). These "sensorready" motors may be fitted with a sensor at a later date.

Terminal connections



Connector _____ Deutsch DT04-4P-E008
Cable length _____ 600 mm

For technical data see standard DO/100/117 (please consult Rexroth Engineering Department in Glenrothes).

Direction of shaft rotation with flow

(view from drive shaft)

RE 15214/01.2014, Bosch Rexroth AG

4 MCR-X Series 3X | Radial Piston Motor Ordering code

Ordering code

	01	02 T	03	04	05 T	06 _	,	07	80 T	09) 1		L1 	12	13	14	15	16 I
-	ИCR		X			Z	/	3X										
he	ial nista	n motor																
_				speed. h	nigh-torq	ue motoi	r.											МС
					and anti-			S										
	ne size																	
	Frame s	size 3																3
02	Traine .	5																5
_	or type Slew m	otor																Х
					2.													
\neg	Frame s	e, displa	cement	V _g in cn	n³/rev						160	225	255	200	225	265	400	1
04			ment. n	notors II	se stand	ard cylin	drical n	istons	LD		160	225	255	280	325	365	400	_
	-				se steppe			1310113	HD		-	_	-	•	•	•	•	-
	Frame			101010 4	ос эторру	Ja piotoi				380	470	520	565	620	680	750	820	
	Low displacement: motors use standard cylindrical piston									•	•	•	•	-	-	-	-	
					se steppe	HD	-	-	-	_	•	•	•	•				
) Priv	e shaft										1							J
_		specifica	tion: mc	odule 6,	14 teeth													G10:
					5, 17 teet	:h												G120
	Pinion :	specifica	tion: mc	odule 5,	13 teeth	(only M	CR3X)											G79
Ì	Other ¹⁾																	GXX
hro	ough sh	aft																
		t through	shaft															Z
Seri	es																	
07		30 to 39 ²	2)									-		-				ЗХ
3ral	(e																	
_		lic releas	e multi-	disc hol	ding brak	e						-1	-		-1			B2
-					ding brak		MCR5X))										B4
				<u> </u>														
202	3																	
Sea	NBR (n	itrile rub	ber)															l M

Dauta

Por	ts	
11	Tapped with UNF thread (SAE J514)	12
	Tapped to JIS B 2351	64

1L

Speed sensor

Эþ	eed Selisol	
13	Without sensor (no code)	
	Sensor ready	P0
	Sensor without regulator	P1
	Sensor with regulator	P2

Bosch Rexroth AG, RE 15214/01.2014

10 Viewed from drive shaft: clockwise with flow into port A

	01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16
ı	MCR		Х			Z	/	ЗХ									
Valv	/es																
13		ake valve	e orifice	ø0.6 mm	l												V01
	Without	brake v	alve														V02
	Other ³⁾																vxx
Reli	ef settin	g															
14	220 bar																Α
	Other																B to Z
Spe	cial orde	er															
15	Two-coa	t black	paint														SO400
	Other																soxxx
Oth	er																-
16	Mark in	text her	е														*

• = Available - = Not available

Other pinions may be provided to the customer's specification, depending on sales volume

²⁾ Series 30 to 39 are dimensionally interchangeable

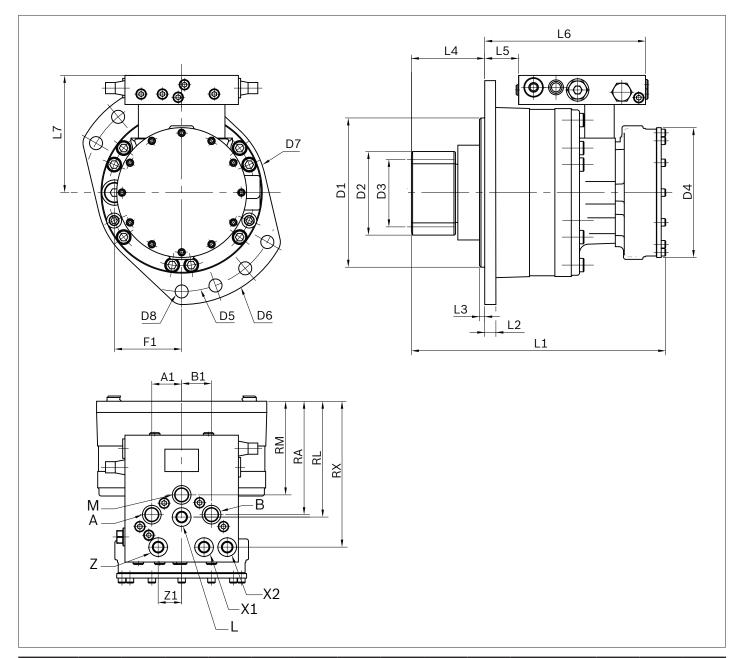
 $_{3)}$ The brake delay orifice must be sized to suit the machine. $_{0.6}$ mm is the standard size but other diameters may be supplied depending on the particular case.

Technical data

Frame size			MCR3	X and M	CR5X					
Type of mounting			Flange	mounti	ng via fro	ont case				
Mounting screws			6 - 8 x	M16, Gr	ade 12.9	9				
Minimum mounting screw torque		Nm	300							
Port type			Tappe	d to SAE	J514 or	JIS B 2	351			
Shaft type			With ir	ntegrate	d pinion	(see pa	ge 9)			
Piston seat material			P23 (h	igh effic	iency)					
Weight										
MCR3X		kg	39							
MCR5X		kg	58							
Hydraulic fluid ¹⁾²⁾			Minera	al oils (H	L, HLP)	to DIN 5	1 524			
Fluid cleanliness			ISO 44	106, Clas	s 20/18	/15				
Fluid viscosity range ³⁾	n _{min/max}	mm²/s	10 to 2	2000						
Fluid temperature range	t _{min/max}	°C	-20 to	+105						
Maximum flow into port A or B	q _{V max}	L/min	70							
Maximum pressure at ports A, B and M ⁴⁾	p_{max}	bar	350							
Maximum pressure at port L	p _{case max}	bar	10							
Maximum pressure at ports X1 and X2	p _{X max}	bar	70							
Maximum pressure at port Z	p _{Z max}	bar	40							
Minimum pressure at port M ⁵⁾⁶⁾	p _{M min}	bar	4							
Relief valves	,									
Pressure setting range ⁸⁾		bar	100 to	300						
Anti-cavitation valves										
Cracking pressure		bar	0.25							
Brake delay valve										
Shift pressure	p _{X shift}	bar	3.7							
Orifice diameter ⁹⁾		mm	0.6							
Delay time ⁹⁾		S	2.9 to	5.8						
Speed sensor										
For technical data see standard DO/100/117 (pleas	e consult l	Rexroth En	gineerin	g Depart	tment in	Glenrot	hes).			
Motor Performance MCR3X ⁷⁾										
Displacement	V_{g}	cm ³ /rev	160	225	255	280	325	365	400	
Maximum speed, Single speed motor (1L)	n _{max}	rpm	375	265	235	215	185	165	150	
Maximum torque ⁴⁾	T _{max}	Nm	710	1000	1130	1240	1440	1620	1780	
Minimum speed for smooth running	n _{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Motor Performance MCR5X ⁷⁾		•								
Displacement	V_{g}	cm ³ /rev	380	470	520	565	620	680	750	820
Maximum speed, Single speed motor (1L)	n _{max}	rpm	155	125	115	105	95	85	80	75
Maximum torque ⁴⁾	T _{max}	Nm	1685	2090	2310	2510	2750	3020	3330	3640
Minimum speed for smooth running	n _{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Brake ¹⁰⁾	mili	<u>.</u>	MCR3		MCR5		MCR5			
Holding brake			B2		B2		B4			
Minimum brake torque	$T_{br\;min}$	Nm	1170		2100		4400			
Minimum pressure at which brake release begins	p _{rel min}	bar	8		8		11			
Maximum pressure required to fully release brake	$p_{\text{rel max}}$	bar	11		11		15			
	Prel max	~ui								

Note

- Motor performance values are based on theoretical calculations.
- ► Efficiencies are not taken into consideration for theoretical calculations.
- ▶ Brake torque accounts for tolerances. Values are based when used with standard mineral oil (HLP).


Please refer the related foot notes for more details.

- The motor must be filled with oil prior to start-up. The filler port F is provided for this purpose.
- 2) For use with other fluids, please consult Rexroth Engineering Department in Glenrothes.
- $_{\rm 3)}$ With high oil viscosity, there is an increased risk of cavitation, so $p_{\rm M}$ may need to be increased.
 - The machine should be tested at the minimum operating temperature to ensure satisfactory operation.
- 4) An increase in the maximum pressure to 350 bar, and corresponding torque increase, may be possible by special order. Please consult Rexroth Engineering Department in Glenrothes for further details.
- 5) For operation below the quoted make-up pressure, please contact Rexroth Engineering Department in Glenrothes.
- 6) The quoted make-up pressure applies at the port M. Please take pressure drop in the make-up line into account.

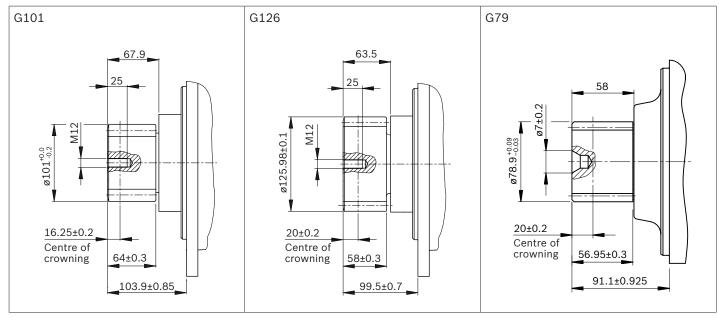
 Rexroth recommends a minimum make-up line diameter of 5/8 in, but this must be confirmed by machine testing.

- 7) The quoted values are for initial reference only. Please contact Rexroth Engineering Department in Glenrothes for a full technical evaluation prior to ordering.
- a) The setting range quoted applies with standard springs. Extension of the range may be possible by special order.
- 9) The standard orifice diameter is quoted, along with the delay time for ISO VG46 oil at 50 °C. However, the orifice diameter must be selected to ensure that the brake does not apply before the motor has stopped rotating. Please contact Rexroth Engineering Department in Glenrothes for further information.
- 10) The holding brake must be applied only in the static condition. Application of the brake while the motor is turning may result in damage to the unit and reduction in holding torque. The machine designer must ensure that an adequate brake delay exists to prevent this. The brake is, however, applied with a noise-reduction coating, to prevent brake squeal during short-duration drive-through caused by swing ram operation.

Dimensions

Motor	D1	D2	D3	D4	D5	D6	D7	D8	L1	L2	L3	L4	L5	L6	L7
MCR3X	ø175	ø79	ø69	ø174	ø220	ø248	ø190	ø17	315	15	8	17	15	191	132
MCR5X	ø200	ø112	ø91	ø174	ø265	ø300	ø228	ø17.5	334.7	15	7	16	18	215.5	157

Motor	A1	B1	Z1	F1	RM	RA	RL	RX
MCR3X	29.5	29.5	13	72	94	132	123.4	171
MCR5X	40	40	31.5	90	125.5	152	155.2	195.5


The drawings are for initial guidance only.

Before finalizing your design, request a binding installation drawing.

Dimensions in mm.

Bosch Rexroth AG, RE 15214/01.2014

Drive shaft

Pinion data		G101	G126	G79	
Module	mm	6	6.5	5	
No. of teeth	,	14	17	13	
Pressure angle	0	20	20	20	
Addendum mod. coefficient		0.5	0.4	0.4	
Dimension over pins	mm	102.88±0.05	128.64±0.04	81.7±0.09	
Pin diameter	mm	10.5	11	9.60	
Crowning	mm	0.0115/0.1035	0.0762/0.1016	0.0762/0.102	
Accuracy grade (ISO1328)		8	8	8	

Ports

Designation	Port function	Ordering code 12	Size	Ordering code 64	Size	Maximum pressure [bar]	State ¹⁾
A, B	Inlet, outlet	SAE J514	3/4-16 UNF	JIS B 2351	G3/8 in	300	0
М	Anti-cavitation	SAE J514	3/4-16 UNF	JIS B 2351	G3/8 in	300	0
X1, X2	Brake pilot	SAE J514	9/16-18 UNF	JIS B 2351	G1/4 in	30	0
L	Case drain	SAE J514	9/16-18 UNF	JIS B 2351	G1/4 in	70	0
z	Brake port	SAE J514	9/16-18 UNF	JIS B 2351	G1/4 in	40	0
F	Filler port	SAE J514	3/4-16 UNF	SAE J514	3/4 in - 16 UNF	10	X

¹⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Selection guide

Data sheet	Motor type				Fram	ne size		
	Application		3 160400 cc	5 380820 cc	6 820920 cc	10 7801340 cc	15 11302150 cc	20 17503000 cc
15198	MCR-F Wheel drives	101	•	•	-	•	•	-
15200	MCR-W Heavy duty wheel drives		•	•	-	•	-	-
15195	MCR-A Frame integrated drives		•	•	-	•	-	-
15199	MCR-H Integrated drives		•	•	-	•	•	•
15221	MCR-T Track drives		-	•	•	•	-	-
15223	MCR-R Series 40 Hydraulic drive assist		_	-	-	•	-	-
15214	MCR-X Slew drives		•	•	-	-	-	-
15197	MCR-C Compact drives		-	-	-	-	-	•
15196	MCR-D Industrial applications		•	•	-	•	-	-
	MCR-E Industrial applications		_	•	-	-	-	-

Bosch Rexroth Limited

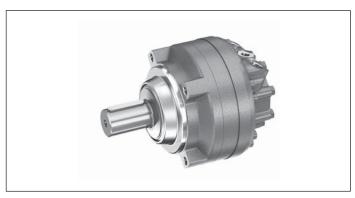
Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 15 92 631 777 Telefax +44 15 92 631 936 www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 15214/01.2014

Rexroth Bosch Group

Radial piston motors for industrial applications MCR-D MCR-E


RE 15196

Edition: 12.2013

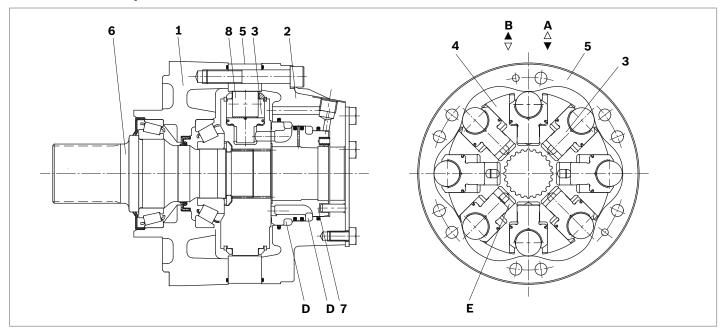
MCR-D

- ► Frame size MCR3, MCR5, MCR10
- ▶ Displacement 160 cc to 1340 cc
- ▶ Differential pressure up to 450 bar
- ► Torque output up to 8530 Nm
- ▶ Speed up to 875 rpm
- ► Open and closed circuits

MCR-E

- ► Frame size MCR5
- ▶ Displacement 380 cc to 820 cc
- ▶ Differential pressure up to 450 bar
- ► Torque output up to 5220 Nm
- ▶ Speed up to 570 rpm
- ► Open and closed circuits

Features


- ► Compact robust construction
- ▶ High volumetric and mechanical efficiencies
- ► Front case mount
- Parallel shaft with key
- ► High reliability
- ► Low maintenance
- ► Smooth running at very low speeds
- ► Low noise
- ▶ Bi-directional
- Sealed tapered roller bearings
- Freewheeling possible
- Available with:
 - Holding brake (multi-disc)
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

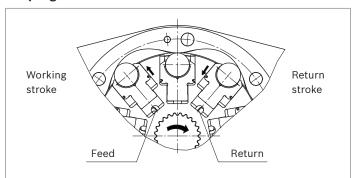
Contents

2
5
7
8
S
10
16

RE 15196/12.2013, Bosch Rexroth AG

Functional description

Hydraulic motors of the type MCR-D, MCR-E are radial piston motors with front case mounting and parallel shaft with key. MCR-D and MCR-E have the same type of rotary group and rear case assembly but differ in the front case mounting. These motors are intended for open or closed circuit operations as drive motors for various industrial applications.


Construction

Two part housing (1, 2), rotary group (3, 4, 8), cam (5), drive shaft (6) and flow distributor (7)

Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

Torque generation

The number of working and return strokes corresponds to the number of lobes on the cam multiplied by number of pistons in the cylinder block.

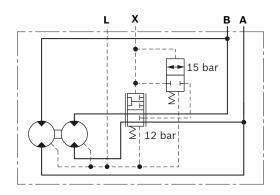
Flow paths

The ports **A** and **B**, which are located in the rear case, carry oil through the distributor to the cylinder chambers (**E**).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard.

Freewheeling

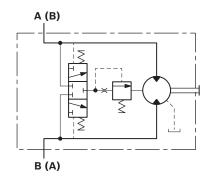

In certain applications there may be a requirement to free-wheel the motor. This may be achieved by connecting ports **A** and **B** to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port **L**. In this condition, the pistons are forced into the cylinder block which forces the rollers to lose contact with the cam thus allowing free rotation of the shaft.

Two speed operation (2W)

In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

Bosch Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

▼ Schematic


Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid.

The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or anti-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request).

Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost / charge pressure of 25 bar.

▼ Schematic

Flushing flow rates

Orifice size	Flow (I/n	nin) at 25 bar ¹⁾
(mm)	min	max
Ø1	2.2	2.7
Ø1.5	5.0	6.1
Ø1.7	6.4	7.8
Ø2	8.2	10.7
Ø2.3	8.8	11.4
	(mm) Ø1 Ø1.5 Ø1.7 Ø2	(mm) min Ø1 2.2 Ø1.5 5.0 Ø1.7 6.4 Ø2 8.2

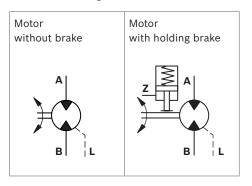
1) 0.6 mm Shim (Standard), Cracking pressure = 11±3 bar

4 MCR-D and MCR-E | Radial piston motors for industrial applications Functional description

Holding brake (multi-disc brake)

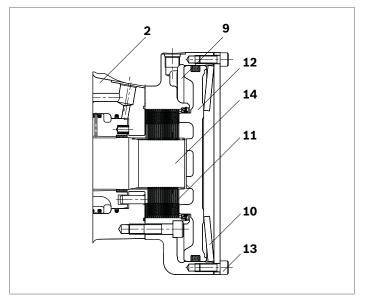
Mounting

By way of rear housing (2) and brake shaft (14).


Brake application

As a safety requirement in mobile applications a parking brake may be provided to ensure that the motor cannot turn when the machine is not in use. The parking brake provides holding torque by means of discs (11) that are compressed by a disc spring (10). The brake is released when oil pressure is applied to brake port "Z" and the pressure in the annular area (9) compresses the disc spring using brake piston (12) thus allowing the brake discs (11) to turn independently.

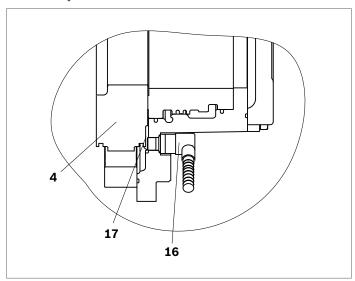
Note


This brake is provided solely for static use - not to be used dynamically.

▼ Schematic diagrams

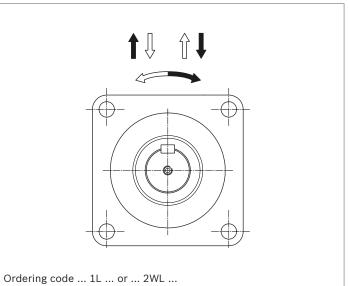
Manual release of holding brake

The brake may also be released manually by loosening screws (13).


Bosch Rexroth AG, RE 15196/12.2013

Speed sensor

A Hall-effect speed sensor (16) may be fitted as an option, giving a two-channel output of phase-displaced square waves, and enabling detection of speed and direction. A toothed target disc (17) is fitted to the motor cylinder block (4), and the sensor, fitted to a port in the rear case, produces a pulse on each channel as each tooth passes in front of it. The frequency of the pulses is proportional to the rotational speed.


Versions are available for use with regulated supplies 10 V (Code P1) and for direct connection to a 12 V or 24 V unregulated supply (Code P2).

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate (Code P0). These "sensor-ready" motors may be fitted with a sensor at a later date.

Direction of shaft rotation with flow

(viewed from drive shaft)

Ordering code

01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16
MCR					Z	/	33									

Radial	niston	motor
nauiai	DISCOIL	HILOTOL

01	Radial-pisto	n type, low-speed, nign-torque motor			MCR
Fra	me size		MCR-D	MCR-E	
02	Frame size	3	•	-	3
		5	•	•	5
		10	•	-	10

Housing type

03	Front case square mounting flange - SAE 4 off holes	D
	Front case mounting - 4 off M16 tapped holes	E

Nominal size, displacement $V_{\rm g}$ in cm³/rev

04	Frame size 3 (only for MCR-D)		160	225	255	280	325	365	400	
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-	
	High displacement: motors use stepped pistons	HD	-	-	_	-	•	•	•	
	Frame size 5		380	470	520	565	620	680	750	820
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	•	-	-	-	-
	High displacement: motors use stepped pistons	HD	-	-	-	-	•	•	•	•
	Frame size 10 (only for MCR-D)		780	860	940	1120	1250	1340		
	Low displacement: motors use standard cylindrical pistons	LD	•	•	•	-	_	-		
	High displacement: motors use stepped pistons	HD	-	-	-	•	•	•		

Drive shaft

05	Parallel keyed shaft	ø40 mm only for MCR3D	L40
		ø50 mm available for MCR5D and MCR5E	L50
		ø60 mm only for MCR10D	L60

Through shaft

			_	
	061	Without through shaft	. 7	- 1
- 1	001	T THINGS IN GIANT		

Series

_				_
	07	Series 33	33	Ì

Bra	ke	MCR3	MCR5	MCR10	
08	Without brake	•	•	•	A0
	Hydraulic release spring applied multi-disc holding brake 2200 Nm	•	-	-	B2
	4400 Nm	-	•	-	B4
	7000 Nm	-	_	•	В7

Seals

			- 15
09	NBR (nitrile rubber)	М	
	FKM (fluoroelastomer / Viton)	V	ı

Single/two-speed operation

10	Single speed, standard direction of rotation	1L
	Bi-directional two speed, standard direction of rotation	2WL

Ports

11	Tapped with UNF thread (SAE J514)	12
	Tapped with UNF thread (SAE J514) (A and B ports SAE split flange metric bolt holes)	42

• = Available - = Not available

C	01	02	03	04	05	06		07	08	09	10	11	12	13	14	15	16
М	CR					Z	/	33									
Studs	i																
12 V	Vithout	studs (no code)													
Speed	d senso	or															
13 V	Vithout	sensor	(no cod	e)													
S	Sensor	ready															P0
S	Sensor	without	regulato	r													P1
S	Sensor	with reg	ulator														P2
Flushi	ing																
14 V	Vithout	flushing	g (no cod	de)													
V	Vith flu	shing (s	ee table	on page	3)												F1-F8
Speci	ial orde	er															-
15 S	Special	feature															soxxx
Other	r																
16 N	∕lark in	text her	e e														*

Footer from page 7

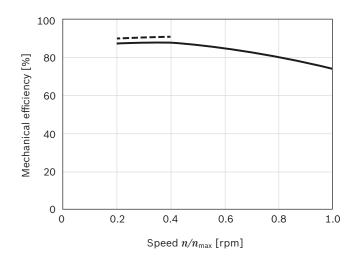
- Not available for E-Type
- 2) Ensure motor case is filled with oil prior to start-up. See instruction manual 15215-B.
- 3) For installation and maintenance details, please see instruction manual 15215-B.
- 4) For use with environmentally acceptable fluids HEES, HEPG, HETG, fluoroelastomer / Viton seals must be specified.
- 5) Extension of the allowable temperature range may be possible depending on specification. Please consult Bosch Rexroth Engineering Department in Glenrothes for further details.
- 6) Maximum values should only be applied for a small portion of the duty cycle. Please consult Bosch Rexroth Engineering Department in Glenrothes for motor life calculations based on particular operating cases.
- 7) When operating motors in series, please consult Bosch Rexroth Engineering Department in Glenrothes.
- 8) For continuous operation at speeds <5 rpm please consult Bosch Rexroth Engineering Department in Glenrothes.
- 9) Based on nominal no-load Δp of 20 bar in full-displacement mode.
- 10) Warning! During the running in period of the motor (min. 20 hrs) it should not be run unloaded at >100 rpm.
- 11) Guide values for up to 5000 hours of motor operation (ISO VG46 at 50 °C).
- 12) Maximum pressure is restricted according to maximum torque

Note

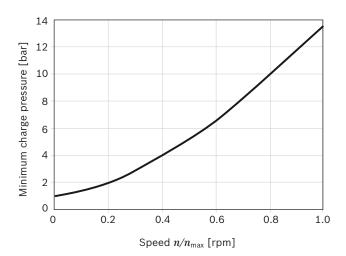
- Motor performance values are based on theoretical calculations.
- ► Efficiencies are not taken into consideration for theoretical calculations.
- ► Brake torque accounts for tolerances. Values are based when used with standard mineral oil (HLP).

Please refer the related foot notes for more details.

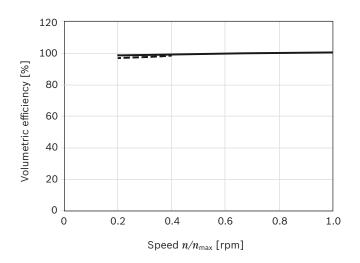
Bosch Rexroth AG, RE 15196/12.2013


Technical data

Frame size			MCR31)	MCR5	MCR10	1)				
Type of mounting			Flange r	nounting,	, face mo	unting				
Pipe connections ²⁾³⁾			Threade	ed per SAI	E J514; F	langed pe	r SAE J5	18		
Shaft loading			see pag	e 9						
Weight			MCR3D	MCR5D	MCR5E	MCR10E)			
Single speed (1L)	m	kg	21	39	36	62				
Two speed (2WL)	m	kg	27	47	44	67				
Hydraulic fluid ⁴⁾										
Fluid cleaniness			ISO 440	6, Class 2	20/18/15					
Fluid viscosity range	$v_{min/max}$	mm²/s	10 to 20	000						
Fluid temperature range ⁵⁾	$ heta_{ ext{min/max}}$	°C	-20 to +	85						
Pressure			Low dis	placemen	nt		High di	splacemer	nt	
Operating pressure	p_{nom}	bar	250				250			
Maximum differential pressure ⁶⁾⁷⁾	Δp_{max}	bar	450				400			
Maximum pressure at port A or B ⁶⁾⁷⁾	p_{max}	bar	470				420			
Maximum case drain pressure	$p_{case\ max}$	bar	10				10			
Motor performance MCR3										
Displacement	V_{g}	cm ³ /rev	160	225	255	280	325	365	400	
Specific torque		Nm/bar	3	4	4	4	5	6	6	
Maximum torque ⁶⁾¹²⁾	$T_{\sf max}$	Nm	1146	1500	1500	1500	1500	1500	1500	
Minimum speed for smooth running ⁸⁾	n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Maximum speed (1L) ⁹⁾¹⁰⁾	$n_{\sf max}$	rpm	670	475	420	385	330	295	270	
Maximum speed (2WL) ⁹⁾¹⁰⁾	$n_{\sf max}$	rpm	875	620	550	500	430	385	350	
Continuous operating power ¹⁰⁾	P	kW	11.64	15.34	15.17	17.48	11.61	11.38	14.99	
Motor performance MCR5										
Displacement	V_{g}	cm ³ /rev	380	470	520	565	620	680	750	820
Specific torque		Nm/bar	6	7	8	9	10	11	12	13
Maximum torque ⁶⁾¹²⁾	$T_{\sf max}$	Nm	2722	3000	3000	3000	3000	3000	3000	3000
Minimum speed for smooth running ⁸⁾	n_{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Maximum speed (1L) ⁹⁾¹⁰⁾	n_{max}	rpm	475	385	350	320	290	265	240	220
Maximum speed (2WL) ⁹⁾¹⁰⁾	n_{max}	rpm	570	465	420	385	350	320	290	265
Continuous operating power ¹⁰⁾	P	kW	38.01	38.14	37.86	42.42	26.52	25.85	24.42	31.98
Motor performance MCR10										
Displacement	V_{g}	cm ³ /rev	780	860	940		1120	1250	1340	
Specific torque		Nm/bar	12	14	15		18	20	21	
Maximum torque ⁶⁾¹²⁾	$T_{\sf max}$	Nm	4800	4800	4800		4800	4800	4800	
Minimum speed for smooth running ⁸⁾	n_{min}	rpm	0.5	0.5	0.5		0.5	0.5	0.5	
Maximum speed (1L and 2WL) ⁹⁾¹⁰⁾	n_{max}	rpm	215	195	180		150	135	125	
Continuous operating power ¹⁰⁾	P	kW	50.21	55.67	52.82		38	42.34	38.81	
Brake			MCR3D		MCR5D	, MCR5E	MCR5E	, MCR5E	MCR10	D
Holding brake (disc brake)			B2		B2		В4		В7	
Minimum holding torque	$t_{ m min/max}$	Nm	2200		2200		4400		7000	
Release pressure (min)	p_{relmin}	bar	11		11		11		11	
Release pressure (max)	$p_{rel\ max}$	bar	15		15		15		15	
Maximum pressure at brake port "Z"	p_{max}	bar	40		40		40		40	
Oil volume to operate brake	V_{rel}	cm ³	23		23		46		36	


Footer on page 6

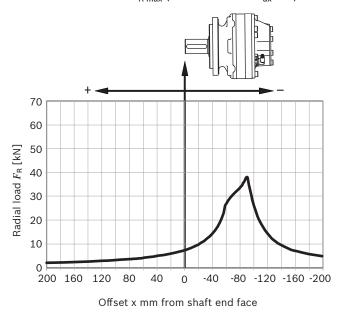
Efficiencies


▼ Mechanical efficiency

▼ Charge pressure

▼ Volumetric efficiency

100 bar / 1450 psi ---- 300 bar / 4350 psi

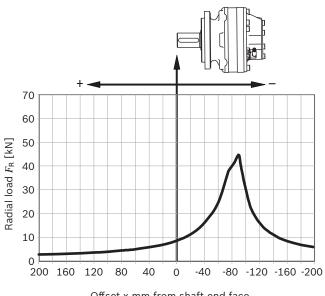

Note:

For specific performance information or operating conditions contact the Engineering Department at Bosch Rexroth, Glenrothes.

Permitted loading on drive shaft

Drive shaft ...3D L40...

Maximum radial load $F_{R max}$ (with axial load $F_{ax} = 0$)


Maximum axial load $F_{ax max}$ (with radial load F_{R} = 0):

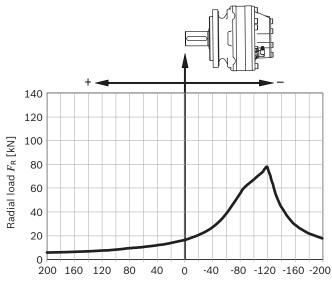
 $F_{\text{ax max}} = 30200 \text{ N} \leftarrow +$

 $F_{\text{ax max}} = 27000 \text{ N} \rightarrow -$

Drive shaft ...5D L50...5E L50...

Maximum radial load $F_{R \text{ max}}$ (with axial load $F_{ax} = 0$)

Offset x mm from shaft end face


Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):

 $F_{\text{ax max}} = 50000 \text{ N} \leftarrow +$

 $F_{\text{ax max}} = 32000 \text{ N} \rightarrow -$

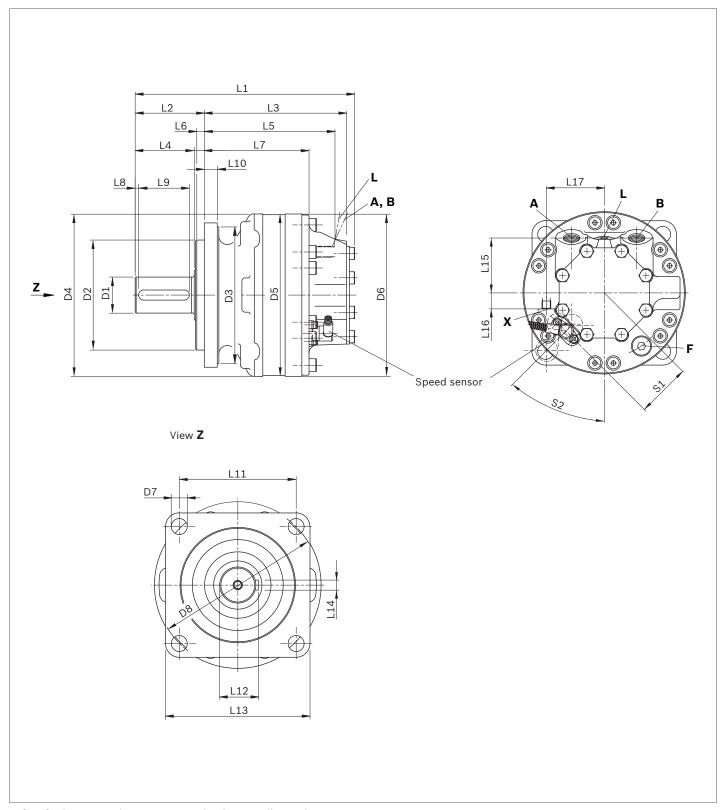
Drive shaft ...10D L60...

Maximum radial load $F_{R \text{ max}}$ (with axial load $F_{ax} = 0$)

Offset x mm from shaft end face

Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$):

 $F_{\text{ax max}} = 78700 \text{ N} \leftarrow +$


 $F_{\text{ax max}} = 63400 \text{ N} \rightarrow -$

Note:

- ▶ These values and graphs are for initial guidance only
- ► For actual motor life calculations under typical or specified duty cycles, contact Bosch Rexroth Engineering Department in Glenrothes

Dimensions

MCR-D

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Bosch Rexroth AG, RE 15196/12.2013

Single speed (1L)

Motor	D1	D2	D3	D4	D5	D6	D7	D8	L1	L2	L3	L4	L5	L6
MCR3	ø40	ø125	ø134	_	ø180	-	ø14	ø160	281.3	114.4	167	84.5	133	9
MCR5	ø50	ø152.4	ø189	ø225	ø223	ø225	ø22	ø229	304	96	197	82	181	10.5
MCR10	ø60	ø152.4	ø189	ø264	ø262	ø262	ø20.5	ø229	407	123	259	105	223	10.5
Motor	L7	L8	L9	L10	L11	L12	L13	L14	L15	S1	S2			
MOTOL	L/	LO	L9	LIO	LII	LIZ	LIO	L14	LIO	21	32			
MCR3	112	5	70	14	113	43	140	12	66.5	63.5	90°			
MCR3	112 145	5 5	70 70	14 18	113 162	43 53.5	140 200		66.5 76	63.5 75	90° 45°	,		

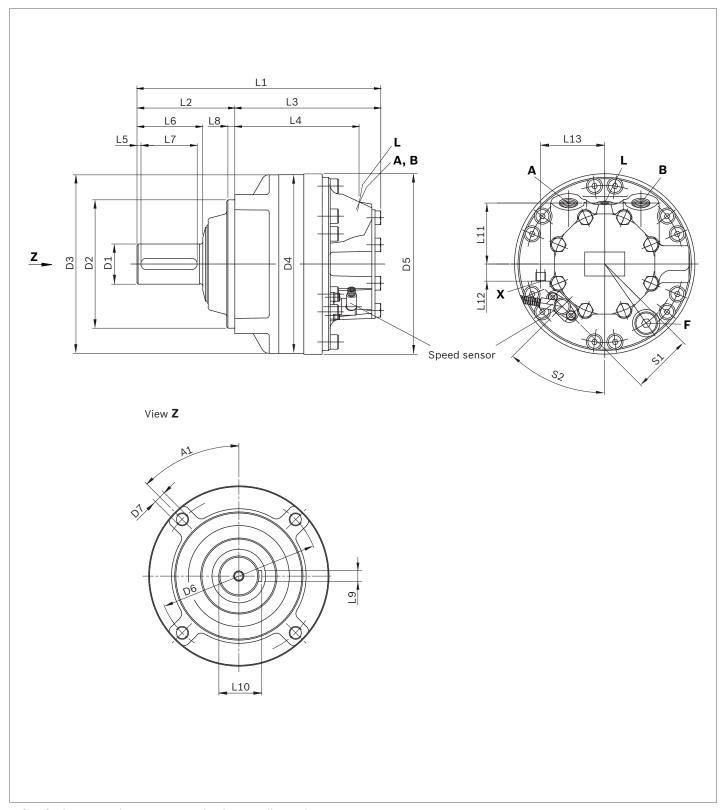
Two speed (2WL)

Motor	D1	D2	D3	D4	D5	D6	D7	D8	L1	L2	L3	L4	L5	L6
MCR3	ø40	_	ø134	_	ø180	-	ø14	ø160	341	114.4	226.7	84.5	105.7	9
MCR5	ø50	ø152.4	ø189	ø225	ø223	ø225	ø22	ø229	343	96	237	82	159	10.5
MCR10	ø60	ø152.4	ø189	ø264	ø262	ø262	ø20.5	ø229	432	123	283.5	105	247.5	10.5
	1													
Motor	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	S1	S2	
MCR3	112	5	70	14	113	43	140	12	67.5	26	65	63.5	30°	
MCR3 MCR5	112	5	70 70	14 18	113 162	43 53.5	140 200	12 14	67.5 105	26 23.5				

Ports

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ²⁾
MCR3	A, B	Inlet, outlet	SAE J514	7/8-4 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	9/16-18 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	Х	2 speed port	SAE J514	9/16-18 UNF	35	0
MCR5	A, B	Inlet, outlet	SAE J514	1 1/16-12 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	Х	2 speed port	SAE J514	9/16-18 UNF	35	0
MCR10	A, B	Inlet, outlet	SAE J518 ³⁾	3/4 in	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	Х
	Х	2 speed port	SAE J514	9/16-18 UNF	35	0

¹⁾ Depends on nominal size


²⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

³⁾ Only dimensions according to SAE J518 (Code 62 - high pressure series)

Dimensions

MCR-E

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Bosch Rexroth AG, RE 15196/12.2013

Single speed (1L)

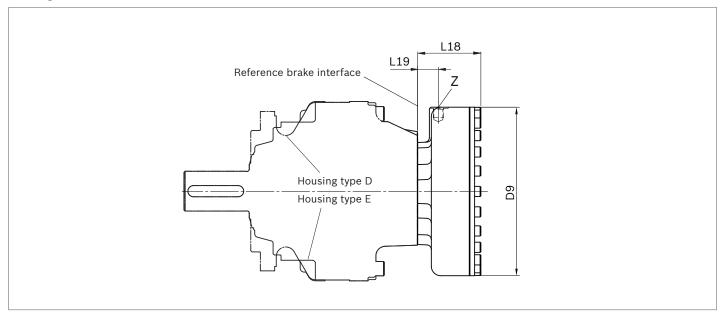
Motor	D1	D2	D3	D4	D5	D6	D7	L1	L2	L3	L4	L5
MCR5	ø50	ø160	ø222.5	ø223	ø225	ø200	M16	304	122	182	155	5
Motor	L6	L7	L8	L9	L10	L11	A1	S1	S2			
MCR5	82	70	8.5	14	53.45	76	45°	75	45°			

Two speed (2WL)

Motor	D1	D2	D3	D4	D5	D6	D7	L1	L2	L3	L4	L5
MCR5	ø50	ø160	ø222.5	ø223	ø225	ø200	M16	343	122	221	134.4	5
Motor	L6	L7	L8	L9	L10	L11	L12	L13	A1	S1	S2	
MCR5	82	70	8.5	14	53.45	76	23.5	78	45°	75	45°	

Ports

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ²⁾
MCR5	A, B	Inlet, outlet	SAE J514	1 1/16-12 UNF	470/420 ¹⁾	0
	L	Case drain	SAE J514	3/4-16 UNF	10	0
	F	Filler port	SAE J514	3/4-16 UNF	10	X
	х	2 speed port	SAE J514	9/16-18 UNF	35	0


¹⁾ Depends on nominal size

²⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

³⁾ Only dimensions according to SAE J518 (Code 62 - high pressure series)

Holding brake (multi-disc brake)

Motor	Brake	L18	L19	D9	
MCR3	B2	67.3	22	ø174	
MCR5	B2	67.3	22	ø174	
	В4	80.7	26.5	ø215	-
MCR10	В7	97.8	29	ø251	-

Motor	Designation	Port function	Code	Size	p _{max} [bar]	State ¹⁾
MCR3	Z	Brake port	SAE J515	9/16-18 SAE	30	0
MCR5	Z	Brake port	SAE J515	9/16-18 SAE	30	0
MCR10	z	Brake port	SAE J515	9/16-18 SAE	30	0

¹⁾ O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Selection guide

Data sheet	Motor type		Frame size								
	Application		3 160400 cc	5 380820 cc	6 820920 cc	10 7801340 cc	15 11302150 cc	20 17503000 cc			
15198	MCR-F Wheel drives	101	•	•	-	•	•	-			
15200	MCR-W Heavy duty wheel drives		•	•	-	•	-	-			
15195	MCR-A Frame integrated drives		•	•	-	•	-	-			
15199	MCR-H Integrated drives		•	•	-	•	•	•			
15221	MCR-T Track drives		-	•	•	•	-	-			
15223	MCR-R Series 40 Hydraulic drive assist		-	-	-	•	-	-			
15214	MCR-X Slew drives		•	•	-	-	-	-			
15197	MCR-C Compact drives		-	-	-	-	-	•			
15196	MCR-D Industrial applications		•	•	-	•	-	-			
	MCR-E Industrial applications		-	•	-	-	-	-			

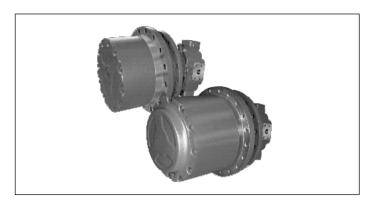
Bosch Rexroth Limited

Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 15 92 631 777 Telefax +44 15 92 631 936 info.ma@boschrexroth.de www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 15196/12.2013

Designation	Output torque	Data sheet	Page
Hydrostatic drives HYDROTRAC GFT	9450 kNm	77110	869
Compact hydrostatic drives HYDROTRAC GFT 45 T2/T3	45 kNm	77115	889
Drive unit for crawler track equipment, series 2000 – HYDROTRAC GFT	13,542,5 kNm	77116	893
Planetary gearboxes for mobile applications HYDROTRAC GFT 8000 Series 40	10130 kNm	77117	895
Planetary gearboxes for mobile applications HYDROTRAC GFT 8130 / 8140 Series 30	2030 kNm	77128	899
Swing drives MOBILEX GFB	46,83 kNm	77201	903
Drive unit for revolving superstructures, series 2000 – MOBILEX GFB	414,5 kNm	77206	919
Winch drives MOBILEX GFT-W	14325 kNm	77502	921


Product Catalog Mobile Hydraulics | Part 2: Motors, Gears

Hydrostatic drives HYDROTRAC GFT for mobile applications

RE 77110

Edition: 02/2016 Replaces: 04/2014

- ▶ Sizes GFT 9 to GFT 450
- ▶ Output torques from 9000 to 450000 Nm

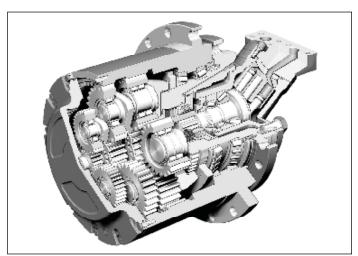
Features

- ► Compact, space-saving planetary gearbox design
- ▶ Planet wheels carried in full-complement bearings
- ► Robust main bearing system
- ► Simple mounting
- Easy oil change
- ► Integrated static multiple disk brake
- ► Low-noise running operation

Contents

Description, gear unit design, hydraulic motors, static spring pressure multi-disk brake, disconnect device, sealing system, oil changes, design variants, type code Dimensions and technical data for output torques from: 9000 Nm to 36000 Nm 4 40000 Nm to 110000 Nm 6 160000 Nm to 450000 Nm 8 Customer specification wheel application 10 Customer specification chain application 13 Customer specification drum application 16

Additional information at: www.boschrexroth.com/gears



2 HYDROTRAC GFT | Hydrostatic drives Functional description

Description

Rexroth compact hydrostatic HYDROTRAC GFT drives are the ideal driving components for wheeles or track-laying vehicles and other mobile equipment. They are the perfect choice for every conceivable moving or turning application.

The drives are extremely compact and thus may also be installed in space-critical mounting configurations. The drives' load capacity and availability is extraordinary thanks to the use of case-hardened annulus gears.

Three-stage compact hydrostatic drive Rexroth HYDROTRAC GFT with multiplate parking device and Rexroth plug-type motor

The gearteeth design reflects both standard requirements and in-house operating strength calculations based on our comprehensive know-how and optimally adapted to our modern fabrication processes.

The drives feature maximum total efficiency ratings which, inter alia, is due to the use of Rexroth plug-type motors. The drives described in this bulletin are constantly reviewed and advanced. Other design variants with deviating transmission, dimensions and power characteristics are available if so requested for specific applications.

Gearbox design

Gearbox design is based on long years of experience and reflects not only the customary standard design regulations but also satisfies operational strength requirements as per DIN 3990, ISO 6336, AGMA, GL or DNV. The output torque values indicated are short-term admissible peak torques meant for excavator travel drive applications. For other applications deviating output torques differing from those specified may apply to the respective gearbox. Even in the project stage we are prepared to offer application-specific consultation to customers aimed at finding the optimum drive configuration

Hydraulic Motors

Rexroth hydraulic motors are preferably integrated in a space-saving manner as flanged-on fixed or variable displacement units plugged into the gearbox.

Spring loaded multiplate parking brake integrated

As a standard supply feature the gearbox comes with one spring-loaded hydraulically released multiplate parking brake integrated on the input side. The static multiplate parking brake system is only a parking brake. The parking brake torque will suit the respective motor torque.

Disconnecting device

If requested, some of the drive systems may also be provided with a mechanical disconnecting device so that, if time is of essence, the equipment can be towed without damaging the hydraulic system.

Sealing system

An axial mechanical seal is mounted between the stationary and rotating gearbox sections. This prevents moisture and dirt from entering the drive even under extreme operating conditions.

Oil changes

Save for regular oil changes the drives do not require maintenance. Oil changes may conveniently be made from the outside. Recommendations as to lube oils are given in the operating manual.

Design variants

Model designations 1000 - 9000 indicate basic size and design variants that are readily available to our customers. To suit specific application requirements other models can also be furnished upon request. Depending on currently furnished units and transmission ratios many drives are available on preferential terms offering favorable prices and improved delivery times. If you are interested, please let us know.

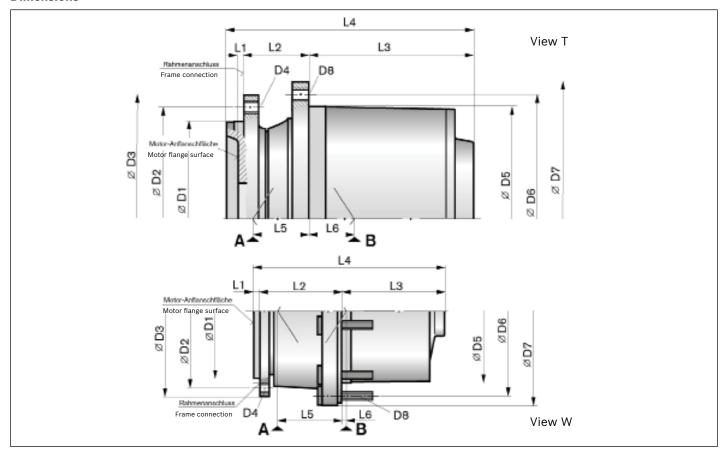
To suit the required ratio the gearboxes are of two- (T2) or three-stage (T3) design. If so requested, gear models 330 and 450 may be provided with an additional preliminary stage and in that case will be of four-stage design (T4). Please also observe our gearboxes series HYDROTRAC GFT 2000 (RE 77116) and HYDROTRAC GFT 8000 (RE 77117, RE 77128)

Hydrostatic drives HYDROTRAC GFT overview

Type/design variant	Output torque	Gear ratio
GFT	$T_{2\mathrm{max}}$	from/to
	Nm	i
GFT 9 T2	9000	47.6 - 55.3
GFT 13 T2	13000	22.6 - 37.6
GFT 17 T2	17000	37.6 - 54
GFT 17 T3	17000	77.9 - 88.2
GFT 24 T3	24000	90.1 - 137.2
GFT 26 T2	26000	42.9 - 62
GFT 34 T2	34000	42.9 - 50,5
GFT 36 T3	36000	115 - 138.8
GFT 40 T2	40000	35.9 - 59.1
GFT 50 T3	50000	73.9 - 177.5
GFT 60 T3	60000	94.8 - 169,9
GFT 65 T2	65000	55.4
GFT 80 T3	80000	99 - 215
GFT 110 T3	110000	87.6 - 173.9
GFT 160 T3	160000	210.8 - 251
GFT 220 T3 / R3	220000	67.7 - 365
GFT 330 T3	330000	168.9 - 302.4
GFT 330 T4	330000 / 380000	451.7 - 826.6
GFT 450 T4	450000	421.7

You can find the current range of our hydraulic compact drives

HYDROTRAC GFT at


www.boschrexroth.com/gears

Type code

НҮС	DROTRAC GFT 80 T3 2	000 SL	
Travel drive GFT ———————————————————————————————————			—— Strength main-bearings
Size — (Size = Output torque T_2 [kNm]			—— Internal code
T = Track laying R = Wheel drive			
Number of gear stages			

4 **HYDROTRAC GFT** | Hydrostatic drives Dimensions, technical data

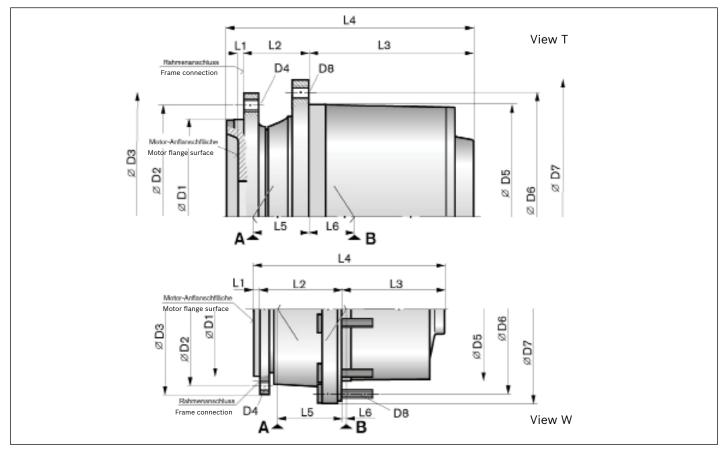
Dimensions

View T = turas attachment possible, view W = wheel rim attachment

Technical data

Type/design variant GFT	Output torque	Gear ratio	Holding torque	Hydraulic motor
	$T_{2 extsf{max}}$ Nm	i	$T_{Br\;max}$ Nm	
GFT 9 T2 3000	9000	47.6 • 55.3	215	A6VE 28 / A2FE 32
GFT 13 T2 4000/1	13000	26.4 • 32.1 • 37.6	400	A6VE 55 • 60
GFT 13 T2 4000/2	13000	26.4 • 32.1 • 37.6	400	A2FE 45 • 56 • 63
GFT 13 T2 7000/1	13000	22.6 • 26.4 • 32.1	400	A6VE 55 • 60
GFT 13 T2 7000/2	13000	22.6 • 26.4 • 32.1	575	A6VE 55 / A2FE 45 • 56 • 63
GFT 17 T2 3000/1	17000	54	350	A6VE 55 / A10VE 63 / A2FE 45 • 56 • 63
GFT 17 T2 9000/SL	17000	37.6 • 45.4	-	A6VE 55
GFT 17 T3 1000	17000	77.9	250	A6VE 28 / A2FE 28
GFT 17 T3 9000/2 SL • 9000/3 SL	17000	77.9 • 88.2	-	A6VE 28
GFT 17 T3 9000/4 SL	17000	88.2	-	A10VE 45 / A10VEC 45
GFT 24 T3 1000	24000	90.1 • 102.6 • 120.5 • 137.2	300	A6VE 55 / A2FE 45 • 56 • 63
GFT 24 T3 5000	24000	120.5 • 137.2	250	A6VE 55 / A10VEC 45 / A2FE 45 • 56 • 63
GFT 24 T3 9000	24000	120.5 • 137.2	300	A10VEC 45
GFT 26 T2 1000	26000	42.9 • 50.5 • 62	715	A6VE 80
GFT 34 T2 4000	34000	42.9 • 50.5	-	A6VE 107
GFT 36 T3 3000/1	36000	115 • 138.8	715	A6VE 55 / A2FE 45 • 56 • 63
GFT 36 T3 3000/2	36000	115 • 138.8	715	A6VE 80 / A2FE 80 • 90

GFT 36 T3 3000/2 = index no. for different structural lengths, diameter or motor attachment


Dimensions, bearing load ratings and masses

Type/design variant GFT	D1	D2	D3	D4	D5	D6	D7	D8
								
GFT 9 T2 3000	210	244	268	12x M14	230	260	284	16x M16
GFT 13 T2 4000/1	240	275	300	18x M16	270	305	335	16x M16
GFT 13 T2 4000/2	240	275	300	18x M16	270	305	335	16x M16
GFT 13 T2 7000/1	240	270	300	17x M16	280	335	372	10x M22x1.5
GFT 13 T2 7000/2	240	270	300	17x M16	280	335	372	10x M22x1.5
GFT 17 T2 3000/1	250	290	320	16x M20	280	305	330	16x M16
GFT 17 T2 9000/SL	250	305	330	18x M16	260	300	335	10x M22x1.5
GFT 17 T3 1000	240	320	300	18x M16	270	305	330	20x M16
GFT 17 T3 9000/2 SL	240	320	310	12x M16	260	300	335	20x M16
GFT 17 T3 9000/3 SL	250	330	330	18x M16 (S)	260	300	335	20x M16
GFT 17 T3 9000/4 SL	290	320	345	16x M16	324	364	390	15x M16
GFT 24 T3 1000	240	285	320	20x M20	280	305	330	20x M16 / 30x M16
GFT 24 T3 5000	240	275	304	18x M16	320	350	380	20x M16
GFT 24 T3 9000	290	320	345	16x M16	280	305	330	20x M16
GFT 26 T2 1000	270	310	350	16x M20	320	350	380	20x M16
GFT 34 T2 4000	410	380	420	20x ø18	325	381	420	12x M22x1.5
GFT 36 T3 3000/1	270	310	350	16x M20	320	350	380	20x M16x1.5
GFT 36 T3 3000/2	270	310	350	16x M20	320	350	380	20x M16x1.5

Type/design variant	L1	L2	L3	L4	L5	L6	Α.	+ B	Mass	View
GFT							С	Co		
			n	nm			k	N	kg	
GFT 9 T2 3000	-	60	149	232	18	64	132	255	50	Т
GFT 13 T2 4000/1	8	75	149	232	49	54	140	290	85	Т
GFT 13 T2 4000/2	30	75	149	254	49	54	140	290	85	Т
GFT 13 T2 7000/1	8	90	136	234	64	39	140	290	92	W
GFT 13 T2 7000/2	14	90	146	261	85	60	191	394	92	W
GFT 17 T2 3000/1	8	82	152	242	78	69	108	142	90	Т
GFT 17 T2 3000/1	8	82	155	245	56	47	140	290	90	W
GFT 17 T2 9000/SL	8	82	155	245	56	47	161	333	90	W
GFT 17 T3 1000	27	75	181	283	71	76	108	142	100	Т
GFT 17 T3 9000/2 SL	8	75	184	267	49	54	140	290	95	W
GFT 17 T3 9000/3 SL	8	75	184	267	49	54	140	290	95	Т
GFT 17 T3 9000/4 SL	14	84	201	299	71	76	108	142	95	Т
GFT 24 T3 1000	8	82	189.5	279.5	56	47	140	290	95	Т
GFT 24 T3 5000	16	82	209.5	307.5	56	47	140	290	110	Т
GFT 24 T3 9000	16	82	209.5	307.5	56	47	140	290	100	Т
GFT 26 T2 1000	20	90	220	330	58	50	186	400	145	Т
GFT 34 T2 4000	12	151	226	389	60	62	399	806	170	W
GFT 36 T3 3000/1	15	90	200	333	56.5	56.5	170	405	125	Т
GFT 36 T3 3000/2	10	90	200	300	56.5	56.5	170	405	125	Т

6 **HYDROTRAC GFT** | Hydrostatic drives Dimensions, technical data

Dimensions

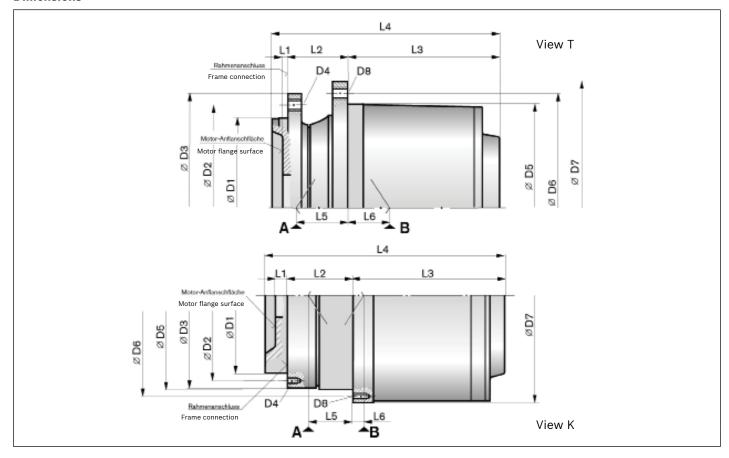
View T = turas attachment possible, view W = wheel rim attachment

Technical data

Type/design variant GFT	Output torque	Gear ratio	Holding torque	Hydraulic motor
	$T_{ m 2\ max}$ Nm	i	T_{Brmax} Nm	
GFT 40 T2 2000 SL	40000	35.9 • 41 • 48.3 • 59.1	800	A6VM 107 • 115 • 160 • 200
GFT 40 T2 9000	40000	35.9 • 41 • 48.3 • 59.1	800	A6VE 107 • 115 • 160
GFT 50 T3 1000/1	50000	84.2 • 91.1 • 125.7	800	A6VE 80 • 107
GFT 50 T3 1000/2	50000	84.2 • 91.1 • 125.7	800	A6VE 55 / A2FE 45 • 56 • 63
GFT 50 T3 3000	50000	73.9 • 91.1 • 125.7	800	A6VE 80 • 107
GFT 50 T3 9000 SL	50000	73.9 • 91.1 • 125.7	800	A6VE 80 / A2FE 80
GFT 50 T3 9000/2	50000	84.2 • 91.1	800	A6VE 80
GFT 50 T3 9000/3	50000	84.2 • 91.1 • 125.7	800	A2FE 63
GFT 60 T3 7000/1	60000	94.8 • 105.5 • 119.8 • 139.9 • 169.9	725	A6VE 80 • 107 / A2FE 80 • 90
GFT 65 T2 1000	65000	55.4	1060	A6VE 160
GFT 80 T3 1000 • 2000	80000	99 • 126.9 • 149.9 • 215	1025	A6VE 107 • 160 / A2FE 107 • 125
GFT 110 T3 1000	110000	95.8 • 114.8 • 173.9	1025	A6VE 107 • 160 / A2FE 107 • 125 • 160 • 180
GFT 110 T3 9000	110000	87.6 • 95.8 • 114.8 • 128.6 • 147.2 • 173.9	1100	A6VE 160 / A2FE 160
GFT 110 T3 9000 SL	110000	87.6 • 95.8 • 128.6 • 173.9	1100	A6VE 107 • 160 / A2FE 107 • 125

GFT 50 T3 9000/**3** = index no. for different structural lengths, diameter or motor attachment

Dimensions, bearing load ratings and masses


Type/design variant GFT	D1	D2	D3	D4	D5	D6	D7	D8		
			mm							
GFT 40 T2 2000 SL	330	370	410	20x M20	360	400	440	16x M20		
GFT 40 T2 9000	330	370	410	20x M20	360	400	440	16x M20		
GFT 50 T3 1000/1	270	310	350	18x M20x1.5	350	400	430	16x ø22		
GFT 50 T3 1000/2	270	310	350	16x M20	350	400	430	16x M20x1.5		
GFT 50 T3 3000	330	370	410	20x M20	360	400	440	16x M20		
GFT 50 T3 9000 SL	270	310	350	16x M20	350	400	440	16x M20		
GFT 50 T3 9000/2	330	370	408	16x M20	365	405	435	22x M16		
GFT 50 T3 9000/3	270	310	350	16x M20	350	405	430	16x M20x1.5		
GFT 60 T3 7000/1	330	370	410	20x M20x1.5	400	450	490	20x M20x1.5		
GFT 65 T2 1000	380	430	480	20x M24	430	480	520	24x M24		
GFT 80 T3 1000	420	460	500	24x M20	460	510	550	24x M20		
GFT 80 T3 2000	380	430	480	20x M24	430	480	520	20x M24		
GFT 110 T3 1000	420	460	500	24x M24x3	460	500	540	36x M18x1.5 ¹⁾		
GFT 110 T3 9000	420	460	500	24x M24x3	460	500	530	36x M18x1.5		
GFT 110 T3 9000 SL	460	520	570	24x M30	460	500	540	36x M18x1.5		

¹⁾ option: 36x ø22

Type/design variant	L1	L2	L3	L4	L5	L6	Α.	+ B	Mass	View
GFT							С	Co		
			r	k	N	kg				
GFT 40 T2 2000 SL	25	114	237.5	376.5	87	38	A 393 B 473	A 881 B 895	210	W
GFT 40 T2 9000	25	90	261.5	376.5	38	73	212	290	140	Т
GFT 50 T3 1000/1	39.5	82	281.5	403	56.5	54	212	400	150	Т
GFT 50 T3 1000/2	20	82	281.5	383.5	56.5	54	212	400	145	Т
GFT 50 T3 3000	25	114	276	415	62	48	212	400	150	Т
GFT 50 T3 9000 SL	15	82	318	415	45.5	79.5	393	400	145	Т
GFT 50 T3 9000/2	25	100.5	304	429.5	70.5	40	212	400	145	Т
GFT 50 T3 9000/3	20	82	282	383.5	56.5	54	212	806	170	Т
GFT 60 T3 7000/1	25	90	308	423	55	62	250	405	165	Т
GFT 65 T2 1000	-	148	245	415	128	20	A 250 B 480	A 480 B 950	340	Т
GFT 80 T3 1000	21.5	165	300	486.5	108	25	A 509	A 1080	370	Т
GFT 80 T3 2000	22	148	295	465	112	18	B 480	B 950	350	Т
GFT 110 T3 1000	-	165	305	491.5	107	25	A 509	A 1080	210	Т
GFT 110 T3 9000	21.5	165	305	491.5	107	24	B 480	B 950	215	Т
GFT 110 T3 9000 SL	45	170	316.5	529.5	154	34	710	1560	505	Т

8 **HYDROTRAC GFT** | Hydrostatic drives Dimensions, technical data

Dimensions

View T/K = turas attachment possible

Technical data

Type/design variant GFT	Output torque	Gear ratio	Holding torque	Hydraulic motor
	$T_{2 ext{max}}$ Nm	i	T_{Brmax} Nm	
GFT 160 T3 1000 • 9000	160000	210.8 • 251	1020	A6VE 107 • 160 / A2FE 107 • 125 • 160 • 180
GFT 220 T3 2000	220000	67.7 • 97.7 • 188.9 • 246 • 293	1100	A6VE 160 / A2FE 160 • 180
GFT 220 T3 9000/2	220000	67,7 • 97,7	-	A6VM 355
GFT 220 R3 9000/3	220000	145.4	1400	A6VM 200 • 215
GFT 220 T3 9000/4	220000	365	1100	A6VE 160 / A2FE 160 • 180
GFT 330 T3 2000 • 3000	330000	168.9 • 209.9 • 252.0 • 302.4	2500	A6VE 250 / A2FE 355
GFT 330 T3 9000	330000	302.4	2500	A6VE 250 / A6VM 200
GFT 330 T4 1000 ²⁾	330000	826.6	-	-
GFT 330 T4 2000	330000	451.7	625	A6VE 160
GFT 450 T4 1000/1	450000	421.7	1450	A6VE 250 / A2FE 250

GFT 220 T3 9000/4 = index no. for different structural lengths, diameter or motor attachment

²⁾ Gearbox with angle gear stage on intput side

Dimensions, bearing load ratings and masses

Type/design variant GFT	D1	D2	D3	D4	D5	D6	D7	D8
					mm			
GFT 160 T3 1000	450	510	560	20xM30	535	600	650	30x M24x2
GFT 160 T3 9000	450	510	560	30x M24x2	535	600	650	30x M24x2
GFT 220 T3 2000	460	600	650	30x M30	610	680	735	24x M30
GFT 220 T3 9000/2	460	520	570	24x M30	610	680	735	24x ø33
GFT 220 R3 9000/3	460	600	650	30x M30	610	680	735	24x M30
GFT 220 T3 9000/4	450	515	568	29x M36x3	570	620	670	42x M30x2
GFT 330 T3 2000	580	680	735	30x M30	660	730	785	30x M30
GFT 330 T3 3000	580	680	735	30x M30	660	730	785	30x M30
GFT 330 T3 9000	450	515	568	32x M30x2	570	620	670	44x M24x2
GFT 330 T4 1000	580	680	735	30x M30	660	730	785	30x M30
GFT 330 T4 2000	580	680	735	30x M30	660	730	785	30x M30
GFT 450 T4 1000/1	450	515	568	29x M36x1.5	570	620	670	42x M30x1.5

Type/design variant	L1	L2	L3	L4	L5	L6	Α -	+ B	Mass	View
GFT							С	Co		
			ı	nm			k	N	kg	
GFT 160 T3 1000	30	168	340	538	138	26	688	1520	680	Т
GFT 160 T3 9000	30	168	340	538	138	26	688	1520	680	Т
GFT 220 T3 2000	45	170	350	565	155	35	710	1560	680	Т
GFT 220 T3 9000/2	45	170	350	565	155	35	710	1560	850	Т
GFT 220 R3 9000/3	45	170	350	565	155	35	710	1560	850	Т
GFT 220 T3 9000/4	-	255	305	-	190	17	710	1560	880	K
GFT 330 T3 2000	150	125	400	675	190	25	1040	2450	1250	T
GFT 330 T3 3000	87	188	400	675	190	25	1040	2450	1230	T
GFT 330 T3 9000	45	253	442	740	178	37	1040	2450	1210	K
GFT 330 T4 1000	-	188	430	1175	190	25	1040	2450	1410	-
GFT 330 T4 2000	-	188	400	675	190	25	1040	2450	1320	T
GFT 450 T4 1000/1	13	255	512	810	175	19	1040	2450	1240	K

10 **HYDROTRAC GFT** | Hydrostatic drives Customer specification wheel application

You wish to receive an offer for a HYDROTRAC GFT as a wheel drive?

To process your request we need the following data: E-mail: info.gears@boschrexroth.de

Please enclose existing drawings, diagrams, comments and the like.

Company:	
Name/Dept.:	
Place:	
Phone:	
E-mail:	
Date:	

Page 1/3

Completing all fields is mandatory! Exceptions see footnotes.

E _T negative E _T
Center of wheel Radmitte
Rst
Ba Fa Avializati
E _T positive
Radmitte Center of wheel
Rst
So
Ba FA Adalizati Axial force
Radial force F _{R Audited} F _{2 Audited} Traction force
Side view of the wheel

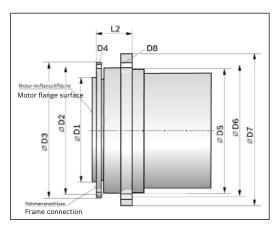
Machine weight	emptylo	aded
Number of driven wheels		
Max. traction force of machine	F _z	N
Gradeability ¹⁾	s	%
Total number of wheels		
Гуre radius		
static	R _{ST}	mm
dynamic	R _{DY}	mm
Max. travel speed	$V_{\sf max}$	km/h
Norking speed	V	km/h
Ambient temperature	from/to	°C
Гуre width	<i>B</i> _R	mm
Vheel rim diameter ¹⁾	D _F	inch
Vheel offset	E _T	mm
Center diameter / wheel rim ¹⁾	·	mm
Bolt circle diameter / wheel rim		mm
Wheel stud diameter ¹⁾		mm
Number of studs ¹⁾		
Radial force each drive	F_{R}	N
axial force each drive	F _A	N
Fechn. gearbox data		
Selected gearbox type	GFT	
Max. output torque	$T_{2\;\mathrm{max}}$	kNm
Max. output speed	$n_{ m 2\ max}$	1/min
Gear ratio ¹⁾	<i>i</i>	
Disconnect mechanisim	no yes	
Multi-disc parking brake	yes no	
nin. parking torque of multi-disc		
arking brake		Nm
Release pressure, max.	P _{max}	bar
Release pressure, min. 1)	P_{min}	bar
Dynamic brake	yes no	
Гор coat specific	no yes	
Color	RAL	

¹⁾ Optional entry

You wish to receive an offer for a HYDROTRAC GFT as a wheel drive?

To process your request we need the following data: E-mail: info.gears@boschrexroth.de

Please enclose existing drawings, diagrams, comments and the like.


Company:	
Name/Dept.:	
Place:	
Phone:	
E-mail:	
Date:	

Page 2/3

Required load spectrum and expected service life 1)

condition	output torque (Nm)	radial load (N)	output speed (1/min)	time slice (%)
1				
2				
3				
1				

Estimated service life $_____________$ h

Dimensions of gearbox

- Standard dimensions see available "technical data sheet" of Rexroth
- With differing requirements/ dimensions, please complete table

D1			mm
D2			mm
D3			mm
D4	No. of thread	Pcs.	
D5			mm
D6		-	mm
D7			mm
D8	No. of thread	Pcs.	
L2			mm

Tech. basic data of hydraulic motor

Hydraulic circuit	open closed
Motor type code	
Displacement	V_{gmin} cm 3
Displacement	$V_{g\;max}$ cm ³
Flushing valve	yes no
Speed sensor, if yes: type	yes, type no
Counter balance valve	yes no
Pressure relief valve	yes no
Pressure relief valve setting	bar
Working pressure	Δ p bar
Input flow, max.	$q_{_{ m V\;max}}$ l/min

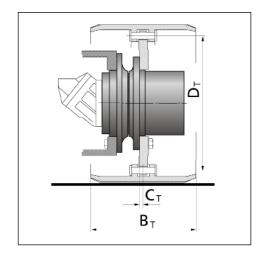
¹⁾ Optional entry

12 **HYDROTRAC GFT** | Hydrostatic drives Customer specification wheel application

You wish to receive an offer for a HYDROTRAC GFT as a wheel drive?	Company:
To process your request we need the following data: E-mail: info.gears@boschrexroth.de	Name/Dept.:Place:Phone:
Please enclose existing drawings, diagrams, comments and the like.	E-mail: Date:
	Page 3/3
Estimated Number of transmission units per year ¹⁾ Price range ¹⁾	
Requested ship date RSD 1)	
Special application conditions	
Further customer-specific requirements	
Are there any legal requirements and/or standards to be co	
no yes if yes, please specify	
Other (e.g. load spectra, application-relevant data, custom	uer drawings, name plate):

¹⁾ Optional entry

You wish to receive an offer for a HYDROTRAC GFT as a chain drive?


To process your request we need the following data: E-mail: info.gears@boschrexroth.de

Please enclose existing drawings, diagrams, comments and the like.

Company:		
Name/Dept.:		
Place:		
Phone:		
E-mail:		
Date:		

Page 1/3

Completing all fields is mandatory! Exceptions see footnotes.

Type of machine	
Machine weight	emptyt
Max. traction force of machine	<i>F</i> _z N
Gradeability ¹⁾	s %
Track type	Rubber track Steel track
Sprocket pitch diameter	D_{T} mm
Track width ¹⁾	<i>B</i> _T mm
Radial load lever arm	C_{T} mm
Max. travel speed	$V_{\sf max}$ km/h
Working speed ¹⁾	V km/h
Ambient temperature	from/to °C

Required load spectrum and expected service life 1)

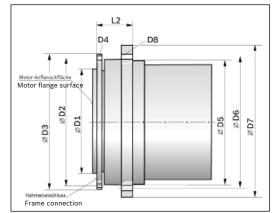
status	output torque (Nm)	output speed (1/min)	time slice (%)	
1				
2				
3				
4				
Estimated service life \sum h				

Task	.:!	4-4-	~~~	
Techr	ncai	uata	gear	DOX

Selected gearbox type	GFT	
Max. output torque	T _{2 max}	kNm
Max. output speed	<i>n</i> _{2 max}	1/min
Gear ratio 1)	<i>i</i>	
Disconnect mechanisim	no yes	
Multi-disk parking brake	yes no	
Min. parking torque of multi-disc		
parking brake		Nm
Release pressure, max.	P _{max}	bar
Release pressure, min. 1)	P _{min}	bar
Top coat specific	no yes	
Color	RAL	

¹⁾ Optional entry

14 **HYDROTRAC GFT** | Hydrostatic drives Customer specification chain application


You wish to receive an offer for a HYDROTRAC GFT as a chain drive?

To process your request we need the following data: E-mail: info.gears@boschrexroth.de

Please enclose existing drawings, diagrams, comments and the like.

Page 2/3

- Standard dimensions see available "technical data sheet" of Rexroth
- With differing requirements/ Dimensions, please complete table

D1			_ mm
D2			_ mm
D3			_ mm
D4	No. of thread	Pcs	
D5			_ mm
D6			_ mm
D7			_ mm
D8	No. of thread	Pcs	
L2			_ mm

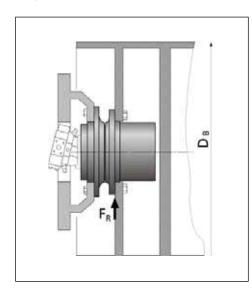
Tech. basic data of hydraulic motor

Hydraulic circuit	open closed
Motor type code	
Displacement	V_{gmin} cm 3
Displacement	V_{gmax} cm 3
Flushing valve	yes no
Speed sensor, if yes: type	yes, type n
Counter balance valve	yes no
Pressure relief valve	yes no
Pressure relief valve setting	bar
Working pressure	Δ p bar
Input flow, max.	$q_{_{ m V\;max}}$ l/mir

¹⁾ Optional field

You wish to receive an offer for a HYDROTRAC GFT as a chain drive?	Company:
To process your request we need the following data: E-mail: info.gears@boschrexroth.de	Name/Dept.: Place: Phone:
Please enclose existing drawings, diagrams, comments and the like.	E-mail: Date:
	Page 3/3
Estimated Number of transmission units per year ¹⁾ Price range ¹⁾	
Requested ship date RSD 1)	
Special application conditions	
Further customer-specific requirements	
Are there any legal requirements and/or standards to be on the following in considered?	

16 **HYDROTRAC GFT** | Hydrostatic drives Customer specification drum application


You wish to receive an offer for a HYDROTRAC GFT as a drum drive?

To process your request we need the following data: E-mail: info.gears@boschrexroth.de

Please enclose existing drawings, diagrams, comments and the like.

Page 1/3

Completing all fields is mandatory! Exceptions see footnotes.

Type of machine		\equiv	ndem rol	ler	Road roller	
Machine weight					t	
Required total trac	tion force				N	
Drive for		Dr	um		Rear wheels	;
Drum	Tamping plate	: wi	th		without	
Drum diameter		D_{B}			mm	
Rear wheel diameter		D_{R}			mm	
Reduction rear axle		i				
Weight distribution	1	front		rear	t	
Radial force drum		F_{R}			N	
Max. travel speed		$V_{\sf max}$			km/h	
Output speed, drui	m	n_2			1/min	
Gradeability		s			%	
Ambient temperatu	ıre	from/t	.0		°C	

Required load spectrum and expected service life 1)

status	output torque (Nm)	output speed (1/min)	time slice (%)
1			
2			
3			
4			

Estimated service life $\sum h$

*	For wheel drive, please use "Custome
	specification
	wheel application" (pages 10-12).

Max. output torque $T_{2 \max}$ kNm Max. output speed $n_{2 \max}$ 1/min Reduction drum drive 1 i yes no Min. parking torque of multi-disc parking brake Nm

Release pressure, max.
Release pressure, min. 1)

Technical data gearbox Selected gearbox type

Top coat specific Color

		Nm
P_{max}		bar
P_{min}		bar
no	yes	
RAL		

1) Optional entry

You wish to receive an offer for a HYDROTRAC GFT as a drum drive?

To process your request we need the following data: E-mail: info.gears@boschrexroth.de

Please enclose existing drawings, diagrams, comments and the like.

Company:		
Name/Dept.:		
Place:		
Phone:		
E-mail:		
Date:		

Page 2/3

Motor Anflance Miliche Motor flange surface

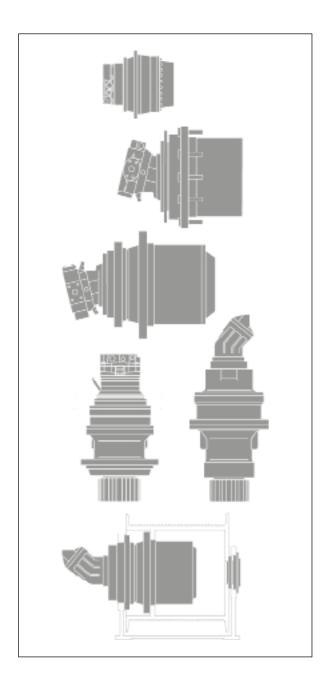
Dimensions of gearbox	D	imens	ions	of	gea	rbo	X
-----------------------	---	-------	------	----	-----	-----	---

- Standard dimensions see available "technical data sheet" of Rexroth
- With differing requirements/ Dimensions, please complete table

DI	
D2	
D3	
D4	No. of thread
D5	
D6	
D7	
D8	No. of thread
1.2	

	mm
	mm
	mm
Pcs.	
	mm
	mm
	mm
Pcs.	
	mm

Tech. basic data of hydraulic motor	front:		rear:	
Hydraulic circuit	open closed		open closed	
Motor type code				
Displacement	$V_{g\;min}$	_ cm³	V_{gmin}	_ cm³
Displacement	$V_{g\;max}$	_ cm³	$V_{g\;max}$	_ cm³
Flushing valve	yes no		yes no	
Speed sensor	yes no		yes,	no
If yes: type	type		type	
Brake valve	yes no		yes	no
Pressure relief valve	yes no		yes no	
Pressure relief valve setting		_ bar		_ bar
Working pressure	∆p	_ bar	∆p	_ bar
Input flow, max.	$q_{_{ m Vmax}}$	l/min	$q_{_{ m V\;max}}$	l/min


¹⁾ Optional field

18 **HYDROTRAC GFT** | Hydrostatic drives Customer specification drum application

You wish to receive an offer for a HYDROTRAC GFT as a drum drive?	Company:
To process your request	Name/Dept.:
we need the following data: E-mail: info.gears@boschrexroth.de	Place: Phone:
Please enclose existing drawings, diagrams, comments and the like.	E-mail: Date:
comments and the me.	Page 3/3
	rage 3/3
Estimated Number of transmission units per year ¹⁾ Price range ¹⁾	
Requested ship date RSD ¹⁾	
• • • • • • • • • • • • • • • • • • • •	
Are there any legal requirements and/or standards to be consoned in the conson	
Other (e.g. load spectra, application-relevant data, customer	drawings, name plate):

¹⁾ Optional entry

Planetary gearboxes for mobile units

Hydrostatic travel drives

- HYDROTRAC GFT
 For fixed- or variable-displacement motors
 Output torques between 9,5 and 580 kNm
 Data sheet RE 77110
- HYDROTRAC GFT 2000
 Series 30
 Output torques between 13,5 and 42,5 kNm
 Data sheet RE 77116
- HYDROTRAC GFT 8000
 Series 30
 Output torques between 20 and 30 kNm
 Data sheet RE 77128
- HYDROTRAC GFT 8000
 Series 40
 Output torques between 10 and 130 kNm
 Data sheet RE 77117
- HYDROTRAC GFT 45 T2/T3
 Output torques max. 45 kNm
 Data sheet RE 77115

Hydrostatic swing drives

- MOBILEX GFB
 For fixed- or variable-displacement motors
 Output torques between 4 and 68,3 kNm
 Data sheet RE 77201
- MOBILEX GFB 2000 Series 20 Output torques between 4 and 14,5 kNm Data sheet RE 77206

Hydrostatic winch gears

MOBILEX GFT-W
 For fixed- or variable-displacement motors
 Output torques between 14 and 325 kNm
 Data sheet RE 77502

Bosch Rexroth AG

Transmission Unit Nortkirchenstr. 53 44263 Dortmund, Germany Phone +49 231 22819-5 info.gears@boschrexroth.de www.boschrexroth.com/gears © All rights reserved by Bosch Rexroth AG, including in relation to filing of industrial property rights. Any and all rights of disposal such as the right to copy or disclose the information shall remain with us. The data specified are intended solely for product description. The information provided by us must not be construed as a warranty of a specific property or fitness for a particular purpose. The information given does not relieve the user from making his own assessments and tests. Note that our products are subject to normal wear and aging.

Compact hydrostatic drive HYDROTRAC GFT 45 T2/T3 with preliminary shiftable gear stage

RE 77115

Edition: 02.2016 Replaces: 01.2007

- ► Size GFT 45 T2/T3
- ► Output torque max. 45000 Nm

Features

- ▶ Defined increment step matching the hydraulic transmission range
- Gear shifting when moving
- Parking brake function
- Compact design

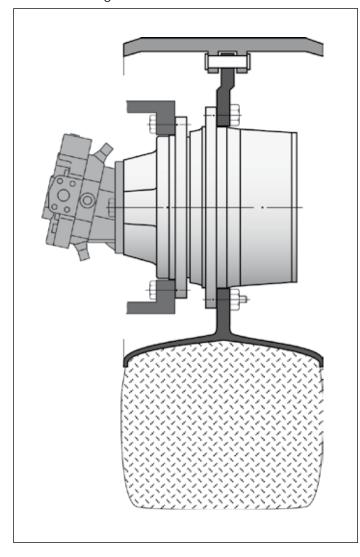
Content

Description, Brake / Clutch, Hydraulic Motors, Shipment, Weights, Oil Volume, Dimensions, Other Notes

Dimensions and Technical Data

3

Additional information at: www.boschrexroth.com/gears


2 HYDROTRAC GFT 45 T2/T3 | Compact hydrostatic drive with preliminary shiftable gear stage Functional description

Description

Two-speed travel drive HYDROTRAC GFT 45 T2/3 capable of shifting gears under load has been designed for vehicles which when performing normal work run at uniform low speed but are required to move significantly faster e.g. when traveling from one location to another.

This gear drive variant may for example be employed for blacktop paving equipment.

Gear shifting is effected by operating the two integrated clutches. As a result of the force-closed clutch design using friction plates gearshifting may also take place when the vehicle is moving.

For the complete range of gearbox products available from Bosch Rexroth please visit www.boschrexroth.com/gears

Brake / Clutch

When the vehicle is stationary the static locking torque is applied by engaging the two clutches. This causes the preliminary gear stage to be blocked. If inverted braking is permissible through engaging the disconnected clutch a service brake function can be achieved when using appropriately sized friction plates.

Hydraulic Motors

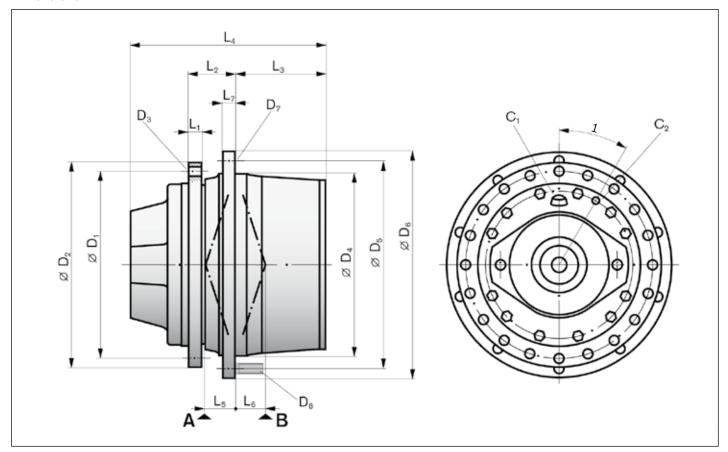
The gearbox has been designed for the direct attachment of a variable-displacement motor (preferably Rexroth hydraulic motors). This motor will be included in the supply on request.

Delivery / Shipment

Rexroth planetary gear units of type HYDROTRAC are shipped ready for mounting, but without oil filling. Standard supply includes external gearbox priming paint coat of color shade grey(similar to RAL 7032).

An internal preservation protects the unit against corrosion for a period of 12 months when stored in a dry place. Surfaces of external flanges, shaft ends and attachment faces are applied with preservative e.g. PERIGOL VCI 230 or CUSTOS 10-38.

Weights, Oil Volume, Dimensions


The weights indicated are to be understood as average values. However, the oil volume must always be ascertained via the oil level monitoring device. The figures and dimensions are not strictly obligatory. We reserve the right to implement technical modifications aimed at improving our products.

Other Notes

Statutory requirements provide that all rotating components must be provided with touch guards. All safety regulations prescribed for the relevant mounting locations must be observed. Commissioning and maintenance of the gear units to be in line with the instructions provided in our operating manual.

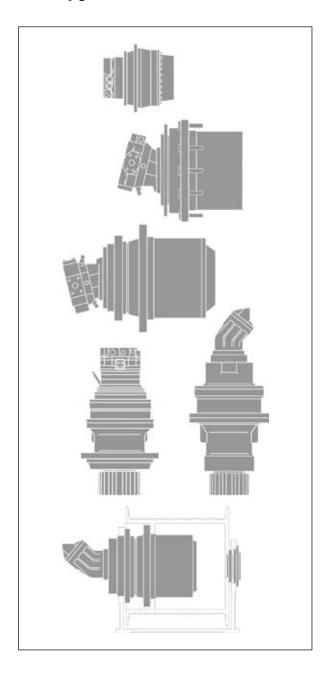
Please also observe our gearboxes series HYDROTRAC GFT 2000 (RE 77116) und HYDROTRAC GFT 8000 (RE 77117, RE 77128).

Dimensions

Technical Data

			1st Speed	2nd Speed
Transmission ratio	i		166,3	36,6
Input torque	T _{1 max}	Nm	270	730
Input speed	n _{1 max}	min ⁻¹	3324	3000
Output torque	T _{2 max}	Nm	45000	26700
Output speed	n _{2 max}	min ⁻¹	20	82
Max. locking torque of brake, static	T _{BR}	Nm	1600	730
Release pressure	р	bar	23	23
Max. release pressure	p _{max}	bar	30	30

Values indicated are maximum values.


Dimensions and masses

Type/design variant GFT	D1	D2	D3	D4	D5	D6	D7	D8	1	Mass
					mm					kg
GFT 45 T2/T3	360	395	M20x2,5	350	400	435	M20x1,5		30°	195

Type/design variant GFT	L1	L2	L3	L4	L5	L6	L7	A ·	+ B C _o	C ₁ C ₂				
							kN							
GFT 45 T2/T3	25	89	174,5	376	59,1	53,6	23	170	405	M12	x1,5			

4 **HYDROTRAC GFT 45 T2/T3** | Compact hydrostatic drive with preliminary shiftable gear stage Product range

Planetary gearboxes for mobile units

Hydrostatic travel drives

- HYDROTRAC GFT
 For fixed- or variable-displacement motors
 Output torques between 9,5 and 580 kNm
 Data sheet RE 77110
- HYDROTRAC GFT 2000
 Series 30
 Output torques between 13,5 and 42,5 kNm
 Data sheet RE 77116
- HYDROTRAC GFT 8000
 Series 30
 Output torques between 20 and 30 kNm
 Data sheet RE 77128
- HYDROTRAC GFT 8000
 Series 40
 Output torques between 10 and 130 kNm
 Data sheet RE 77117
- HYDROTRAC GFT 45 T2/T3
 Output torques max. 45 kNm
 Data sheet RE 77115

Hydrostatic swing drives

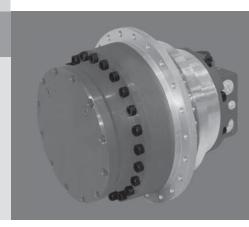
- MOBILEX GFB
 For fixed- or variable-displacement motors
 Output torques between 4 and 68,3 kNm
 Data sheet RE 77201
- MOBILEX GFB 2000 Series 20 Output torques between 4 and 14,5 kNm Data sheet RE 77206

Hydrostatic winch gears

MOBILEX GFT-W
 For fixed- or variable-displacement motors
 Output torques between 14 and 325 kNm
 Data sheet RE 77502

Bosch Rexroth AG

Transmission Unit Nortkirchenstr. 53 44263 Dortmund, Germany Tel. +49 231 22819-5 info.gears@boschrexroth.de www.boschrexroth.com/gears © All rights reserved by Bosch Rexroth AG, including in relation to filing of industrial property rights. Any and all rights of disposal such as the right to copy or disclose the information shall remain with us. The data specified are intended solely for product description. The information provided by us must not be construed as a warranty of a specific property or fitness for a particular purpose. The information given does not relieve the user from making his own assessments and tests. Note that our products are subject to normal wear and aging.


HYDROTRAC GFT

Drive unit for crawler track equipment

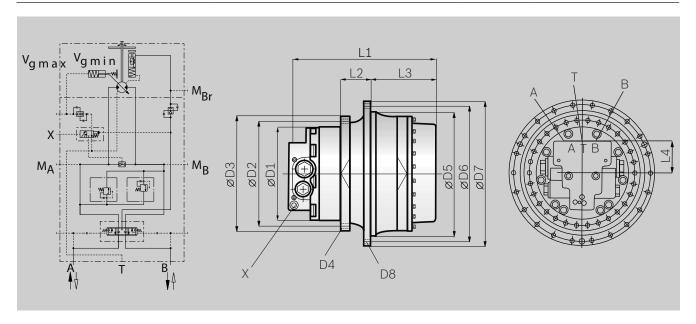
Series 2000

RE 77116/06.12 1/2

Data sheet

Contents Page Description

Dimensions Technical data


2

The hydrostatic drive unit of the GFT 2000 series consists of a two-stage planetary gearbox with an integrated hydraulic swash plate axial-piston motor. The complete unit is designed as a drive for tracked vehicles. The integrated dual displacement motor is provided with an automatic shifting function for automatic selection between $V_{g\ min}$ and $V_{g\ max}$. Optionally, the integrated dual displacement motor is provided with an HZ-adjustment.

- · Compact, space-saving two-stage drive unit
- · Suitable for crawler track equipment
- · Open circuit
- · Automatic shifting function
- Integrated Multiple disk brake
- Mechanical disconnect mechanism (optional)
- Connection plate with integrated brake valve and pressure relief valve
- Easy installation as a complete unit

Technical data • Dimensions

GFT type	Max. output torque	Motor displacement	Max. pressure	Gear ratio	Braking torque, static	Weight approx.	Tonnage class
	Nm	cm³	bar	i	Nm	kg	to
GFT 2120 E	13,500	54	300	53	129	85	7 - 10
GFT 2140 E	26,500	90	350	53	250	155	10 - 15
GFT 2160 E	42,500	170	350	45	475	250	20 - 25
GFT 2180 E			in preparat	on			30 - 35

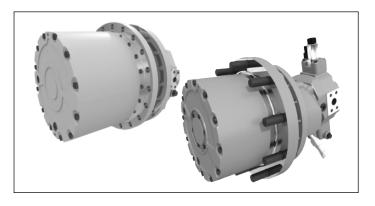
GFT type	D1	D2	D3	D4	D5	D6	D7	D8	L1	L2	L3	L4	A/B*	T*	X*
	mm														
GFT 2120 E	210	250	280	12x M16	265	300	326	12x M14	368.5	80	154.5	76.5	M27x2	M14x1.5	M14x1.5
GFT 2140 E	246	280	308	20x M16	324	364	394	18x M16	410	99.5	176.5	82	M33x2	M16x1.5	M14x1.5
GFT 2160 E	300	340	372	30x M16	402	440	470	22x M16	477.5	98.5	196.5	98	M33x2	M18x1.5	M14x1.5
GFT 2180 E								in prepara	tion						

^{*}JIS connections optional

Bosch Rexroth AG
Mannesmannstraße
58455 Witten, Germany
Phone +49 2302 877-0
Fax +49 2302 877-148
info.gears@boschrexroth.de
www.boschrexroth.com/getriebe

© All rights reserved by Bosch Rexroth AG, including in relation to filing of industrial property rights. Any and all rights of disposal such as the right to copy or disclose the information shall remain with us. The data specified are intended solely for product description. The information provided by us must not be construed as a warranty of a specific property or fitness for a particular purpose. The information given does not relieve the user from making his own assessments and tests. Note that our products are subject to normal wear and aging. Subject to modification without prior notice.

HYDROTRAC is a registered trademark.


Printed in Germany

Planetary gearboxes for mobile applications HYDROTRAC GFT 8000 Series 40

RE 77117

Edition: 09.2016 Replaces: 02.2016

- Sizes 8110 to 8190
- ▶ Output torques between 10000 and 130000 Nm

Features

- Compact, space-saving two- or three-stage planetary gearbox
- Robust design
- Integrated static multiple-disk parking brake
- Several sizes also with dynamic brake
- Assembly of variable plug-in and fixed displacement plug-in motors different series possible
- ► For open and closed circuits
- Easy assembly
- Disconnect mechanism (optional)
- Wheel studs (optional)

Content

Description	2
Technical data	2
Application conditions	2
Dimensions	3
Planetary gearboxes for mobile units	4

Additional information at: www.boschrexroth.com/gears

Description

The hydrostatic compact drive series 40 consists of a twoor three-stage planetary gearbox, which - in combination with a hydraulic axial piston motor - builts a space-saving drive unit. The complete unit is used as a drive component for wheel- or chain driven vehicles and other mobile applications.

Application conditions

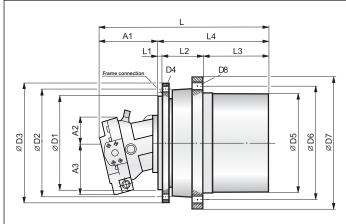
The planetary gearboxes are designed for use in environmental temperatures between -25°C and +40°C. Environmental factors such as salt water, salt air, sand, dust, pressure, severe shocks, extreme shock loads and environmental temperatures, aggressive media, etc. affect the function. Such influences must be pre-announced in order for a secure gearbox design.

Technical data

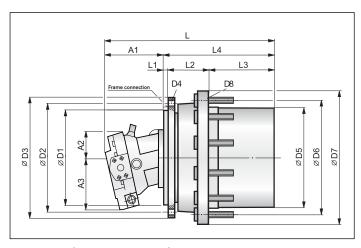
Size GFT	Nominal output torque Nm	Ratio i	Brake torque static Nm	Brake torque dynamic Nm	Appr. weight without motor kg	Compatible hydraulic motors
8110 E	10000	25.2 • 39.2 • 47.1 • 54.7	2)	-	55	A2FE 28 • 32 / A10FE 28 • 45 4)/ A6VE 28 / A10VE 28 • 45 4)
8120 E 1)	15000	19.0 • 24.0 • 32.1 • 36.4 • 39.1	2)	3)	80	A2FE 45 • 56 • 63 ⁴⁾ / A6VE 55 • 60
8130 E 1)	20000	26.0 • 32.3 • 39.2 • 50.6	2)	3)	85	A2FE 45 • 56 • 63 • 80 • 90 / A6VE 55 • 60 • 80 • 85
8140 F	30000	90.4 • 102.8 • 120.4 • 137.1	2)	-	95	A2FE 45 • 56 • 63 ⁴⁾ / A6VE 55 • 60
8150 E 1)	42000	32.3 • 35.4 • 41.1 • 50.6	2)	3)	200	A2FE 80 • 90 / A6VE 80 • 85 • 107 • 115 • 160 • 170
8160 F	52000	73.8 • 100.5 • 116.1 • 138.9	2)	-	240	A2FE 80 • 90 • 107 • 125 / A6VE 80 • 85 • 107 • 115
8170 F	70000	95.0 • 107.3 • 124.1	2)	-	250	A2FE 107 • 125 / A6VE 107 • 115
8180 E	70000	44.1 • 50.6 • 54.7	2)	-	330	A6VE 160 • 170
8190 F	130000	93.8 • 121.1 • 140.1 • 167.9	2)	-	460	A2FE 107 • 125 • 160 • 180 / A6VE 107 • 115 • 160 • 170

Other design variants on request

Bosch Rexroth AG, RE 77117/09.2016


Size also available with dynamic brake (not technical combinable with all in the size listed hydraulic motors)

²⁾ Depending on motor size


³⁾ Device-specific

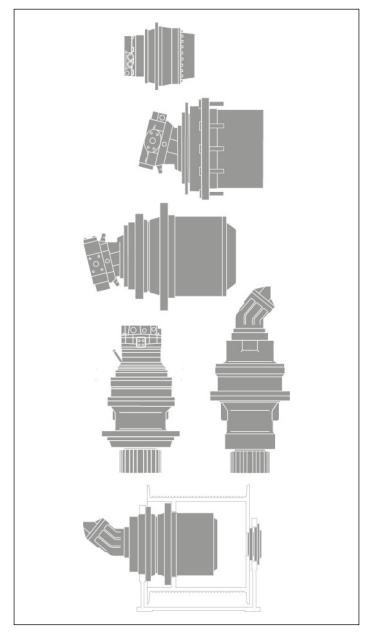
On request

Dimensions

Version T (with thread hole)

Version W (with wheel stud)

Size GFT	Version	D1	D2	D3	D4	D5	D6	D7	D8	L	L1	L2	L3	L4	A1	A2	А3
8110 E	Т	210	244	268	12 x M14	230	260	284	16 x M16	1)	15	60	166	241	2)	2)	2)
8110 E	W							in pr	eparation								
8120 E	Т	240	275	300	18 x M16	270	305	335	16 x M16	1)	14	75	163.5	252.5	2)	2)	2)
8120 E	W	250	305	330	23 x M16	260	300	335	10 x M22 x 1.5	1)	14	82	156.5	252.5	2)	2)	2)
8120 E	W	270	300	325	17 x M16	280	335	372	10 x M22 x 1.5	1)	14	90	148.5	252.5	2)	2)	2)
8130 E	Т	250	290	320	16 x M20	280	305	330	16 x M16	1)	14	82	166	262	2)	2)	2)
8130 E	W	270	300	325	17 x M16	280	335	372	10 x M22 x 1.5	1)	14	90	158	262	2)	2)	2)
8140 F	Т	240	285	320	20 x M20	280	305	330	20 x M16	1)	14	82	195.5	291.5	2)	2)	2)
8150 E	Т	330	370	410	20 x M20	360	400	440	16 x M20	1)	12	90	252.5	354.5	2)	2)	2)
8150 E	W	330	370	410	19 x M20	365	415	455	12 x M22 x 1.5	1)	12	90	252.5	354.5	2)	2)	2)
8160 F	Т	330	370	410	20 x M20	360	400	440	16 x M20	1)	14	114	254	382	2)	2)	2)
8170 F	T	330	370	410	20 x M20 x 1.5	400	450	490	20 x M20 x 1.5	1)	14	90	284	388	2)	2)	2)
8180 E	Т	380	430	480	20 x M24	430	480	520	24 x M24	1)	14.5	148	229.5	392	2)	2)	2)
8190 F	Т	420	460	500	24 x M24	460	500	540	36 x M18 x 1.5	1)	21.5	165	294	480.5	2)	2)	2)


The values given under "Dimensions" conform to the standard connecting dimensions. By various motor/gearboxcombinations additional check of the measurements from the motor flange and the gearbox connecting dimensions.

Other dimensions on request

¹⁾ Depending on motor size

²⁾ Depending on motor size and control device

Planetary gearboxes for mobile units

Hydrostatic travel drives

- HYDROTRAC GFT
 For fixed- or variable-displacement motors
 Output torques between 9,5 and 580 kNm
 Data sheet RE 77110
- HYDROTRAC GFT 2000
 Series 30
 Output torques between 13,5 and 42,5 kNm
 Data sheet RE 77116
- HYDROTRAC GFT 8000 Series 30 Output torques between 20 and 30 kNm Data sheet RE 77128
- HYDROTRAC GFT 8000
 Series 40
 Output torques between 10 and 130 kNm
 Data sheet RE 77117
- HYDROTRAC GFT 45 T2/T3
 Output torques max. 45 kNm
 Data sheet RE 77115

Hydrostatic swing drives

- MOBILEX GFB
 For fixed- or variable-displacement motors
 Output torques between 4 and 68,3 kNm
 Data sheet RE 77201
- MOBILEX GFB 2000
 Series 20
 Output torques between 4 and 14,5 kNm
 Data sheet RE 77206

Hydrostatic winch gears

MOBILEX GFT-W
 For fixed- or variable-displacement motors
 Output torques between 14 and 325 kNm
 Data sheet RE 77502

Bosch Rexroth AG

Transmission Unit Nortkirchenstr. 53 44263 Dortmund, Germany Phone +49 231 22819-5 info.gears@boschrexroth.de www.boschrexroth.com/gears © This document, as well as the data, specifications and other informations set forth in it, are exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties. The data specified above only serve to describe the product. No statement concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 77117/09.2016

Planetary gearboxes for mobile applications HYDROTRAC GFT 8130 / 8140 Series 30

RE 77128

Edition: 02.2016 Replaces: 12.2011

- Sizes 8130 and 8140
- ▶ Output torques between 20000 and 30000 Nm

Features

- Compact, space-saving two- or three-stage planetary gearbox
- ▶ Robust design
- Integrated static multiple-disk parking brake
- Assembly of variable plug-in and fixed displacement plug-in motors different series possible
- ► For open and closed circuits
- Easy assembly
- Disconnect mechanism (optional)
- Wheel studs (optional)

Content

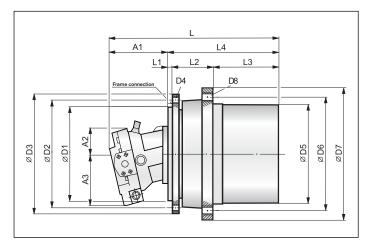
Content	
Description	2
Technical data	2
Application conditions	2
Dimensions	3
Planetary gearboxes for mobile units	4

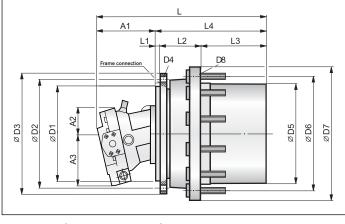
Additional information at: www.boschrexroth.com/gears

Description

The hydrostatic compact drive series 40 consists of a twoor three-stage planetary gearbox, which - in combination with a hydraulic axial piston motor - builts a space-saving drive unit. The complete unit is used as a drive component for wheel- or chain driven vehicles and other mobile applications.

Application conditions


The planetary gearboxes are designed for use in environmental temperatures between -25°C and +40°C. Environmental factors such as salt water, salt air, sand, dust, pressure, severe shocks, extreme shock loads and environmental temperatures, aggressive media, etc. affect the function. Such influences must be pre-announced in order for a secure gearbox design.

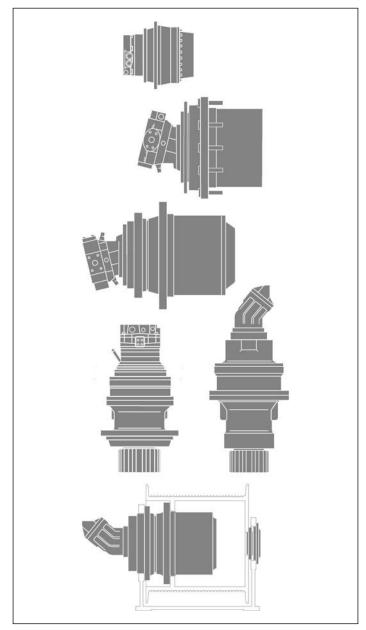

Technical data

Size GFT	Nominal output torque	Ratio	Brake torque static	Appr. weight without motor	Compatible hydraulic motors
	Nm	i	Nm	kg	
8130 E	20000	38.9 • 51.4	1)	83	A2FE 45 • 56 • 63 / A6VE 55 • 60
8140 F	30000	102.8 • 137.1	1)	95	A2FE 45 • 56 • 63 / A6VE 55 • 60

¹⁾ Device-specific

Dimensions

Version T (with thread hole)


Version W (with wheel stud)

Size GFT	Version	D1	D2	D3	D4	D5	D6	D7	D8	L	L1	L2	L3	L4	A1	A2	А3
8130 E	Т	250	290	320	16 x M20	280	305	330	16 x M16	2)	14	82	166	262	3)	3)	3)
8130 E	W	250	305	330	23 x M16	260	300	335	10 x M22 x 1.5	2)	14	82	166	262	3)	3)	3)
8140 F	Т	240	285	320	20 x M20	280	305	330	18 x M16	2)	14	82	195.5	291.5	3)	3)	3)
8140 F	Т	240	285	320	20 x M20	280	305	330	30 x M16	2)	14	82	195.5	291.5	3)	3)	3)

²⁾ Depending on motor size

³⁾ Depending on motor size and control device

Planetary gearboxes for mobile units

Hydrostatic travel drives

- HYDROTRAC GFT
 For fixed- or variable-displacement motors
 Output torques between 9,5 and 580 kNm
 Data sheet RE 77110
- HYDROTRAC GFT 2000
 Series 30
 Output torques between 13,5 and 42,5 kNm
 Data sheet RE 77116
- HYDROTRAC GFT 8000
 Series 30
 Output torques between 20 and 30 kNm
 Data sheet RE 77128
- HYDROTRAC GFT 8000
 Series 40
 Output torques between 10 and 130 kNm
 Data sheet RE 77117
- HYDROTRAC GFT 45 T2/T3
 Output torques max. 45 kNm
 Data sheet RE 77115

Hydrostatic swing drives

- MOBILEX GFB
 For fixed- or variable-displacement motors
 Output torques between 4 and 68,3 kNm
 Data sheet RE 77201
- MOBILEX GFB 2000
 Series 20
 Output torques between 4 and 14,5 kNm
 Data sheet RE 77206

Hydrostatic winch gears

MOBILEX GFT-W
 For fixed- or variable-displacement motors
 Output torques between 14 and 325 kNm
 Data sheet RE 77502

Bosch Rexroth AG

Transmission Unit
Nortkirchenstr. 53
44263 Dortmund, Germany
Phone +49 231 22819-5
info.gears@boschrexroth.de
www.boschrexroth.com/gears

© This document, as well as the data, specifications and other informations set forth in it, are exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties. The data specified above only serve to describe the product. No statement concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG, RE 77128/02.2016

Swing Drives MOBILEX GFB for mobile applications

RE 77201

Edition: 02.2016 Replaces: 05.2014

- ▶ Type GFB 9 to GFB 84
- ▶ Output torques between 4,000 and 68,300 Nm

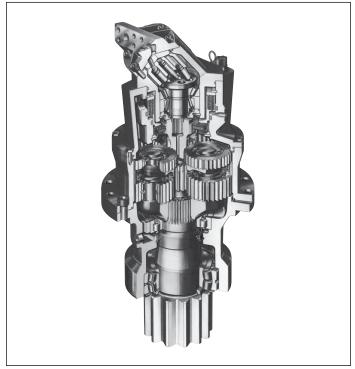
Characteristics

- ► Compact, space-saving two or three-stage planetary design
- ► Easy mounting
- ► Convenient oil change
- ► Integrated multiplate parking device
- ► Low-noise operation
- ► High efficiency
- ▶ Long service life

Contents

Description, Lubrication, Brake, Hydraulic Motor	2
Type of Construction, Overview of Swing Drives	3
Application Conditions, Gearbox Design,	
Higher Torques, Gearbox Selection,	
Multiplate Parking Device,	
Driver Groups and Service Time Categories	4
Classifications Examples	5
Dimensions and Technical Data	
for Output Torques from:	
4000 Nm to 17500 Nm for excavators	
7000 Nm to 28500 Nm for cranes	6
22000 Nm to 38200 Nm for excavators	
38000 Nm to 68300 Nm for cranes	8
Customer Specification swing drives	10

Additional Information at: www.boschrexroth.com/gears



2 MOBILEX GFB | Swing Drives Functional Description

Description

Rexroth MOBILEX GFB planetary gearboxes are hydrostatic swing gears.

They are suitable for use in excavators and cranes of all types, in ship unloading equipment, forestry equipment and in all applications where accurate positioning is called for. The drive consists of a two- or three-stage gearbox with an integrated multi-disk parking brake, an output pinion as well as a hydraulic motor, preferably from Rexroth. The information provided in this bulletin serves to help you select the planetary gearbox best suited for your application. In addition, our field personnel are available to you to provide advisory services even at the project stage.

Rexroth MOBILEX GFB two-stage hydrostatic compact drive with a multiplate parking device and a Rexroth plug-in motor

Lubrication

The gearteeth and bearings are splash lubricated. Aside from periodic oil changes, the drive units are maintenance-free. Oil changes are easy to do. The oil brands recommended in the operating manual shall be exclusively used. The change intervals for the relevant application conditions are also given in the operating manual. The pinion-side antifriction bearing of the output shaft is grease-lubricated for life.

Hydraulic Motors

The gearbox is designed for direct flange attachment of a variable or fixed displacement motor (preferably a Rexroth hydraulic motor).

Multiplate Parking Device

The standard supply scope includes a spring-loaded, hydraulically released multiplate parking device arranged on the input side.

The multiplate parking device is not a service brake.

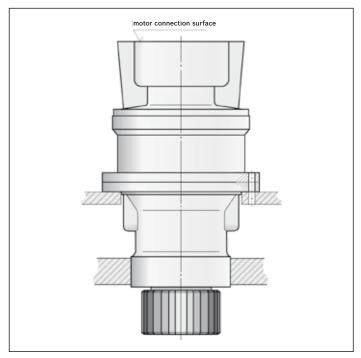
Gearbox Supply

Rexroth MOBILEX planetary gearboxes are delivered ready for installation, but without oil filling. The standard gearbox version comes with a priming coat of gray color (similar to RAL 7032) and is internally protected with a temporary corrosion preventive that preserves the gearbox for 12 months, if stored in a dry location.

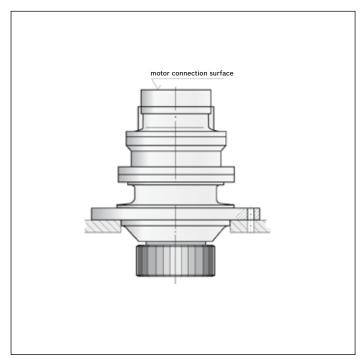
Exterenal flanges, shaft extensions and mating faces are protected with e.g. PERIGOL VCI 230 or CUSTOS 10-38

Mass, Oil Volumes, Dimensions

The specified mass are average figures.


As far as oil volumes are concerned, gearbox operators should rely on oil level readings rather than specified oil volumes. Figures and dimensions are not strictly binding. We reserve the right to make changes in line with technical progress.

Further Notes


As prescribed by stationary provisions, all rotating parts must be protected by guards against accidental contact. Local safety regulations must be compiled with. Commissioning and maintenance of the gearboxes must be performed in line with the instructions given in our operating manual.

Please also note our gearbox series MOBILEX GFB 2000 (RE 77206).

Type of Construction

GFB T2/T3 1000 Version 1000 = 2 centering seats T2 = 2-stage, T3 = 3-stage

GFB T2/T3 2000 Version 2000 = 1 centering seat T2 = 2-stage, T3 = 3-stage

Ordering Code

Swing Drive GFB — Number of Centering Seats Version — Number of Gear Stages (Version = Output Torque T₂ [kNm]

Swing Drives MOBILEX GFB - Overview

Type/Version	Output Torque Excavator	Output Torque Crane	Gear Ratio	
GFB	$T_{2\; {\sf max}}$	$T_{2\; max}$	from/to	
	Nm	Nm	i	
GFB 9 T2	4,000	7,000	33.4	
GFB 17 T2	7,700	12,700	32.5 - 45.7	
GFB 24 T2	10,600	17,500	149.1	
GFB 26 T3	10,000	16,500	43.9 - 51.5	
GFB 36 T3	17,500	28,500	117.6 - 153.6	
GFB 50 T2	22,000	38,000	32.3	
GFB 50 T2	22,000	38,000	147.4	
GFB 80 T3	38,200	68,300	186.4	
GFB 84 T2	38,200	68,300	35.1	

4 **MOBILEX GFB** | Swing Drives Gearbox Design, Classification

Application Conditions

The gearboxes are designed for use at ambient temperatures of between -20°C and +40°C. Environmental influences such as salt water, salty air, sand, dust, compressure, heavy vibrations, extreme shocks and ambient temperatures, aggressive fluids and the like may affect the function so that the gearbox can be designed for safe operation.

Gearbox Design

The gearbox design is based on many years of practical application experience. The maximum output torques $T_{2\,max}$ indicated under technical data for crane applications relate to FEM Section I, 3rd Edition and Section IX (FEM - Fédération Européene de la Manutention), as well as DIN 15020, collective load class L2, service and time category T5 corresponding to driver group M5. The reference output speed is 25 revolutions per minute maximum. If the swing drive is to be classified in another driver group, the required output torque must be converted using the K factor (see table). This conversion gives you the maximum admissible output torque for the new driver group selected. Wether or not the chosen overall classification can be met will be determined by the Rexroth gear technology experts

Higher Torques

For gearboxes transmitting higher torques than those indicated in this product catalog, please contact us.

Gearbox Selection

- ightharpoonup T₂ = Output torque
- T_{2K} = Corrected output torque K factor according to device time category and collective group given in the table.

$$T_{2K} = T_2 \cdot K$$

► T_{2K} of the gearbox to be selected must be $\leq T_{2 \text{ max}}$ (according to this product catalog).

Multiplate Parking Device

 $T_{Br sta. min} = 1,3 \cdot T_2$ (input torque)

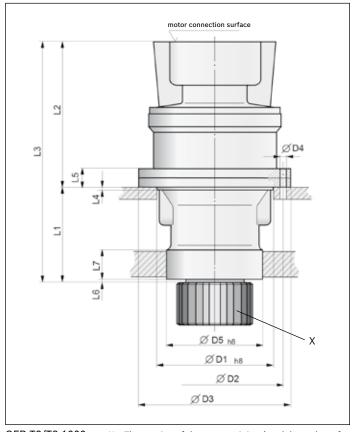
The holding torque multiplies with the selected transmission ratio.

See also Gearbox Design.

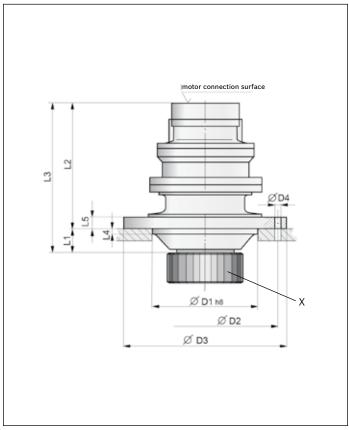
The customer specification for swing drives is reproduced on pages 10 to 12.

Driver Groups and Service Time Categories FEM, Section I, 3rd Edition 1987 (FEM: Fédération Européene de la Manutention)

Sei	rvice	time categ	ory	T2	T3	T4	T5	T6	T7	Т8		
Ass	Assumed average service time per day in hours			0.25 - 0.5	0.5 - 1	1 - 2	2 - 4	4 - 8	8 - 16	> 16		
The	Theoretic ervice life in hours			400 - 800	800 - 1800	1600 - 3200	3200 - 6300	6300 - 12500	12500 - 25000	25000 - 50000		
Со	llecti	ve load cla	SS	Driver group	Driver group with K factor							
sd	L1	low	Maximum loads occur only in exceptional cases; low loads are present at all times	M 1 0.90	M 2 0.90	M 3 0.90	M 4 0.90	M 5 0.95	M 6 1.05	M 7 1.2		
ള	L2 mediur L3 high	medium	Low, medium and high loads are present for roughly equal periods of time	M 2 0.90	M 3 0.95	M 4 0.95	M 5 1	M 6 1.15	M 7 1.30	M 8 1.50		
Collec		high	Loads are always near the maximum	M 3 1.05	M 4 1.05	M 5 1.10	M 6 1.25	M 7 1.40	M 8 1.60	M 8 1.80		
14		very high	Always maximum loads	M 4 1.25	M 5 1.30	M 6 1.45	M 7 1.65	M 8 1.85	M 8 2.10	M 8 2.40		


Classifications Examples (see FEM Section I, 3. Edition, Table T.2.1.3.5.)

Type of Crane (Designation)	Details on type of use 1)			Type of Driver		
		Hoisting	Swinging	Level Luffing	Trolley Travelling	Crane Travelling
Erection cranes		M 2 - M 3	M 2 - M 3	M 1 - M 2	M 1 - M 2	M 2 - M 3
Loading bridges	hook	M 5 - M 6	M 4	-	M 4 - M 5	M 5 - M 6
Loading bridges	grab or magnet	M 7 - M 8	M 6	-	M 6 - M 7	M 7 - M 8
Workshop cranes		M 6	M 4	-	M 4	M 5
Overhead travelling cranes, ram cranes, scrap yard cranes	grab or magnet	M 8	M 6	-	M 6 - M 7	M 7 - M 8
Unloading bridges, container gantry cranes	hook or spreader	M 6 - M 7	M 5 - M 6	M 3 - M 4	M 6 - M 7	M 4 - M 5
Other gantry cranes (with trolley and/or live ring)	hook	M 4 - M 5	M 4 - M 5	-	M 4 - M 5	M 4 - M 5
Unloading bridges, container gantry cranes (with trolley and/or live ring)	grab or magnet	M 8	M 5 - M 6	M 3 - M 4	M 7 - M 8	M 4 - M 5
Berth cranes, shipyard cranes, dismantling cranes	hook	M 5 - M 6	M 4 - M 5	M 4 - M 5	M 4 - M 5	M 5 - M 6
Dockside cranes (slewable, gantry type,) floating cranes, floating shearlegs	hook	M 6 - M 7	M 5 - M 6	M 5 - M 6	-	M 3 - M 4
Dockside cranes (slewable, gantry type,) floating cranes, floating shearlegs	grab or magnet	M 7 - M 8	M 6 - M 7	M 6 - M 7	-	M 4 - M 5
Floating cranes and floating shearlegs for very high loads (normally above 100 tons)		M 3 - M 4	M 3 - M 4	M 3 - M 4	-	-
Shipboard cranes	hook	M 4	M 3 - M 4	M 3 - M 4	M 2	М 3
Shipboard cranes	grab or magnet	M 5 - M 6	M 3 - M 4	M 3 - M 4	M 4 - M 5	M 3 - M 4
Tower cranes for construction sites		M 4	M 5	M 4	М 3	М 3
Derrick tower gantries		M 2 - M 3	M 1 - M 2	M 1 - M 2	-	-
Railroad cranes, approved for service on trains		M 3 - M 4	M 2 - M 3	M 2 - M 3	-	-
Vehicle-mounted cranes	hook	M 3 - M 4	M 2 - M 3	M 2 - M 3	-	-


¹⁾ In this rubric only a few typical types of use are indicated

6 **MOBILEX GFB** | Swing Drives Dimensions, Technical Data

Dimensions

GFB T2/T3 1000 • X =The gearing of the output pinion (modul, number of teeth, tooth width, etc.) is governed by the customer's ring gear.

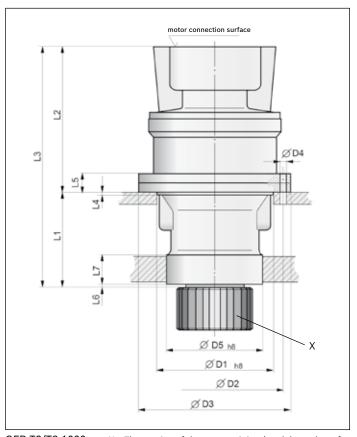
GFB T2/T3 2000 • X = The gearing of the output pinion (modul, number of teeth, tooth width, etc.) is governed by the customer's ring gear.

Technical Data

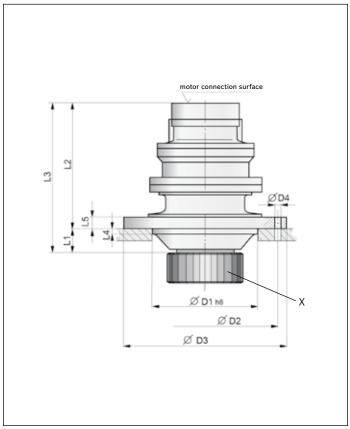
Type/Version	Output	Torque	Gear Ratio	Holding	Hydraulic Motor	
GFB	Excavator	Crane		Torque		
	T_{2} ,	max		$T_{Br\;max}$		
	Nm		i	Nm		
GFB 9 T2 2000/2	4,000	7,000	33.4	245	A6VM 55 / A2FM 56	
GFB 17 T2 1000	7,700	12,700	32.5 • 45.7	390	A2FE 45 • 56	
GFB 17 T2 2000	7,700	12,700	45.7	390	A2FE 45 • 56	
GFB 24 T2 1000/1	10,600	17,500	149.1	249	A2FM 32	
GFB 26 T2 1000	10,000	16,500	43.9 • 51.5	613	A2FE 80	
GFB 26 T2 2000	10,000	16,500	43.9 • 51.5	613	A2FE 80	
GFB 36 T3 1000/1	17,500	28,500	117.6 • 153.6	332	A2FM 45	
GFB 36 T3 1000/2	17,500	28,500	117.6 • 153.6	332	A2FE 45 • 63	

GFB 9 T2 2000/2 = Identification number for different overall lengths, diameters resp. motor attachment variants

Bosch Rexroth AG, RE 77201/02.2016


Dimensions, Bearing Load Capacities and Mass

Type/Version GFB	D1	D2	D3	D4	D5	Mass
			mm			kg
GFB 9 T2 2000/2	175	260	288	12x 17.5	-	85
GFB 17 T2 1000	256	290	320	16x 17.5	225	130
GFB 17 T2 2000	250	305	340	16x 17.5	-	130
GFB 24 T2 1000/1	265	315	355	20x 17.5	230	165
GFB 26 T2 1000	280	350	380	20x 17.5	250	225
GFB 26 T2 2000	275	335	365	20x 17.5	-	240
GFB 36 T3 1000/1	280	350	380	20x 17.5	250	210
GFB 36 T3 1000/2	280	350	380	18x 17.5	280	175


Type/Version GFB	L1	L2	L3	L4	L5	L6	L7
GFB 9 T2 2000/2	40	325.5	365.5	26	22	-	-
GFB 17 T2 1000	200	300	500	6	38	6	55
GFB 17 T2 2000	57	443	500	46	23	-	-
GFB 24 T2 1000/1	245	387	632	15	34	8	75
GFB 26 T2 1000	250	321	571	12	33	10	85
GFB 26 T2 2000	55	511	566	20	223	-	-
GFB 36 T3 1000/1	245	423	668	12	33	5	85
GFB 36 T3 1000/2	245	332	577	12	33	5	85

8 **MOBILEX GFB** | Swing Drives Dimensions, Technical Data

Abmessungen

GFB T2/T3 1000 • X =The gearing of the output pinion (modul, number of teeth, tooth width, etc.) is governed by the customer's ring gear.

GFB T2/T3 2000 • X = The gearing of the output pinion (modul, number of teeth, tooth width etc.) is governed by the customer's ring gear.

Technical Data

Type/Version	Output	Torque	Gear Ratio	Holding	Hydraulic Motor
GFB	Excavator	Crane		Torque	
	T_{2} ,	nax		$T_{Br\;max}$	
	Nı	m	i	Nm	
GFB 50 T2 9000	22,000	38,000	32.3	473	A2FE 63
GFB 50 T2 9000/1	22,000	38,000	32.3	473	A2FM 80
GFB 50 T2 9000/2	22,000	38,000	32.3	473	A2FM 80
GFB 50 T3 1000/3	22,000	38,000	147.4	473	A2FM 63
GFB 50 T3 1000/4	22,000	38,000	147.4	473	A2FM 63
GFB 80 T3 1000/3	38,200	68,300	186.4	975	A2FM 80 • 90
GFB 84 T2 2000/1	38,200	68,300	35.1	1,661	A2FM 180 • 200
GFB 84 T2 2000/2	38,200	68,300	35.1	1,661	AA2FM 180

 ${\sf GFB\ 50\ T3\ 1000/3} = identification\ number\ for\ different\ overall\ lengths,\ diameters\ resp.\ motor\ attachment\ variants$

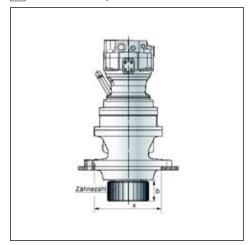
Dimensions, Bearing Load Capacities and Mass

Type/Version GFB	D1	D2	D3	D4	D5	Mass
			mm			kg
GFB 50 T2 9000	300	375	410	20x 17.5	280	240
GFB 50 T2 9000/1	300	375	410	20x 17.5	280	240
GFB 50 T2 9000/2	300	375	410	20x 17.5	280	240
GFB 50 T3 1000/3	330	375	411	24x 17.5	300	310
GFB 50 T3 1000/4	330	375	411	24x 17.5	300	315
GFB 80 T3 1000/3	440	480	530	24x 26	370	540
GFB 84 T2 2000/1	400	470	510	24x 26	-	515
GFB 84 T2 2000/2	400	460	510	24x 26	-	515

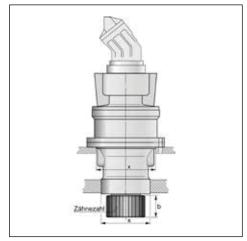
Type/Version GFB	L1	L2	L3	L4	L5	L6	L7
GFB 50 T2 9000	245	287.5	532.5	12	33	5	-
GFB 50 T2 9000/1	245	292.5	537.5	12	33	5	-
GFB 50 T2 9000/2	245	299.5	544.5	12	33	5	-
GFB 50 T3 1000/3	290	429.5	719.5	15	38	40	75
GFB 50 T3 1000/4	290	396.5	686.5	15	38	40	75
GFB 80 T3 1000/3	314	554.5	868.5	14	40	41	121
GFB 84 T2 2000/1	64	721	785	10	465	-	-
GFB 84 T2 2000/2	64	710	774	10	465	-	-

10 **MOBILEX GFB** | Swing Drives **Customer Specification**

You wish to receive an offer for the swing drives MOBILEX GFB?


To process your request we need the following data: E-mail: info.gears@boschrexroth.de

Please enclose existing drawings, diagrams, comments and the like.


Operating data / Design It is mandatory to fill out all fields!

For exceptions see footnotes.

One centering seat (x) with motor

Two centering seats (x) with

Company:	
Name/Dept.:	
Place:	
Phone:	
E-mail:	
Date:	

E-mail:				
Date:				
Page 1/3				
Type of machine				
Rating acc. to FEM Section I	Т_		L	_ M
or				
Alternativ load spectrum				-
Ambient temperature from/to				- °C
Operating machine weight 1)				
Hydraulic lifting power, max. 1)				_ t
Superstructure speed	n _o			
Superstructure torque	To			. kNm
Duty cycles per minute 1)	O			-
		_		
Gearbox	GFE -			-
Output torque, max.				
Output speed, max. Ratio ¹⁾		nax		
Ratio	ı			-
Output pinion				
No. of teeth	Z			_
Module	m			_ mm
Tooth width	b			_ mm
Pressure angle	×			Grad
Profile shift coefficient	х			_
Pinion mounting position	Bot	ton	n Top	Horizontal
Gearbox with eccentricity 1)	no		yes:	_mm
Classica vina				
Slewing ring Slewing ring manufacturer 1)				
Type ¹⁾				
Design of slewing ring		erna	ai gearing _	External gearing
No. of teeth slewing ring Tooth width of slewing ring	Z			_
	b			_ mm
Center distance pinion-gear ring 1)				_ mm
Brake				
Multiple-disk parking brake	no		yes wet [dry
Min. parking torque of				_ Nm
multiple-disk parking brake				

Multiple-disk parking brake	no	yes wet	dry
Min. parking torque of			Nm
multiple-disk parking brake			
With mechanical unlocking device	yes	no	
Release pressure, max	P_{max}		bar
Release pressure, min ¹⁾	P_{min}		bar
Top coat specific	no	yes	
Color	RAL		

¹⁾ Optional entry

You wish to receive an offer for the swing drives MOBILEX GFB? Company: Name/Dept.: To process your request Place: we need the following data: Phone: E-mail: info.gears@boschrexroth.de E-mail: Please enclose existing drawings, diagrams, Date: comments and the like. **Page 3/3 Dimensions of gearbox** Standard dimensions see available Technical data sheet" from Rexroth With differing requirements/dimensions please attach a sketch Technical basic data hydraulic motor open closed Hydraulic circuit Motor type code Displacement V_{g min} __ cm^3 Displacement $V_{g max}$ yes Flushing valve no Speed sensor, If yes, type yes, Type _ Counter balance valve no yes Pressure relief valve no yes Setting Working pressure _____ I/min Input flow, max. Estimated no. of transmission units per year 1) Price range 1) Requested ship date RSD 1) Special application conditions Further customer-specific requirements

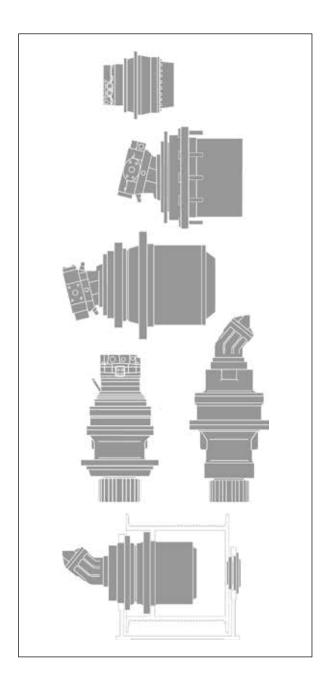
Are there any legal requirements and/or standards to be considered?

no yes If yes, please specify ______

¹⁾ Optional entry

Customer Specification You wish to receive an offer for the swing drives MOBILEX GFB? Company: Name/Dept.:____ To process your request Place: we need the following data: Phone: E-mail: info.gears@boschrexroth.de E-mail: Please enclose existing drawings, diagrams, Date: comments and the like. **Page 3/3** Others (e.g. load spectra, application-relevant data, customer drawings, nameplate):

12


MOBILEX GFB | Swing Drives

14 **MOBILEX GFB** | Swing Drives Notes

Notes

Notes

Planetary gearboxes for mobile units

Hydrostatic travel drives

- HYDROTRAC GFT
 For fixed- or variable-displacement motors
 Output torques between 9,5 and 580 kNm
 Data sheet RE 77110
- HYDROTRAC GFT 2000
 Series 30
 Output torques between 13,5 and 42,5 kNm
 Data sheet RE 77116
- HYDROTRAC GFT 8000
 Series 30
 Output torques between 20 and 30 kNm
 Data sheet RE 77128
- HYDROTRAC GFT 8000
 Series 40
 Output torques between 10 and 130 kNm
 Data sheet RE 77117
- HYDROTRAC GFT 45 T2/T3
 Output torques max. 45 kNm
 Data sheet RE 77115

Hydrostatic swing drives

- MOBILEX GFB
 For fixed- or variable-displacement motors
 Output torques between 4 and 68,3 kNm
 Data sheet RE 77201
- MOBILEX GFB 2000 Series 20 Output torques between 4 and 14,5 kNm Data sheet RE 77206

Hydrostatic winch gears

MOBILEX GFT-W
 For fixed- or variable-displacement motors
 Output torques between 14 and 325 kNm
 Data sheet RE 77502

Bosch Rexroth AG

Transmission Unit Nortkirchenstr. 53 44263 Dortmund, Germany Phone +49 231 22819-5 info.gears@boschrexroth.de www.boschrexroth.com/gears © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

MOBILEX GFB

Drive unit for revolving superstructures

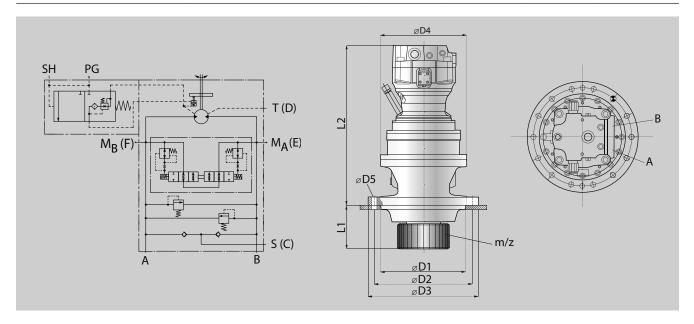
Series 2000

RE 77206/06.12 1/2

Data sheet

Contents Page Description

Dimensions Technical data


2

The hydrostatic drive unit of the GFB 2000 series consits of a two-stage planetary gearbox with an attached hydraulic swash plate slew drive motor. This compact drive is designed for swiveling a revolving superstructure of a crawler or wheel excavators. The slew drive motor is provided with an integrated static multiple disk brake and a vibration damping valve.

- Compact, space-saving two-stage drive unit
- · Multiple disk brake integrated into the motor
- Built-on brake release valve
- · Standard configuration with a vibration damping valve
- · Good anti-cavitation method
- Compact design by integrated valves
- · Easy installation as a complete unit
- Open circuit

Technical data • Dimensions

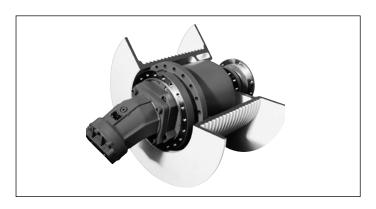
GFB type	Max. output torque	Motor displacement	Max. pressure			Weight approx.	Tonnage class			
	Nm	cm³	bar	i	Nm	kg	to			
GFB 2120 E	4,000	45	350	21	215	90	7 - 10			
GFB 2140 E	5,500	75	350	18.3	380	120	10 - 15			
GFB 2160 E	14,500	150 / 170	350	20.7	650/700	265	20 - 25			
GFB 2180 E		in preparation								

GFB type	D1	D2	D3	D4	D5	L1	L2	A/B	С	D	E/F	PG	SH	m	z
								mm							
GFB 2120 E	200	275	310	251	8x ø18	104	436.4								
								-	Ľ	tion	.oi	port	port	st	lest
OED 0440 E	000	000	000	000	9x ø18	100	484.5	port	ctic	Jec	lect		ē D	ane	request
GFB 2140 E	200	290	323	260	+ 1x ø20	136	474.5		connection	Leakage oil connection	Measuring connection	Control pressure	Control pressure	Module on request	on
					40 00			ssur	20	ē	ο <u>Θ</u> ι	pre	pre	9 OF	eth
GFB 2160 E	345	400	450	350	13x ø22 + 1x ø24	179	586.5	Pressure	Suction	age	šuri	덛	ţo	qule	of teeth
					1 17 02 1	-			Suc	aké	leas	Son	Son	Mo	No. o
GFB 2180 E			i	n prepa	aration					ٿ	2	O	J		Ž
GI B 2100 E				1 1-											

Bosch Rexroth AG
Mannesmannstraße
58455 Witten, Germany
Phone +49 2302 877-0
Fax +49 2302 877-148
info.gears@boschrexroth.de
www.boschrexroth.com/getriebe

© All rights reserved by Bosch Rexroth AG, including in relation to filing of industrial property rights. Any and all rights of disposal such as the right to copy or disclose the information shall remain with us. The data specified are intended solely for product description. The information provided by us must not be construed as a warranty of a specific property or fitness for a particular purpose. The information given does not relieve the user from making his own assessments and tests. Note that our products are subject to normal wear and aging. Subject to modification without prior notice.

MOBILEX is a registered trademark.


Printed in Germany

Winch drives MOBILEX GFT-W for mobile applications

RE 77502

Edition: 02.2016 Replaces: 04.2014

Sizes	GFI	17	W	to	GFI	450	W

- Output torques between 14 and 325 kNm
- ▶ Rope pull forces from 67 to 684 kN

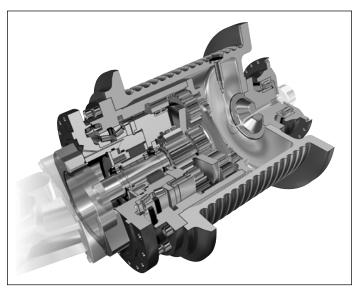
Features

- Compact, space-saving planetary gearbox design
- ▶ Planet wheel carried in full-complement bearings
- ► Robust bearing system absorbing the forces exerted by the rope pull
- Easy assembly
- Easy oil change
- ▶ Integrated static multiple-disk parking brake
- ► Low-noise operation

Content

Content	
Functional description	2
Version, overview	3
Design, classification	4
Dimensions, Technical data	6
Customer specification winch drive application	15
Notes	18
Product range	20

Additional informationen at: www.boschrexroth.com/gears



Functional description

Description

The hydrostatic Rexroth winch drives MOBILEX GFT-W are the ideal drive components for winches. They have proven their worth in the most arduous applications and under tough operating conditions. MOBILEX GFT-W winch drives are used in all kinds of winches - mobile and crawler cranes, railroad cranes, shipboard, dockside and container cranes. Due to their extremely compact design, the gear units can be mounted inside the rope drum in a space-saving manner. They are designed for ease of installation and maintenance. High-quality manufacturing processes and the use of case-hardened gearwheels as well as quenched, tempered and surface-hardened ring gears warrant outstanding load-carrying capacity, operational safety and low-noise running characteristics.

The teeth of the gearwheels are designed according to standard specifications and our own strength calculations, which have been developed based on our comprehensive konw-how and are optimally adapted to our manufacturing processes. The drives provide optimum total efficiency due to the use of Rexroth hydraulic motors, among other things

Three-stage hydrostatic Rexroth winch drive MOBILEX GFT-W with static spring pressure multiple-disk parking brake and connection for Rexroth hydraulic motor

Lubrication

The gears and bearings are splash-lubricated. The drive units are maintenance-free save for periodic oil changes, which are convenient to make. Only the oils specified in the operating manual should be used in the gearboxes. The change intervals for different operating conditions are also specified in the operating manual.

Spring pressure multiple-disk parking brake In the standard version, one spring-loaded, hydraulic release spring pressure multiple-disk parking brake is installed on the drive end.

$$T_{Br. sta. min} = 1.6 \cdot T_{1 \text{ (Input torque)}}$$

The spring pressure multiple-disk parking brake is not a service brake, but a static parking brake, which must not be used for braking the load.

The device engineer/operator must provide a separate service or emergency brake if necessary.

The holding torque is multiplied according to the selected transmission.

Hydraulic motors

The gearbox is designed for direct flange-attachment of a variable or fixed-displacement motor (preferably a Rexroth hydraulic motor).

Version, overview

Explanation version

2000 = Oil inlet, oil outlet, oil level on the gear cover

4000 = Oil inlet, oil outlet, motor-side oil level

6000 = Oil inlet, oil outlet, motor-side oil level Installation of 2 gearboxes in a hoisting drum possible

8000 = Optional with back stop (built-in between gearbox and holding brake)

9000 = Special version

Options

Upon request, the drives can be supplied with the following accessories:

Counter bearing, hoisting drum, winch frame

In addition to the standard delivery scope, the winch drives of series can also be delivered:

- with counter bearing
- with counter bearing and hoisting drum
- with counter bearing, hoisting drum and winch frame

Limit switches

Upon request, special counter bearings can be designed with a connection option for specific gear cam limit switches.

Overview of MOBILEX GFT-W Winch Drives

Type/design	Output torque 1)	Rope pull max. 2)	Gear ratio
GFT-W	$T_{2{ m max}}$		from/to
	Nm	kN	i
GFT 17 W2	14000	67	37,6 - 54
GFT 17 W3	14000	74	77,9 - 102,6
GFT 24 W3	19000	99	90,1 - 137,2
GFT 26 W2	18000	84	42,9 - 62
GFT 36 W3	26000	118	67 - 138,8
GFT 40 W2	27000	108	35,9 - 59,1
GFT 50 W3	37500	150	84,2 - 125,6
GFT 60 W3	42500	164	63,8 • 94,8
GFT 80 W3	67000	231	61,3 - 215
GFT 110 W3	100000	300	79,5 - 173,9
GFT 160 W3	140000	373	133 - 251
GFT 220 W3	200000	471	97,7 - 293
GFT 330 W3	275000	595	168,9 - 252
GFT 450 W4	325000	684	293,4 • 421,7

¹⁾ Design according to FEM L2, T5, M5

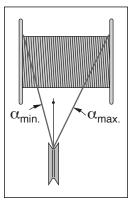
For our current range of MOBILEX GFT-W winch drives, visit us at www.boschrexroth.com/gears

 $^{^{2)}}$ Based on a theoretical 1st layer winding diameter D_{ws}

Design, classification

Application Conditions

The gearboxes have been designed for use at ambient temperatures of between -20°C and +40°C. Environmental influences such as salt water, safety air, sand, dust, overpressure, heavy vibrations, extreme shocks and ambient temperatures, aggressive media, etc. will affect the function of the product. Such influences must be specified to ensure that the winch drive is designed to safety meet the requirements.


Gearbox design

The gearbox design is based on many years of practical experience. The maximum output torques $T_{2\,\text{max}}$ indicated under Technical Data relate to FEM Section I, 3^{rd} issue and Section IX (FEM - Fédération Européene de la Manutention), as well as DIN 15020, collective load class L2, service time category T5 corresponding to driver group M5. The reference output speed is 25 revolutions per minute maximum. If the winch is classified into a different driver group, the required output torque must be converted by applying factor K (see table).

This results in the maximum permissbile output torque for the new classification. Whether or not the selected overall classification is feasible, will be determined by the specialists of Rexroth.

Fleet Angle

Observing the admissible fleet angle \propto is prerequisite for proper cable winding.

The fleet angle \propto should not be smaller than 0,5°, so that the rope does not ascend the drum flange and runs safely into the next layer. The fleet angle \propto should not be larger than 1,5°, so that the rope in the first rope layer does not get pulled against the groove and by several rope layers on the rope drum are properly wound up to the drum flanges.

Gearbox selection

• T₂ = output torque

F = rope pull in [N]

D_w = relevant winding diameter in [m]

$$T_2 = \frac{F \cdot D_W}{2}$$

T_{2K} = corrected output torque
 K factor according to the service time category and collective group given in the table

$$T_{2K} = T_2 \cdot K$$

 T_{2K} of the gearbox to be selected must be ≤ T_{2 max} (according to the bulletin).

See also gearbox design

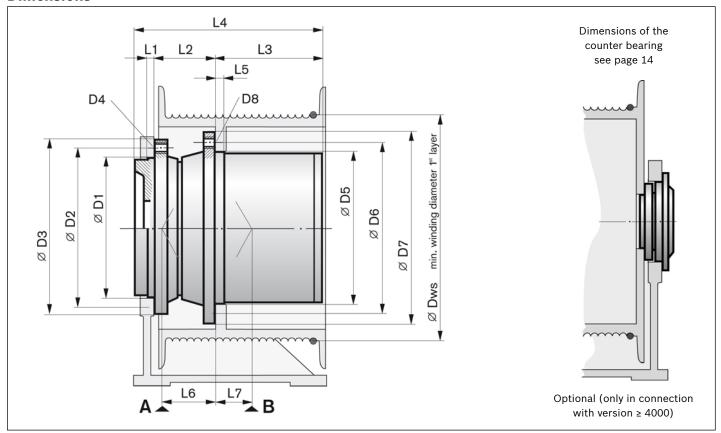
See page 15 for a data sheet relating to the winch drive design.

Driver Groups and Service Time Categories to FEM, section I, 3rd edition 1987

(FEM: Fédération Européene de la Manutention)

Ser	vice	time categ	gory	T2	Т3	T4	T5	T6	Т7	Т8
Ass	ume	d average	service time per day in hours	0,25 - 0,5	0,5 - 1	1 - 2	2 - 4	4 - 8	8 - 16	> 16
The	eoreti	cal service	e life in hours	400 - 800	800 - 1800	1600 - 3200	3200 - 6300	6300 - 12500	12500 - 25000	25000 - 50000
Loa	d spe	ectrum		Drive group	with K fact	or				
sd	L1	light	Maximum loads occuring in exceptional cases only, side loads constantly	M 1 0,90	M 2 0,90	M 3 0,90	M 4 0,90	M 5 0,95	M 6 1,05	M 7 1,2
tive Groups	L2	medium	small, medium and maximum loads about equally distributed over service time	M 2 0,90	M 3 0,95	M 4 0,95	M 5 1	M 6 1,15	M 7 1,30	M 8 1,50
Collective	L3	heavy	loads always near maximum	M 3 1,05	M 4 1,05	M 5 1,10	M 6 1,25	M 7 1,40	M 8 1,60	M 8 1,80
	L4	very heavy	Always maximum load		M 5 1,30	M 6 1,45	M 7 1,65	M 8 1,85	M 8 2,10	M 8 2,40

Bosch Rexroth AG, RE 77502/02.2016


Classification examples (see FEM section I, 3rd edition, table T.2.1.3.5.)

Type of crane (Designation)	Component operated 1)			Type of Driver		
		Hoisting	Swinging	Level luffing	Trolley travelling	Crane travelling
Erection cranes		M 2 - M 3	M 2 - M 3	M 1 - M 2	M 1 - M 2	M 2 - M 3
Loading bridges	Hooks	M 5 - M 6	M 4	-	M 4 - M 5	M 5 - M 6
Loading bridges	Grab or magnet	M 7 - M 8	M 6	-	M 6 - M 7	M 7 - M 8
Workshop cranes		M 6	M 4	-	M 4	M 5
Overhead travelling cranes, ram cranes, Scrapyard cranes	Grab or magnet	M 8	M 6	-	M 6 - M 7	M 7 - M 8
Unloading bridges, container gantry cranes	Hooks or spreaders	M 6 - M 7	M 5 - M 6	M 3 - M 4	M 6 - M 7	M 4 - M 5
Other portal cranes (with trolley and/or slewing ring)	hooks	M 4 - M 5	M 4 - M 5	-	M 4 - M 5	M 4 - M 5
Unloading bridges, container gantry cranes (with trolley and/or slewing ring)	Grab or magnet	M 8	M 5 - M 6	M 3 - M 4	M 7 - M 8	M 4 - M 5
Berth cranes, shipyard cranes, Dismantling cranes	Hooks	M 5 - M 6	M 4 - M 5	M 4 - M 5	M 4 - M 5	M 5 - M 6
Dockside cranes (slewable, gantry type,), floating cranes, floating sheerlegs	Hooks	M 6 - M 7	M 5 - M 6	M 5 - M 6	-	M 3 - M 4
Dockside cranes (slewable, gantry type,), floating cranes, floating sheerlegs	Grab or magnet	M 7 - M 8	M 6 - M 7	M 6 - M 7	-	M 4 - M 5
Floating cranes and floating sheerlegs for very high loads (normally above 100 t)		M 3 - M 4	M 3 - M 4	M 3 - M 4	-	-
Shipboard cranes	Hooks	M 4	M 3 - M 4	M 3 - M 4	M 2	М 3
Shipboard cranes	Grab or magnet	M 5 - M 6	M 3 - M 4	M 3 - M 4	M 4 - M 5	M 3 - M 4
Tower cranes for construction sites		M 4	M 5	M 4	М 3	М 3
Derrick tower gantry		M 2 - M 3	M 1 - M 2	M 1 - M 2	-	-
Railway cranes approv. or service in trains		M 3 - M 4	M 2 - M 3	M 2 - M 3	-	-
Vehicle-mounted cranes	Hooks	M 3 - M 4	M 2 - M 3	M 2 - M 3	-	-

 $^{^{\}mbox{\tiny 1)}}$ The column only shows some typical areas of winch use for informative purposes.

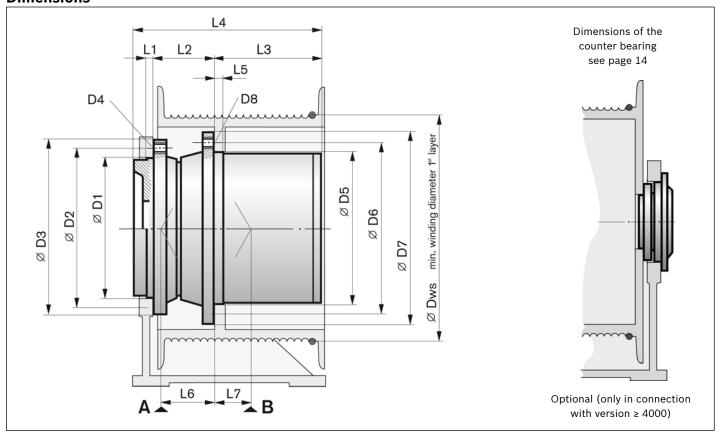
Dimensions, Technical data

Dimensions

Technical data

Type/design GFT-W	Output	Rope	Transmission ratio	Holding	Hydraulic motor
GF1-W	torque $T_{2\mathrm{max}}$	pull max. kN	÷	torque $T_{Br\;max}$	
	Nm		i	Nm	
GFT 17 W2 2000	14000	67	37,6 • 45,4 • 54	460	A6VE 55 / A2FE 45 • 56 • 63
GFT 17 W2 4000	14000	67	37,6 • 45,4 • 54	460	A6VE 55 / A2FE 45 • 56 • 63
GFT 17 W3 2000	14000	74	77,9 • 88,2 • 102,6	460	A6VE 55 / A2FE 45 • 56 • 63
GFT 17 W3 4000	14000	74	77,9 • 88,2 • 102,6	460	A6VE 55 / A2FE 45 • 56 • 63
GFT 24 W3 2000	19000	99	90,1 • 102,6 • 120,5 • 137,2	460	A6VE 55 / A2FE 45 • 56 • 63
GFT 24 W3 4000	19000	99	90,1 • 102,6 • 120,5 • 137,2	460	A6VE 55 / A2FE 45 • 56 • 63
GFT 26 W2 2000	18000	84	42,9 • 50,5 • 62	710	A6VE 80 / A2FE 80 • 90
GFT 26 W2 4000	18000	84	42,9 • 50,5 • 62	710	A6VE 80 / A2FE 80 • 90
GFT 36 W3 2000/1	26000	118	67 • 79,4 • 99,1 • 115 • 138,8	680	A6VE 55 / A2FE 45 • 56 • 63
GFT 36 W3 2000/2	26000	118	67 • 79,4 • 99,1 • 115 • 138,8	680	A6VE 80 • 107 / A2FE 80 • 90
GFT 36 W3 4000/1	26000	118	67 • 79,4 • 99,1 • 115 • 138,8	680	A6VE 55 / A2FE 45 • 90
GFT 36 W3 4000/2	26000	118	67 • 79,4 • 99,1 • 115 • 138,8	680	A6VE 80 • 107 / A2FE 80 • 90

GFT 36 W3 4000/2 = index no. for different structural lengths, diameter or motor attachment


Bosch Rexroth AG, RE 77502/02.2016

Dimensions, masses

Type/design GFT-W	D1	D2	D3	D4	D5	D6	D7	D8	\mathbf{D}_{ws}
					mm				
GFT 17 W2 2000	250	290	320	16x M20	280	305	330	16x M16	380
GFT 17 W2 4000	250	290	320	14x M20	280	305	330	16x 17,5	380
GFT 17 W3 2000	250	290	320	16x M20	280	305	330	16x M16	380
GFT 17 W3 4000	250	290	320	14x M20	280	305	330	16x 17,5	380
GFT 24 W3 2000	240	285	320	20x M20	280	305	330	20x M16	385
GFT 24 W3 4000	250	290	320	20x M20	280	305	330	20x 18	385
GFT 26 W2 2000	270	310	350	16x M20	320	350	380	20x M16	430
GFT 26 W2 4000	270	310	350	14x M20	320	350	380	20x 18	430
GFT 36 W3 2000/1	270	310	350	16x M20	320	350	380	20x M16x1,5	440
GFT 36 W3 2000/2	270	310	350	16x M20	320	350	380	20x M16x1,5	440
GFT 36 W3 4000/1	270	310	350	16x M20	320	350	380	20x 18	440
GFT 36 W3 4000/2	270	310	350	16x M20	320	350	380	20x 18	440

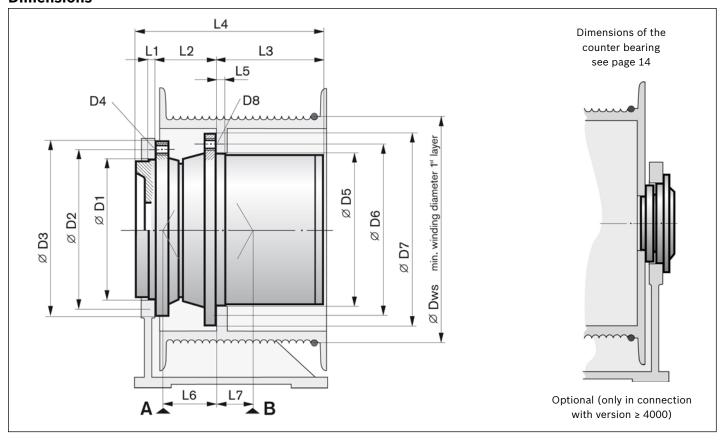
Type/design	L1	L2	L3	L4	L5	L6	L7	Α-	+ B	Mass
GFT-W								С	Co	
				mm				k	N	kg
GFT 17 W2 2000	16	82	152	264	18	56	47	108	142	105
GFT 17 W2 4000	16	82	152	264	18	56	47	108	142	105
GFT 17 W3 2000	16	82	174	286	18	56	47	140	290	115
GFT 17 W3 4000	16	82	174	286	18	56	47	140	290	115
GFT 24 W3 2000	16	82	189,5	301,5	18	56	47	140	290	130
GFT 24 W3 4000	16	82	189,5	301,5	18	56	47	140	290	130
GFT 26 W2 2000	20	90	220	340	25	58	50	186	400	136
GFT 26 W2 4000	20	90	220	340	25	58	50	186	400	136
GFT 36 W3 2000/1	20	90	210	343	25	56,5	56,5	170	405	155
GFT 36 W3 2000/2	10	90	200	300	25	56,5	56,5	170	405	155
GFT 36 W3 4000/1	20	90	210	343	25	56,5	56,5	170	405	155
GFT 36 W3 4000/2	10	90	200	300	25	56,5	56,5	170	405	155

Dimensions

Technical data

Type/design GFT-W	Output torque	Rope pull	Transmission ratio	Holding torque	Hydraulic motor
	$T_{2\mathrm{max}}$	max.		T_{Brmax}	
	Nm	kN	i	Nm	
GFT 40 W2 4000/1	27000	108	35,9 • 41 • 48,3 • 59,1	1080	A6VE 80 • 107 / A2FE 80 • 90
GFT 40 W2 4000/2	27000	108	35,9 • 41 • 48,3 • 59,1	1080	A6VE 107 • 160 / A2FE 107 • 125
GFT 50 W3 2000	37500	150	84,2 • 91,1 • 125,6	800	A6VE 80 • 107 / A2FE 80 • 90
GFT 50 W3 4000	37500	150	84,2 • 91,1 • 125,6	800	A6VE 80 • 107 / A2FE 80 • 90
GFT 60 W3 4000	42500	164	63,8 • 94,8 • 105,5 • 119,8 • 139,9 • 169,9	720	A6VE 80 • 107 / A2FE 80 • 90
GFT 60 W3 6000	42500	164	63,8 • 94,8	1620	A6VM 107 • 160 • 200 • 250 /
GF1 60 W3 6000	42500	164	63,6 • 94,6	1620	A2FM 107 • 125 • 160 • 180 • 200
GFT 60 W3 8000	42500	164	63,8 • 94,8	1620	A6VM 107 • 160 • 200 • 250 /
GF1 00 W3 0000	42300	104	03,0 • 34,0	1020	A2FM 107 • 125 • 160 • 180 • 200
GFT 80 W3 6000/1	67000	231	61,3 • 79,1 • 99 • 126,9 • 149,5 • 215	1890	A6VM 160 / A2FM 160 • 180
GFT 80 W3 6000/2	67000	231	61,3 • 79,1 • 99 • 126,9 • 149,5 • 215	1890	A6VM 200 • 250 / A2FM 200
GFT 80 W3 8000/1	67000	231	61,3 • 79,1 • 99 • 126,9 • 149,5 • 215	1890	A6VM 160 / A2FM 160 • 180
GFT 80 W3 8000/2	67000	231	61,3 • 79,1 • 99 • 126,9 • 149,5 • 215	1890	A6VM 200 • 250 / A2FM 200
GFT 80 W3 8000/3	67000	231	61,3 • 79,1 • 99 • 126,9 • 149,5 • 215	1890	A6VM 107 / A2FM 107 • 125

GFT 80 W3 8000/2 = index no. for different structural lengths, diameter or motor attachment


Bosch Rexroth AG, RE 77502/02.2016

Dimensions, masses

Type/design GFT-W	D1	D2	D3	D4	D5	D6	D7	D8	D _{ws}
					mm				
GFT 40 W2 4000/1	270	310	350	17x M20x1,5	350	400	440	16x 22	500
GFT 40 W2 4000/2	330	370	410	18x M20	350	400	440	16x 22	500
GFT 50 W3 2000	270	310	350	20x M20x1,5	350	400	430	16x M20x1,5	500
GFT 50 W3 4000	270	310	350	18x M20x1,5	350	400	430	16x 22	500
GFT 60 W3 4000	330	370	410	20x M20x1,5	370	410	450	20x 22	520
GFT 60 W3 6000	360	405	440	12x M24	370	405	440	16x 22	520
GFT 60 W3 8000	360	405	440	12x M24	370	405	440	16x 22	520
GFT 80 W3 6000/1	380	430	470	28x M24	430	460	495	24x 22	580
GFT 80 W3 6000/2	380	430	470	28x M24	430	460	495	24x 22	580
GFT 80 W3 8000/1	380	430	470	28x M24	430	460	495	24x 22	580
GFT 80 W3 8000/2	380	430	470	28x M24	430	460	495	24x 22	580
GFT 80 W3 8000/3	380	430	470	28x M24	430	460	495	24x 22	580

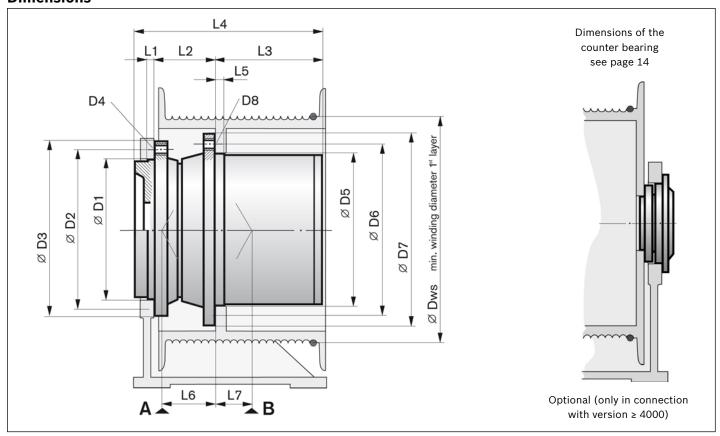
Type/design	L1	L2	L3	L4	L5	L6	L7	Α +	+ B	Mass
GFT-W								С	Co	
				mm				k	N	kg
GFT 40 W2 4000/1	25	82	243	364,5	30	57	54	212	425	192
GFT 40 W2 4000/2	25	108,5	243	376,5	30	56,5	54	212	425	219
GFT 50 W3 2000	25	82	281,5	403	30	62	48	212	425	212
GFT 50 W3 4000	25	82	281,5	403	30	56,5	54	212	425	212
GFT 60 W3 4000	25	114	284	423	30	79	38	250	520	230
GFT 60 W3 6000	6	115	271	434,5	16	84	25	250	520	230
GFT 60 W3 8000	6	115	271	434,5	16	84	25	250	520	230
GFT 80 W3 6000/1	10	120	295	484	30	76	19	212	425	430
GFT 80 W3 6000/2	10	120	295	484	30	76	19	212	425	430
GFT 80 W3 8000/1	10	120	295	604	30	76	19	212	425	430
GFT 80 W3 8000/2	10	120	295	604	30	76	19	212	425	430
GFT 80 W3 8000/3	10	120	295	583	30	76	19	212	425	430

Dimensions

Technical data

Type/design GFT-W	Output torque	Rope pull	Transmission ratio	Holding torque	Hydraulic motor
	$T_{2 extsf{max}}$ Nm	max. kN	i	$T_{\sf Br\; max}$ Nm	
GFT 110 W3 4000	100000	300	95,8 • 114,8 • 128,6 • 147,2 • 173,9	1100	A6VE 107 • 160 / A2FE 107 • 125 • 160 • 180
GFT 110 W3 6000/1	100000	300	79,5 • 95,8 • 114,8 • 128,6 • 147,2 • 173,9	1890	A6VM 200 • 250 / A2FM 200
GFT 110 W3 6000/2	100000	300	79,5 • 95,8 • 114,8 • 128,6 • 147,2 • 173,9	1890	A2FM 250
GFT 110 W3 6000/3	100000	300	79,5 • 95,8 • 114,8 • 128,6 • 147,2 • 173,9	1890	A6VM 160 / A2FM 160 • 180
GFT 110 W3 6000/4	100000	300	79,5 • 95,8 • 114,8 • 128,6 • 147,2 • 173,9	1890	A6VM 107 • 250 / A2FM 107 • 125 • 200
GFT 110 W3 8000/1	100000	300	79,5 • 95,8 • 114,8 • 128,6 • 147,2 • 173,9	1890	A6VM 200 • 250 / A2FM 200
GFT 110 W3 8000/2	100000	300	79,5 • 95,8 • 114,8 • 128,6 • 147,2 • 173,9	1890	A6VM 160 / A2FM 160 • 180
GFT 110 W3 8000/3	100000	300	79,5 • 95,8 • 114,8 • 128,6 • 147,2 • 173,9	1890	A6VM 107 / A2FM 107 • 125
GFT 110 W3 9000	100000	300	79,5 • 95,8 • 114,8 • 128,6 • 147,2 • 173,9	1500	A6VM 160 • 200 • 250 / A6VE 160 / A2FM 107 • 125 • 160 • 180

GFT 110 W3 6000/4 = index no. for different structural lengths, diameter or motor attachment


Bosch Rexroth AG, RE 77502/02.2016

Dimensions, masses

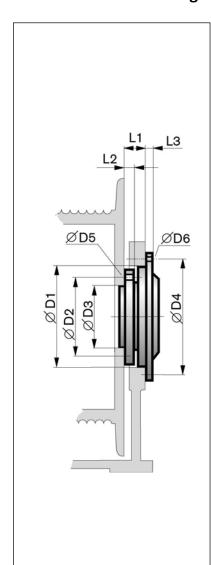
Type/design GFT-W	D1	D2	D3	D4	D5	D6	D7	D8	\mathbf{D}_{ws}
					mm				
GFT 110 W3 4000	420	460	500	24x M24	460	500	540	36x 20	640
GFT 110 W3 6000/1	380	430	470	28x M24	490	530	567	24x 26	650
GFT 110 W3 6000/2	380	430	470	28x M24	490	530	567	24x 26	650
GFT 110 W3 6000/3	380	430	470	28x M24	490	530	567	24x 26	650
GFT 110 W3 6000/4	380	430	470	28x M24	490	530	567	24x 26	650
GFT 110 W3 8000/1	380	430	470	28x M24	490	530	567	24x 26	650
GFT 110 W3 8000/2	380	430	470	28x M24	490	530	567	24x 26	650
GFT 110 W3 8000/3	380	430	470	28x M24	490	530	567	24x 26	650
GFT 110 W3 9000	380	430	470	28x M24	490	530	567	24x 26	650

Type/design	L1	L2	L3	L4	L5	L6	L7	Α.	+ B	Mass
GFT-W								С	Co	
				mm				k	:N	kg
GFT 110 W3 4000	21,5	165	305	491,5	30	107	25	A 509 B 480	A 1080 B 950	440
GFT 110 W3 6000/1	10	140	280	489	15	96	-2	212	425	460
GFT 110 W3 6000/2	10	140	280	489	15	96	-2	212	425	406
GFT 110 W3 6000/3	10	140	280	489	15	96	-2	212	425	515
GFT 110 W3 6000/4	10	140	280	481	15	96	-2	212	425	460
GFT 110 W3 8000/1	10	140	280	598	15	96	-2	212	425	460
GFT 110 W3 8000/2	10	140	280	598	15	96	-2	212	425	460
GFT 110 W3 8000/3	10	140	280	598	15	96	-2	212	425	460
GFT 110 W3 9000	10	140	290	498	15	94	0	212	425	515

Dimensions

Technical data

Type/design GFT-W	Output torque	Rope pull	Transmission ratio	Holding torque	Hydraulic motor
	$T_{ m 2\ max}$ Nm	max. kN	i	$T_{\sf Br max}$ Nm	
GFT 160 W3 4000	140000	373	133 • 210,8 • 251	1360	A6VM 200 / A6VE 107 • 160 / A2FE 107 • 125 • 160 • 180
GFT 220 W3 4000/1	200000	471	97,7 • 105,9 • 143,3 • 155,4 • 188,9 • 246,1 • 293	1360	A6VE 107 • 160 / A2FE 107 • 125 • 160 • 180
GFT 220 W3 4000/2	200000	471	97,7 • 105,9 • 143,3 • 155,4 • 188,9	1360	A6VM 200 • 250 / A2FM 200
GFT 220 W3 6000/1	200000	471	188,9 • 246,1 • 293	1360	A6VE 107 • 160 / A2FE 107 • 125 • 160 • 180
GFT 220 W3 6000/2	200000	471	97,7 • 105,9 • 143,3 • 155,4 • 188,9	2200	A6VM 200 • 250 / A2FM 200
GFT 330 W3 9000/1	275000	595	209,8 • 252	2860	A6VE 250 / A2FE 250
GFT 330 W3 9000/2	275000	595	168,9 • 181,7	2x 1700	2x A6VM 160
GFT 450 W4 6000	325000	684	293,4 • 421,7	2300	A6VE 250 / A2FE 250


GFT 220 W3 4000/**2** = index no. for different structural lengths, diameter or motor attachment

Dimensions, masses

Type/design GFT-W	D1	D2	D3	D4	D5	D6	D7	D8	D _{ws}
					mm				
GFT 160 W3 4000	450	510	560	30x M24x2	535	600	650	30x 30	750
GFT 220 W3 4000/1	460	600	650	30x M30	610	680	735	24x 33	850
GFT 220 W3 4000/2	460	600	650	30x M30	610	680	735	24x 33	850
GFT 220 W3 6000/1	460	600	650	30x M30	610	680	735	24x 33	850
GFT 220 W3 6000/2	460	600	650	30x M30	610	680	735	24x 33	850
GFT 330 W3 9000/1	580	680	735	28x M24	660	730	785	30x 33	925
GFT 330 W3 9000/2	580	680	735	28x M24	660	730	785	30x 33	925
GFT 450 W4 6000	580	680	735	36x M30	670	750	810	36x 33	-

Type/design	L1	L2	L3	L4	L5	L6	L7	Α.	+ B	Mass
GFT-W								С	Co	
				mm				k	N	kg
GFT 160 W3 4000	30	168	340	538	65	131,7	20,2	783	1557	680
GFT 220 W3 4000/1	25	170	350	565	60	155	35	710	1560	820
GFT 220 W3 4000/2	21	170	350	560	60	155	35	710	1560	820
GFT 220 W3 6000/1	25	170	350	565	60	155	35	710	1560	820
GFT 220 W3 6000/2	25	170	350	560	60	155	35	710	1560	820
GFT 330 W3 9000/1	87	188	430	705	80	190	25	1040	2450	1380
GFT 330 W3 9000/2	20	188	430	705	70	190	25	1040	2450	1380
GFT 450 W4 6000	87	156	532	775	37	155	39	1040	2450	1460

Standard counter bearing

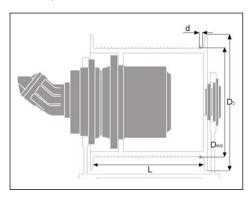
Gearbox size	D1	D2	D3	D4	D5
	H7/j6		H7/j6		
			mm		
GFT 17 W	140	115	90	157	12x ø14
GFT 24 W	175	145	115	198	12x ø18
GFT 26 W	175	145	115	198	12x ø18
GFT 36 W	200	170	140	230	12x ø18
GFT 40 W	200	170	140	230	12x ø18
GFT 50 W	225	190	150	260	12x ø22
GFT 60 W	225	190	150	260	12x ø22
GFT 80 W	225	190	150	260	12x ø22
GFT 110 W	260	220	180	295	12x ø22
GFT 160 W	260	220	180	295	12x ø22
GFT 220 W	260	220	180	295	12x ø22
GFT 330 W		Dime	ensions upon red	guest	

Gearbox size	D6	L1	L2	L3	Mass approx.
		m	m		kg
GFT 17 W	6x ø9	76	13	10	9
GFT 24 W	6x ø11	76	20	15	15
GFT 26 W	6x ø11	76	20	15	15
GFT 36 W	6x ø14	77	20	15	21
GFT 40 W	6x ø14	77	20	15	21
GFT 50 W	6x ø18	91	25	17	30
GFT 60 W	6x ø18	91	25	17	30
GFT 80 W	6x ø18	91	25	17	30
GFT 110 W	8x ø18	102	25	20	30
GFT 160 W	8x ø18	102	25	20	30
GFT 220 W	8x ø18	102	25	20	30
GFT 330 W		Dime	ensions upon red	quest	

Customer specification winch drive application

You wish to receive an offer for the winch drives MOBILEX GFT-W

To process your request we need the following data:
E-mail: info.gears@boschrexroth.de


Please enclose existing drawings, diagrams, comments and the like.

Page 1/3

Operating data / design

(all values based on the 1. rope layer)

It is mandatory to fill out all fields! For exceptions see footnotes.

Standard scope of supply

Transmission unit

Optional scope of supply

- Counter bearing
- Rope drum 3)

Winch frame

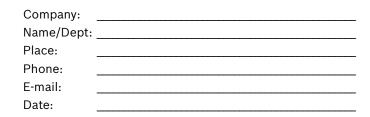
Type of device

Hoisting winch Boom hoist w	vinch Auxiliary	winch
Pulling winch Other:		
Rating acc. to FEM section I T	L	_ M
or alternative load spectrum		
Ambient temperature from/to		°C
Operating machine weight 1)		t
Lifting capacity, max. 1)		t
Rope pull (top rope layer) 2) F		N
Rope speed (1. rope layer) $^{2)}$ V_1		m/min
Rope speed (top rope layer) $^{2)}$ V_2		m/min
Rope diameter d		mm
	grooveless DIN	Lebus
Rope groove pitch 3) p		mm
Drum lead ³⁾	ight left	
Number of rope layers, max. 2)		
Winding diam. (1. rope layer) Dws		mm
Winding diam. (top rope layer) 2) Dwx		mm
Diameter of drum flanges D ₂		mm
Length between drum flanges 3) L		mm
Rope drum capacity		
incl. 3 safety turns ³⁾		m

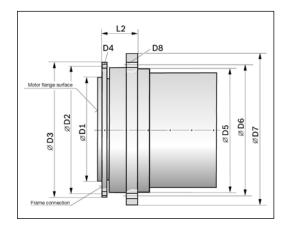
Techn. data gearbox

Selected gearbox type Max. output torque 2) Max. drive speed 2) Ratio 1) Multiple-disk parking brake yes Min. park. torque multiple-disk parking brake Release pressure, max. Release pressure, min 1) bar P_{min} Top coat specific yes Color RAL _

¹⁾ Optional entry


 $^{^{2)}}$ Mandatory field $T_{2\,max}$ is not specified

³⁾ Mandatory field in case of delivery with rope drum


You wish to receive an offer for the winch drives MOBILEX GFT-W

To process your request we need the following data: E-mail: info.gears@boschrexroth.de

Please enclose existing drawings, diagrams, comments and the like.

Page 2/3

Dimensions of gearbox

- Please fill out the table with the available standard dimensions from valid
 "Technical data sheet", or if possible the SAP material number of a reference gearbox.
- Please mark the deviating requirements/dimensionsin the table.

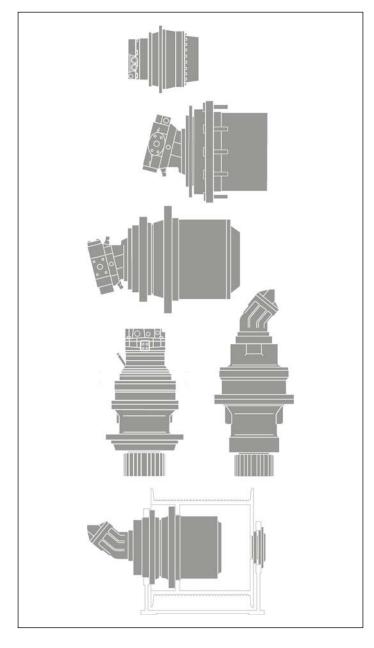
Mater	ial no. reference		
D1			mm
D2			mm
D3			mm
D4	No. of threads	pcs.	
D5			mm
D6			mm
D7			mm
D8	No. of threads	pcs.	
L2			mm

Technical basic data hydraulic motor

Hydraulic circuit	open closed	
Motor type code		
Displacement	V _{g min}	cm^3
Displacement	V _{g max}	cm^3
Flushing valve	yes no	
Speed sensor, if yes: type	yes, type	no
Counter balance valve	yes no	
Pressure relief valve	yes no	
Pressure relief valve setting		bar
Working pressure	Δp	bar
Input flow, max.	Q _{v max}	l/min

Estimated number of transmission units per y	ear ¹⁾	
Price range 1)		
Requested ship date RSD 1)		
Special application conditions		
Further customer-specific requirements _		
Are there any legal requirements and/or other standards to be considered?		
yes no if yes, please specify	/	

Bosch Rexroth AG, RE 77502/02.2016


¹⁾ Optional entry

You wish to receive an offer for	Company:
the winch drives MOBILEX GFT-W	Name/Dept:
To process your request	Place:
we need the following data:	Phone:
E-mail: info.gears@boschrexroth.de	E-mail:
Please enclose existing drawings, diagrams, comments and the like	Date:
	Page 3/3
Other (e.g. load spectra, application-relevant data, custo	mer drawings, nameplate):

Notes

Notes

Product range

Planetary gearboxes for mobile units

Hydrostatic travel drives

- HYDROTRAC GFT
 For fixed- or variable-displacement motors
 Output torques between 9,5 and 580 kNm
 Data sheet RE 77110
- HYDROTRAC GFT 2000 Series 30 Output torques between 13,5 and 42,5 kNm Data sheet RE 77116
- HYDROTRAC GFT 8000
 Series 30
 Output torques between 20 and 30 kNm
 Data sheet RE 77128
- HYDROTRAC GFT 8000
 Series 40
 Output torques between 10 and 130 kNm
 Data sheet RE 77117
- HYDROTRAC GFT 45 T2/T3
 Output torques max. 45 kNm
 Data sheet RE 77115

Hydrostatic swing drives

- MOBILEX GFB
 For fixed- or variable-displacement motors
 Output torques between 4 and 68,3 kNm
 Data sheet RE 77201
- MOBILEX GFB 2000 Series 20 Output torques between 4 and 14,5 kNm Data sheet RE 77206

Hydrostatic winch gears

MOBILEX GFT-W
 For fixed- or variable-displacement motors
 Output torques between 14 and 325 kNm
 Data sheet RE 77502

Bosch Rexroth AG

Transmission Unit Nortkirchenstr. 53 44263 Dortmund, Germany Phone +49 231 22819-5 info.gears@boschrexroth.de www.boschrexroth.com/gears © All rights reserved by Bosch Rexroth AG, including in relation to filing of industrial property rights. Any and all rights of disposal such as the right to copy or disclose the information shall remain with us. The data specified are intended solely for product description. The information provided by us must not be construed as a warranty of a specific property or fitness for a particular purpose. The information given does not relieve the user from making his own assessments and tests. Note that our products are subject to normal wear and ageing.

The Drive & Control Company

Bosch Rexroth AG

Mobile Applications Glockeraustrasse 4 89275 Elchingen Germany Tel. +49 7308 82-0 info.ma@boschrexroth.de www.boschrexroth.com

Your local contact person can be found at:

www.boschrexroth.com/addresses

Document No: RE 90010-02/07.2016 Replaces: RE 90010-02/07.2012